• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Position Measurement Based Slave Torque Feedback Control for Teleoperation Systems With Time-Varying Communication Delays

    2023-03-09 01:02:10XianYangJingYanChangchunHuaandXinpingGuan
    IEEE/CAA Journal of Automatica Sinica 2023年2期

    Xian Yang,Jing Yan,,Changchun Hua,,and Xinping Guan,

    Abstract—Bilateral teleoperation system is referred to as a promising technology to extend human actions and intelligence to manipulating objects remotely.For the tracking control of teleoperation systems,velocity measurements are necessary to provide feedback information.However,due to hardware technology and cost constraints,the velocity measurements are not always available.In addition,the time-varying communication delay makes it challenging to achieve tracking task.This paper provides a solution to the issue of real-time tracking for teleoperation systems,subjected to unavailable velocity signals and time-varying communication delays.In order to estimate the velocity information,immersion and invariance (I&I) technique is employed to develop an exponential stability velocity observer.For the proposed velocity observer,a linear relationship between position and observation state is constructed,through which the need of solving partial differential and certain integral equations can be avoided.Meanwhile,the mean value theoremis exploited to separate the observation error terms,and hence,all functions in our observer can be analytically expressed.With the estimated velocity information,a slave-torque feedback control lawis presented.A novel Lyapunov-Krasovskii functional is constructed to establish asymptotic tracking conditions.In particular,the relationship between the controller design parameters and the allowable maximum delay values is provided.Finally,simulation and experimental results reveal that the proposed velocity observer and controller can guarantee that the observation errors and tracking error converge to zero.

    I.INTRODUCTION

    RECENTLY,bilateral teleoperators have drawn extensive attention due to application of space operation,robotic telesurgery and undersea exploration.In a typical teleoperation system,the human operator imposes force on the master manipulator based on visual or force feedback.It provides motion commands to the slave manipulator,which mimics the movement of master manipulator to handle operational tasks.The contact force is reflected back to the human operator.All these information are transmitted through communication channel.

    During the past decades,coordinated control of bilateral teleoperation systems has been received great interests from both academic and engineering fields (see [1],[2] and the references therein).Most of the coordinated controllers for teleoperation systems rely on accurate velocity measurements,e.g.,[3]–[5].It is noted that the velocity information can be measured by Doppler velocity log (DVL) or fiber optic gyroscope (FOG).However,due to hardware technology and cost constraints,many commercial devices are not installed with DVL or FOG.On the other hand,even though the devices are installed with DVL or FOG,the velocity measurements are easily prone to failure due to manmade and ambient noises.Of note,inaccurate velocity measurements can lead to the chattering of distributed controllers.Therefore,it is quite necessary to shake off the reliance of velocity measurement units and design a velocity estimator for the coordinated control of teleoperation system.

    In order to estimate the velocity information,we find thatvelocity observercan provide us with a promising solution.Particularly,the velocity observer regards position measurements as the feedback inputs,and thereby,the output-feedback method can be employed to estimate the velocity information [6]–[8].Inspired by this,a nonlinear velocity observer was developed in [9] to guarantee asymptotic convergence of the observation errors.However,the upper bound of velocity information in [9] is required to be pre-known.For that reason,two high-gain observers were developed in [10],[11] to estimate of the unavailable velocity information.Also of relevance,Huaet al.[12] designed a fast terminal sliding mode velocity estimation algorithm.In addition,Xiao and Yin [13]constructed a sliding mode observer for the unmeasurable velocity.In [14] and [15],dirty-derivative filters were developed to estimate the unmeasurable velocity information.Nevertheless,the high-gain observers and sliding mode observers are very sensitive to measurement noises,which would cause strong mechanical vibrations on the control system.With regard to this,a new methodology,called immersion and invariance (I&I),has been proposed to design velocity observers for Euler Lagrange systems.Instead of can celling the measurement noises,I&I methodology transforms the observer design as a problem of rendering the manifold attractive [16],[17],whose advantages including high robust to system uncertainty and strong tolerance to measurement noises.In [18],Karagianniset al.first incorporated the idea of I&I into the observer design,where the unmeasured states are estimated by rendering an appropriately selected invariant manifold attractive in the extended state space.Following by the above work,the I&I method was applied to estimate the robots’ relative distance in leader-follow formation control[19].As is well known,the main difficulty of applying I&I observer is the need to solve partial differential equation(PDE).In order to relax the requirement of solving PDE,an approximation technique was proposed in [20].However,the observer in [20] relies on the solution to certain integral,which cannot be always ensured in some specific situations.Meanwhile,the definitions of some observer functions are not clearly presented in [20].Also of relevance,a follow-up work[21] presented the explicit definitions of all functions (see equations (8) and (9) in [21]),nevertheless it specializes in the unknown function,which is not representative.

    The position/force information between the master and slave site is transmitted through network.Due to the long distance and unexpected communication disturbance,there may be some delays between the time when the human operator sends the command and the time when the slave manipulator executes the command.The existence of even a small delay in the communication channel may cause instability of a whole teleoperation system[22]–[24].In order to guarantee passivity of bilateral teleoperator,a two-layer control architecture consisting of performance layer and passive layer was proposed in [25].Reference [26] extended the traditional timedomain passive controller to teleoperation systembased on four channel architecture.Reference [27] presented an adaptive neural synchronization control law for teleoperation system with consideration of unknown backlash-like hysteresis.The stable behavior of above works can be achieved under the constant delay assumption.Due to the complexity of communication network,however,the delays of data packets are time-varying.Under the presence of bounded time-varying delays,[28] proposed an adaptive neural network fixed-time controller for nonlinear bilateral teleoperator.The delay terms are treated as uncertainty,which is estimated by neural network.The effect of time-varying delay is eliminated by adaptive law in stability analysis.Reference [29] presented a T-S fuzzy model for single-master-multi-slave teleoperator and proposed leaderless control scheme.Although the stability of whole system can be achieved,the positions of master and slave converge to zero instead of tracking.

    In this paper,a real-time tracking solution with consideration of only position measurement and time-varying delay is developed for slave-torque feedback controlled teleoperation system.To be specific,we present a velocity observer based upon the I&I methodology.Following the idea of I&I,the crucial issue is to make the off-the-manifold coordinate attractively.In order to achieve this goal,the mean value theorem is exploited to separate the observation error terms,and hence,all functions in our observer can be analytically expressed.Then,a slave-torque feedback control algorithm based on estimated velocity is proposed.The constructed Lyapunov-Krasovskii functional,which makes full use of delay information,is employed to establish delay-dependent convergence criterion.Main contributions of this paper lie in two aspects.

    1) Velocity Observer Design:An I&I based velocity observer is developed,and meanwhile the sufficient conditions for exponential convergence are established.Compared with the existing nonlinear velocity observer [9],the proposed observer in this paper can remove the assumption on exact know ledge of the upper bound of speed.Different from the results in [20],all functions in our observer can be analytically expressed.The observation performance is experimentally validated on a three degree-of-freedom PHANTOM Premium1.5A robot.

    2) Delay-dependent tracking condition:With the estimated velocity from observer,a slave-torque feedback control algorithm is designed to make the slave manipulator follow the trajectory of master manipulator.It is worth mentioning that,with the presented condition,the real-time asymptotic tracking performance can be guaranteed as compared with [29] and[30].Meanwhile,a delay-dependent convergence criterion is proposed based on the constructed Lyapunov-Krasovskii functional.Different from [28],the tracking solution in this paper provides the relationship between the controller design parameters and the allowable maximumdelay values.

    II.SYSTEM MODELLING

    We think that a teleoperator consists of two robotic subsystems,a master and a slave to exchange information.The task is to synchronize motion of the master and slave such that the slave mimics the behavior of the master.

    where the subscriptmstands for master andsstands for slave,qi∈Rnis the joint position,are the acceleration and velocity,respectively;Mi(qi)∈Rn×nis the positive-definite inertia matrix;is the matrix of centripetal and coriolistorque;gi(qi)∈Rnrepresents the gravitational torque,Fh∈RnandFe∈Rnare human-operator force (torque) and environment force (torque),respectively;τi∈Rnis the applied torque.

    The properties of teleoperation system are revisited below withi=m,s.

    Property 1:The inertia matrix is lower and upper bounded,i.e.,there exist positive scalars ?i1and ?i2such that 0

    then the following inequality holds:

    Lemma 2 [32]:The matrix polynomial inequality

    holds ford(t)∈[0,d2] if and only if there exist positive definite matrixSand skew-symmetric matrixPsuch that

    Assumption 1:The human operator and the environment are passive,i.e.,

    III.MAIN RESULT

    A.Velocity Observer

    For facilitation of stability analysis,the lumped-parameter mechanical system can be represented as port-Hamiltonian form.Then,the inertia matrix in (1) can be factorized as

    System (3) satisfies the following properties [20].

    The stability problems are now stated as follows.

    Problem1:With only position measurements,we aim to design a velocity observer to estimate the velocity of bilateral teleoperation systems.This problem can be reduced to the estimation ofwith exponential convergence,which is equivalent to estimatexiwith regard to the relationship betweenandxiin (3).

    Problem2:Considering the time-varying delay and unmeasurable velocity constraints,we aimto design a slave-torque feedback controller and give its delay dependent stability condition to guarantee real-time asymptotic tracking between master and slave robot.This problem is reduced to guarantee

    Theorem1:Consider the teleoperation system(3).Suppose that the solutions of system(3) exist for allt≥0,then the velocity observer estimation error converges to zero exponentially.

    Proof:The subscribeiis omitted.Consider the scaled observer error as

    Based on (3) and (4),the error dynamic yields

    According to Properties 5 and 6 ofS(y,x),the termS(y,x)x?S(y,ξ+β)(ξ+β)in (13) can be rewritten as

    Based on (11),(13) becomes

    Replace (5) in (16),which yields

    We define Lyapunov function forz,ex,eyand (r?k) as

    with

    Using (5),the time derivative ofV2(r?k) is

    Fig.1.Construction relationship for the developed scheme.

    Remark 1:We provide a detailed description of how to get(31).We have

    B.Stability Analysis

    The control objective is to drive the coordination errors to zero independently of the variable time-delaysdm(t) andds(t),i.e.,qm(t)?qs(t)→0.In this case,it is said that the manipulators synchronize.In this section,we will prove that the incorporation of the estimated velocities provided by the aforementioned observer (4)–(7) in the slave-torque feedback controller (see Fig.1),i.e.,

    whereksis proportional coefficient, αmand αsare damping coefficients.For time-varying delaysdm(t) (the forward time delay,from the master site to slave site) andds(t) (the backward time delay,from the slave site to master site),there exist positive scalarsdi1,di2and μisuch that 0 ≤di(t)≤di2<∞ andfori=m,s.The bounds μmand μssatisfyμm+μs+μmμs<1.Denoted2,μ2and μ1asd2=dm2+ds2,μ2=μm+μs+μmμsand μ1=?μ2respectively.

    Remark 3:In this subsection,we consider the stability problem of unmeasured velocity teleoperation system(1) with proportional position errors and delayed slave-torque feedback plus damping injection controller (42).For bilateral teleoperation system,the direct slave torque feedback control scheme is widely used.Compared with proportional error feedback control scheme,it is more challenging due to the complexity and difficulty for stability analysis.In Fig.1,the master positionqm(t)is transmitted from the master site to the slave site through time delaydm(t),and then transmitted from the slave site to the master site along with slave torque τs(t) through time delayds(t).The received delayed position signal at the master site can be described byqm(t?ds(t)?dm(t?ds(t))).

    Theorem 2:Consider teleoperation system(1) with passive human force and environment force.If there exist positivedefinite matricesW1,Ze,Zs,Zi,Si,Qi,Ri1,Ri2,R3,skew-symmetric matricesPiand matricesYi,N,M,Xi=,i=1,2 with appropriate dimensions such that the following symmetric linear matrix inequalities hold:

    where Property 2 is applied.

    The first term in (48) can be rewritten as

    and the eighth term in (48) can be rewritten as

    Substituting (49) and (50) into (48),becomes

    where the Young’s inequality is employed,?mand ?sare positive constants.

    From(46),one can calculate that the derivative ofV5is

    Because 0 ≤dm(t)≤dm2,0 ≤ds(t)≤ds2and 0 ≤d(t)≤d2,(52) becomes

    According to Jensen’s inequality,one can further obtain

    According to Wirtinger inequality [35],the time derivative ofV6is

    The time derivative ofV7is

    where

    with

    According to integral inequality in [37],Ψ2(t) in (57) can be rewritten as

    The following free-weighting matrices are considered:

    Remark 4:In [27],[28],[30],by the designed control law,the position tracking error is guaranteed to converge to a small neighbourhood of the origin.In addition,the slave tracks a delayed information from master site,which gives rise to the position tracking errors.An asymptotic stability performance can be achieved with the proposed approach in [29].However,the position of master and slave converge to zero,i.e.,qm(t)→0 andqsi(t)→0 ast→∞.For bilateral teleoperation system,in order to complete the task better,the slave needs to be able to asymptotically mimic real-time movement of master,i.e.,qs(t)?qm(t)→0.Compared with the case in [28]where the delay terms are regarded as uncertainty,we establish a delay-dependent tracking criterion,which builds relationship between the controller design parameters and the allowable maximum delay values.The slave positionqs(t)asymptotically converge to the master positionq m(t) ast→∞.The stability conditions presented in Theorem 2 are in the linear matrix inequality (LM I) form and can be solved by Matlab LMI Toolbox.

    IV.SIMULATION AND EXPERIMENT

    In this section,simulation and experimental results are both presented to verify the effectiveness of our velocity observer.

    A.Simulation Results

    The dynamic of 2-DOF bilateral teleoperation system in (1)is given by (The subscriptsmandsare omitted.)

    Fig.2.Human input force.

    The stability performance is shown in Figs.3(a)?3(f).The control gains are chosen as αm=100, αs=20,ks=100.Whendm2=0.2,we obtain the allowable maximumvalue of backward delayds2=0.2578 by solving LM Is (43)?(45).We now analyze the teleoperators under two scenarios.In Scenario 1,the forward and backward delay are within the allowable maximum values,while in Scenario 2,the forward and backward delay are outside the allowable maximum values.With the proposed controller (42),the position trajectory of master and slave manipulator in Scenario 1 is shown in Fig.3 (a) (for joint 1) and Fig.3(c) (for joint 2),while the position trajectory in Scenario 2 is shown in Fig.3(b) (for joint 1) and Fig.3(d) (for joint 2).Figs.3(e) and 3(f) present master and slave velocities respectively.Clearly,the stability task in Scenario 1 can be achieved under variable communication delay and unmeasurable velocity.However,the tracking task in Scenario 2 is not achieved.This result demonstrates the effectiveness of our method.

    The observation performance is shown in Figs.4(a)?4(f).For the master site,the position estimation obtained from the proposed I&I observer (4)?(7) is shown in Fig.4(a) (for joint 1) and Fig.4(b) (for joint 2).It is seen that the actual position of the joint is precisely estimated byafter a short period of time.As we can see from the enlarged part of Figs.4(a) and 4(b),the master position is successfully estimated at about0.1 s.The position estimation of the slave site is similar to the master site,and is omitted here.The errors between joint velocitiesand their observer estimation in Scenario 1 are presented in Figs.4(c) and 4(e),respectively,while the observation error in Scenario 2 are presented in Figs.4(d) and 4(f),respectively.In Figs.4(c)?4(f),the top figure is for joint 1 and the bottom figure is for joint 2.One can see that the estimation errors in Scenario 1 converge to zero.These results successfully demonstrated the conclusion in this paper that the precise estimation can be accomplished.

    To validate our proposed observer,we also present a comparison with dirty derivative filter [14] and nonlinear velocity observer [9].Fig.5(b) plots the estimated master velocity(solid line) and actual one (dashed line) with nonlinear velocity observer [9].The graph in Fig.5(c) shows the time history of actual master velocity (dashed line) and its estimation(solid line) for dirty-derivative filter [14].From Figs.5(b) and 5(c),one can see that the dirty-derivative filter [14] and nonlinear velocity observer [9] suffer from the chattering phenomenon in the initial period of time.In contrast,the chattering with our velocity observer (as shown in Fig.5(a)) is much small.

    B.Experiment

    We describe some results of experimental investigation.The manipulator is Phantom Premium1.5HF robotic arm with 3-DOF positional sensing which is provided by Sen Able Technologies,Inc.The system is equipped with an ATI Industrial Automation Nano-17TM force/torque sensor.A real-time open-architecture control system is developed in order to achieve the full functionality of the robot.The platform that utilizes PHANTOM amplifier box uses a Quanser Q8TM data acquisition board and WinConTM/RTXTM real-time control system,which links with MATLAB Real-Time Workshop Toolbox.Each joint is attached with incremental rotary encoders to measure joint angles of the Phantom mechanism.Besides,six end-point generalized forces are provided by the force sensor in three Cartesian directions.The implementation of the controller and data collection run at the rate of 1 kHz.

    The initial positions of master and slave manipulator in the joint space areqm(0)=[0.4999,0.2625,0.1241]T,qs(0)=[0,0.314,0.314]T,while the initial angular velocities of each joint is 0 rad/s.To be specific,the initial conditions and tuning parameters for experiment areThe control parameters are chosen as αm= αs=0.25,ks=8.

    With the above setting,we apply the proposed observer and controller to the PHANTOM robot.The tracking performance is analyzed under two scenarios.In Scenario 1,the delay is within the allowable range,while in Scenario 2,the delay is outside the allowable range.The experimental results provided in Figs.6(a)?6(c) demonstrate the tracking performance in Scenario 1.It can be observed that the slave manipulator follows the trajectory of master manipulator.However,as shown in Figs.7(a)?7(c),the tracking task in Scenario 2 is not achieved.In view of these results,we can notice that the closed-loop teleoperators are asymptotically stable with our designed control law.

    Fig.3.Stability performance.

    Fig.4.Observation performance.

    The velocity and the observer estimation are illustrated in Figs.8 (a)?8(f).There are some jitters at the actual velocity owing to noise.It is got from the velocity estimation as shown in Figs.8(a)?8(c) that the velocity of manipulator can be precisely estimated after a short period of time.The enlarged figures of Figs.8(a)?8(c) for some seconds are shown in Figs.8(d)?8(f).One can see that although the actual velocity suffers from measurement noise,the velocity observation performance is smooth.

    Fig.5.Comparison results.

    Fig.6.Experimental results for the trajectory tracking (Scenario 1).

    Fig.7.Experimental results for the trajectory tracking (Scenario 2).

    V.CONCLUSION AND FUTURE WORK

    This paper investigates the stability problem for teleoperation systems under unmeasurable velocity and time-varying delay constraints.Specifically,a velocity observer based on immersion and invariance (I&I) technique is presented.A linear relationship between position and observation state is constructed,through which the need of solving partial differential and certain integral equations can be avoided.Meanwhile,the mean value theorem is exploited to separate the observation error terms,and hence,all functions in our observer can be analytically expressed.With the estimated velocity information,we develop a real-time convergence tracking solution.By employing the novel Lyapunov-Krasovskii functional,a delay-dependent condition is provided to build the relationship between control gains and the allowable bounds of delays.Both simulation and experimental results are presented to verify the effectiveness of our velocity observer and controller.The observer and controller are experimentally validated on a three degree-of-freedom PHANTOM Premium1.5A robot.Future work of this topic encompasses the issue of parametric uncertainties in system dynamics.

    Fig.8.Experimental results for the velocity observer.

    APPENDIX

    成人毛片a级毛片在线播放| 男女边吃奶边做爰视频| 国产精品一区二区性色av| 国产亚洲精品av在线| 99热全是精品| 亚洲国产精品成人久久小说| av在线播放精品| 能在线免费看毛片的网站| 日韩高清综合在线| 精品欧美国产一区二区三| 亚洲最大成人手机在线| 高清午夜精品一区二区三区| 精品人妻熟女av久视频| 免费看美女性在线毛片视频| 免费人成在线观看视频色| 一卡2卡三卡四卡精品乱码亚洲| 国产激情偷乱视频一区二区| 亚洲色图av天堂| 国产精品一区二区性色av| 久久这里只有精品中国| 国产一区二区在线观看日韩| 午夜福利在线观看免费完整高清在| 亚洲av二区三区四区| 免费观看在线日韩| 日韩av在线免费看完整版不卡| 亚洲欧美日韩无卡精品| 国产精品人妻久久久影院| av视频在线观看入口| 成年免费大片在线观看| 欧美人与善性xxx| 日韩精品青青久久久久久| 99在线人妻在线中文字幕| 午夜精品在线福利| 少妇的逼水好多| 在线观看av片永久免费下载| av在线天堂中文字幕| 午夜激情福利司机影院| 国产午夜精品论理片| 久久久亚洲精品成人影院| 日韩精品有码人妻一区| 听说在线观看完整版免费高清| av视频在线观看入口| 亚洲国产欧美人成| 我要看日韩黄色一级片| 国产精品久久视频播放| 亚洲国产色片| 国产人妻一区二区三区在| 成人鲁丝片一二三区免费| 亚洲国产精品久久男人天堂| 大又大粗又爽又黄少妇毛片口| 不卡视频在线观看欧美| 国产老妇女一区| 99久久精品热视频| 亚洲av免费高清在线观看| 亚洲在线自拍视频| 日韩人妻高清精品专区| 欧美一区二区亚洲| 免费黄网站久久成人精品| 伦理电影大哥的女人| 午夜日本视频在线| www.色视频.com| 国产精品国产三级国产av玫瑰| 亚州av有码| 免费大片18禁| 亚洲欧美清纯卡通| 建设人人有责人人尽责人人享有的 | 日本av手机在线免费观看| 国产中年淑女户外野战色| 亚洲人成网站高清观看| 午夜福利在线观看免费完整高清在| 在线免费观看的www视频| 99久久无色码亚洲精品果冻| 欧美另类亚洲清纯唯美| 美女脱内裤让男人舔精品视频| 99热网站在线观看| 欧美xxxx黑人xx丫x性爽| 免费看av在线观看网站| 精品久久久久久电影网 | 看十八女毛片水多多多| 高清午夜精品一区二区三区| 免费看a级黄色片| 国产精品久久久久久精品电影| 少妇裸体淫交视频免费看高清| 亚洲婷婷狠狠爱综合网| 美女cb高潮喷水在线观看| 亚洲五月天丁香| 日韩高清综合在线| 非洲黑人性xxxx精品又粗又长| 晚上一个人看的免费电影| 国产成人a区在线观看| 成人高潮视频无遮挡免费网站| 免费看光身美女| 深夜a级毛片| 日日摸夜夜添夜夜爱| 亚洲人成网站在线播| 人人妻人人澡人人爽人人夜夜 | 国产欧美另类精品又又久久亚洲欧美| 麻豆成人午夜福利视频| 特级一级黄色大片| 最近最新中文字幕免费大全7| 美女cb高潮喷水在线观看| 久久人妻av系列| 大话2 男鬼变身卡| 欧美一区二区国产精品久久精品| 极品教师在线视频| 国产精品一区二区在线观看99 | 淫秽高清视频在线观看| 久久精品国产亚洲av天美| 精品不卡国产一区二区三区| 久久久久久久久久黄片| 秋霞在线观看毛片| 内射极品少妇av片p| 国产不卡一卡二| 六月丁香七月| 人人妻人人看人人澡| 人妻夜夜爽99麻豆av| 日韩人妻高清精品专区| 非洲黑人性xxxx精品又粗又长| 国产美女午夜福利| 国产精品蜜桃在线观看| 看片在线看免费视频| 精品酒店卫生间| 日本与韩国留学比较| 久久精品影院6| 激情 狠狠 欧美| 国产女主播在线喷水免费视频网站 | 国产乱人视频| 少妇人妻一区二区三区视频| 少妇的逼好多水| 亚洲精品影视一区二区三区av| 日本黄色片子视频| 欧美激情国产日韩精品一区| 亚洲欧美成人综合另类久久久 | 神马国产精品三级电影在线观看| 欧美性猛交╳xxx乱大交人| 成人亚洲精品av一区二区| 黄色日韩在线| 国产一区二区亚洲精品在线观看| 色视频www国产| 欧美激情久久久久久爽电影| 床上黄色一级片| 久久精品久久久久久久性| www.av在线官网国产| 日日撸夜夜添| 美女高潮的动态| 国产精品1区2区在线观看.| 亚洲国产欧洲综合997久久,| 99久国产av精品| 夫妻性生交免费视频一级片| 有码 亚洲区| 男人狂女人下面高潮的视频| 日本免费在线观看一区| 深爱激情五月婷婷| 亚洲人成网站高清观看| 美女大奶头视频| 91久久精品国产一区二区成人| 亚洲天堂国产精品一区在线| 免费观看在线日韩| 99九九线精品视频在线观看视频| 老女人水多毛片| 日韩av在线免费看完整版不卡| 一个人免费在线观看电影| 内地一区二区视频在线| 亚洲欧美精品自产自拍| 一级毛片久久久久久久久女| 日韩视频在线欧美| 亚洲成人中文字幕在线播放| 亚洲国产精品成人久久小说| 亚洲最大成人中文| 亚洲国产欧洲综合997久久,| 91精品国产九色| 日本黄色视频三级网站网址| 超碰av人人做人人爽久久| 免费黄网站久久成人精品| 1000部很黄的大片| 亚洲av熟女| 久久久a久久爽久久v久久| 亚洲精品亚洲一区二区| 精品久久久久久久末码| 91狼人影院| www.色视频.com| 热99re8久久精品国产| 国产毛片a区久久久久| 亚洲av.av天堂| 最近的中文字幕免费完整| 黄色配什么色好看| 激情 狠狠 欧美| 在线播放国产精品三级| 亚洲精品,欧美精品| 一区二区三区免费毛片| 精品少妇黑人巨大在线播放 | 人人妻人人看人人澡| 久久久久精品久久久久真实原创| 欧美xxxx性猛交bbbb| 精品酒店卫生间| 精品久久久久久久久av| 中文在线观看免费www的网站| 久久久亚洲精品成人影院| 免费搜索国产男女视频| 欧美日本视频| 亚洲精品乱久久久久久| 欧美成人免费av一区二区三区| 精品熟女少妇av免费看| av视频在线观看入口| 免费观看精品视频网站| 日本wwww免费看| 亚洲精品456在线播放app| 免费无遮挡裸体视频| 国产国拍精品亚洲av在线观看| 蜜桃亚洲精品一区二区三区| 看十八女毛片水多多多| 一级二级三级毛片免费看| av黄色大香蕉| av免费观看日本| 大香蕉97超碰在线| 国产精品1区2区在线观看.| 高清av免费在线| 精品99又大又爽又粗少妇毛片| 午夜福利网站1000一区二区三区| 免费搜索国产男女视频| 中文字幕av在线有码专区| 男女下面进入的视频免费午夜| 国产成人aa在线观看| 国产精品1区2区在线观看.| 久久久久久国产a免费观看| 直男gayav资源| 亚洲精品自拍成人| 亚洲国产色片| 亚洲色图av天堂| 国产国拍精品亚洲av在线观看| 国产91av在线免费观看| 只有这里有精品99| 男插女下体视频免费在线播放| kizo精华| 久久久久久国产a免费观看| 日本三级黄在线观看| 日产精品乱码卡一卡2卡三| 18禁在线无遮挡免费观看视频| 国产又色又爽无遮挡免| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久久久久丰满| 男人舔奶头视频| 能在线免费看毛片的网站| av在线亚洲专区| 又粗又硬又长又爽又黄的视频| 晚上一个人看的免费电影| 人妻夜夜爽99麻豆av| 亚洲国产精品成人综合色| 成人午夜精彩视频在线观看| 亚洲18禁久久av| 18禁动态无遮挡网站| 日本免费一区二区三区高清不卡| 毛片女人毛片| 欧美日韩综合久久久久久| av在线天堂中文字幕| 午夜精品一区二区三区免费看| 日本色播在线视频| 三级国产精品片| 日本黄色视频三级网站网址| 美女内射精品一级片tv| 久久久久国产网址| 搡老妇女老女人老熟妇| 赤兔流量卡办理| 3wmmmm亚洲av在线观看| 女人十人毛片免费观看3o分钟| 欧美丝袜亚洲另类| 我要搜黄色片| 国产黄片视频在线免费观看| 国产精品美女特级片免费视频播放器| 日日摸夜夜添夜夜添av毛片| 亚洲av.av天堂| 免费在线观看成人毛片| 伦理电影大哥的女人| 亚洲av免费在线观看| 女人被狂操c到高潮| 欧美不卡视频在线免费观看| 久久久久久久久大av| 韩国av在线不卡| 国产精品一区二区三区四区免费观看| 久久久久精品久久久久真实原创| 性色avwww在线观看| 欧美一级a爱片免费观看看| 黄片无遮挡物在线观看| 亚洲欧美日韩卡通动漫| 国产精品久久久久久久久免| 午夜免费男女啪啪视频观看| 国产三级在线视频| 综合色丁香网| 欧美另类亚洲清纯唯美| 夜夜看夜夜爽夜夜摸| 麻豆国产97在线/欧美| 啦啦啦啦在线视频资源| 欧美激情久久久久久爽电影| 久久久久久久久久黄片| 午夜激情福利司机影院| 国产伦一二天堂av在线观看| 男人舔奶头视频| 中文亚洲av片在线观看爽| 亚洲av中文字字幕乱码综合| 2021天堂中文幕一二区在线观| 91精品伊人久久大香线蕉| 国产精品野战在线观看| 亚洲精品成人久久久久久| 免费观看的影片在线观看| 日韩成人伦理影院| 精品一区二区免费观看| 亚洲av免费高清在线观看| 蜜桃久久精品国产亚洲av| 亚洲成人av在线免费| 国国产精品蜜臀av免费| 欧美极品一区二区三区四区| 国产白丝娇喘喷水9色精品| 亚洲精品成人久久久久久| 国产老妇伦熟女老妇高清| 中文字幕久久专区| 一区二区三区高清视频在线| 国产免费视频播放在线视频 | 高清毛片免费看| 男女啪啪激烈高潮av片| 亚洲aⅴ乱码一区二区在线播放| 丝袜喷水一区| 欧美精品一区二区大全| 久久久精品欧美日韩精品| 国产91av在线免费观看| 亚洲av日韩在线播放| 欧美性感艳星| 精品99又大又爽又粗少妇毛片| 亚洲欧美精品自产自拍| 国产精品精品国产色婷婷| 欧美极品一区二区三区四区| 99视频精品全部免费 在线| 天堂√8在线中文| 国产69精品久久久久777片| 伦理电影大哥的女人| 亚洲国产欧美在线一区| 亚洲一区高清亚洲精品| 在线观看66精品国产| 国产私拍福利视频在线观看| 中文字幕免费在线视频6| 2021天堂中文幕一二区在线观| 51国产日韩欧美| 免费观看在线日韩| 久久国内精品自在自线图片| 欧美日韩一区二区视频在线观看视频在线 | 久久久精品欧美日韩精品| 老司机影院毛片| 亚洲熟妇中文字幕五十中出| 亚洲av不卡在线观看| 国产老妇女一区| 久久久精品欧美日韩精品| 欧美高清性xxxxhd video| 国产乱人视频| 国语对白做爰xxxⅹ性视频网站| 啦啦啦观看免费观看视频高清| 久久久亚洲精品成人影院| 91久久精品国产一区二区成人| 免费看日本二区| 又粗又爽又猛毛片免费看| 超碰av人人做人人爽久久| av专区在线播放| 国产精品一及| 免费看av在线观看网站| 色网站视频免费| 丰满乱子伦码专区| 久久久久久久国产电影| 日韩av不卡免费在线播放| 午夜福利视频1000在线观看| 九草在线视频观看| 97超视频在线观看视频| videossex国产| 午夜免费男女啪啪视频观看| 国产 一区精品| 亚洲欧美中文字幕日韩二区| 国产毛片a区久久久久| 99热精品在线国产| 日韩一区二区视频免费看| 欧美区成人在线视频| 在线免费观看的www视频| 欧美成人精品欧美一级黄| 午夜福利网站1000一区二区三区| 69av精品久久久久久| 久久久久久久亚洲中文字幕| 五月伊人婷婷丁香| 亚洲一区高清亚洲精品| 欧美一区二区精品小视频在线| 毛片一级片免费看久久久久| 伦精品一区二区三区| 男女边吃奶边做爰视频| 国产乱人偷精品视频| 深夜a级毛片| 99久久精品国产国产毛片| 伦精品一区二区三区| 色综合站精品国产| 国产免费又黄又爽又色| 久久久成人免费电影| 久热久热在线精品观看| 熟女电影av网| 最近视频中文字幕2019在线8| 人妻系列 视频| 精品不卡国产一区二区三区| 激情 狠狠 欧美| 国产日韩欧美在线精品| 汤姆久久久久久久影院中文字幕 | 国产乱人视频| 午夜精品在线福利| 1000部很黄的大片| 午夜爱爱视频在线播放| 久久99精品国语久久久| 国产精品美女特级片免费视频播放器| 国产白丝娇喘喷水9色精品| av天堂中文字幕网| 亚洲欧美精品自产自拍| 国产成人免费观看mmmm| 午夜精品在线福利| 不卡视频在线观看欧美| 国产私拍福利视频在线观看| 国产一级毛片在线| 两个人的视频大全免费| 性插视频无遮挡在线免费观看| 中文资源天堂在线| 久久久久久久久久黄片| 蜜桃亚洲精品一区二区三区| 国内精品美女久久久久久| 久久6这里有精品| 人妻少妇偷人精品九色| 麻豆精品久久久久久蜜桃| 伦理电影大哥的女人| 丰满乱子伦码专区| 国产大屁股一区二区在线视频| 日本五十路高清| 丝袜美腿在线中文| 国产又黄又爽又无遮挡在线| 哪个播放器可以免费观看大片| 一个人观看的视频www高清免费观看| 又爽又黄a免费视频| 一区二区三区高清视频在线| 国模一区二区三区四区视频| 伦精品一区二区三区| 色哟哟·www| 中文在线观看免费www的网站| av免费观看日本| 麻豆乱淫一区二区| av.在线天堂| 美女内射精品一级片tv| 大话2 男鬼变身卡| 免费黄色在线免费观看| 深夜a级毛片| 99热这里只有精品一区| av免费在线看不卡| av专区在线播放| 免费看美女性在线毛片视频| 久久久久久久久久久免费av| 春色校园在线视频观看| 久久久亚洲精品成人影院| 欧美3d第一页| 草草在线视频免费看| 亚洲人成网站在线播| 日日撸夜夜添| 亚洲av中文字字幕乱码综合| 最近中文字幕高清免费大全6| 99久久九九国产精品国产免费| 午夜福利在线观看吧| 日本-黄色视频高清免费观看| 亚洲欧美一区二区三区国产| 亚洲精品日韩av片在线观看| 久久精品国产鲁丝片午夜精品| 国产精品,欧美在线| 国产精品野战在线观看| 91在线精品国自产拍蜜月| 看免费成人av毛片| or卡值多少钱| 免费av观看视频| 国国产精品蜜臀av免费| 可以在线观看毛片的网站| 日韩欧美三级三区| 欧美成人精品欧美一级黄| 汤姆久久久久久久影院中文字幕 | 色播亚洲综合网| 久久精品国产99精品国产亚洲性色| 久久久午夜欧美精品| or卡值多少钱| 国产综合懂色| 免费看a级黄色片| 国产亚洲精品久久久com| 亚洲欧美成人精品一区二区| 久久久久精品久久久久真实原创| 2021少妇久久久久久久久久久| 免费av观看视频| 国产午夜精品久久久久久一区二区三区| 搡老妇女老女人老熟妇| 联通29元200g的流量卡| 日韩欧美精品v在线| 亚洲国产精品成人久久小说| 欧美不卡视频在线免费观看| av又黄又爽大尺度在线免费看 | 在线免费十八禁| 欧美不卡视频在线免费观看| 亚洲高清免费不卡视频| 国产伦在线观看视频一区| 长腿黑丝高跟| 成人美女网站在线观看视频| 久久婷婷人人爽人人干人人爱| 国产精品久久久久久久久免| 国产 一区精品| 美女高潮的动态| 日韩欧美精品v在线| 色视频www国产| 日日啪夜夜撸| 少妇人妻精品综合一区二区| 三级国产精品欧美在线观看| 在线免费观看不下载黄p国产| 欧美bdsm另类| 午夜精品一区二区三区免费看| 深爱激情五月婷婷| 日本免费在线观看一区| 成年免费大片在线观看| av免费在线看不卡| 尾随美女入室| 一区二区三区乱码不卡18| 中文天堂在线官网| 特大巨黑吊av在线直播| АⅤ资源中文在线天堂| 搞女人的毛片| 国产老妇伦熟女老妇高清| 久久国产乱子免费精品| 成人综合一区亚洲| 亚洲欧美日韩卡通动漫| 日韩欧美 国产精品| 中文字幕亚洲精品专区| 精品午夜福利在线看| 国产精品99久久久久久久久| av国产久精品久网站免费入址| 中文天堂在线官网| 亚洲不卡免费看| 国国产精品蜜臀av免费| 亚洲经典国产精华液单| 国产成人aa在线观看| 3wmmmm亚洲av在线观看| 99久久精品一区二区三区| 69人妻影院| 寂寞人妻少妇视频99o| 色视频www国产| 97超视频在线观看视频| 日日摸夜夜添夜夜添av毛片| 春色校园在线视频观看| 国产 一区精品| 精品久久久噜噜| 超碰av人人做人人爽久久| 亚洲电影在线观看av| 成人二区视频| 亚洲精品色激情综合| 国产精品乱码一区二三区的特点| 男人和女人高潮做爰伦理| 精品人妻视频免费看| 中文字幕久久专区| 69人妻影院| 国内少妇人妻偷人精品xxx网站| 亚洲美女搞黄在线观看| 一级毛片电影观看 | 国产黄片视频在线免费观看| 天堂中文最新版在线下载 | 综合色丁香网| 亚洲av日韩在线播放| 女的被弄到高潮叫床怎么办| 国国产精品蜜臀av免费| 在线观看66精品国产| 久久99热6这里只有精品| 97超视频在线观看视频| 一个人看视频在线观看www免费| 99在线视频只有这里精品首页| av国产免费在线观看| 国产伦精品一区二区三区四那| 国产精品久久视频播放| 亚洲电影在线观看av| 国产真实乱freesex| 国产极品天堂在线| 欧美成人精品欧美一级黄| 最新中文字幕久久久久| 蜜桃久久精品国产亚洲av| 亚洲美女视频黄频| 乱码一卡2卡4卡精品| 又粗又硬又长又爽又黄的视频| a级一级毛片免费在线观看| 国产精品精品国产色婷婷| 天天一区二区日本电影三级| 国产精品久久久久久av不卡| 小说图片视频综合网站| 久久久久网色| 亚洲精品,欧美精品| 久久久久久久国产电影| 亚洲av免费在线观看| 国产成人一区二区在线| 1024手机看黄色片| 男人舔女人下体高潮全视频| 午夜久久久久精精品| 国产一区二区亚洲精品在线观看| 色5月婷婷丁香| 一个人免费在线观看电影| 伦理电影大哥的女人| 国模一区二区三区四区视频| 国产免费福利视频在线观看| 国产中年淑女户外野战色| 欧美日本亚洲视频在线播放| 精品久久久久久成人av| 我的女老师完整版在线观看| 一级毛片aaaaaa免费看小| 一级二级三级毛片免费看| 国产精品.久久久| 久久久色成人| 人人妻人人澡欧美一区二区| 级片在线观看| 一区二区三区四区激情视频| 日韩精品青青久久久久久| 国产成人精品一,二区| 我要搜黄色片|