• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Distribution of Zeros of Quasi-Polynomials

    2023-03-22 20:22:13ByHonghaiWangandQingLongHan
    IEEE/CAA Journal of Automatica Sinica 2023年2期

    By Honghai Wang and Qing-Long Han,

    PROFESSOR Yitang Zhang,a number theorist at the University of California,Santa Barbara,USA,has posted a paper on arXiv [1] that hints at the possibility that he may have solved the Landau-Siegel zeros conjecture.He has claimed that he has disproved a weaker version of the Landau-Siegel zeroes conjecture,an important problem related to the hypothesis.The conjecture is that there are solutions to the zeta function that do not assume the form prescribed by the Riemann hypothesis.Inspired by his work,in thisPerspective,we would like to discuss about the distribution of zeros of quasi-polynomials for linear time-invariant(LTI) systems with time delays.

    The stability and dynamic performance of an LTI system depend on its eigenvalue location,i.e.,the location of zeros of its characteristic function.An LTI system is asymptotically stable if and only if all its eigenvalues are located in the open left-half complex plane.Therefore,analysis of the performance of an LTI system via determination of the eigenvalue location is an important way by applying a frequency-domain method.Moreover,one can design an LTI control system via assigning the zeros of its characteristic function to the desired positions,which is known as eigenvalue assignment [2].

    For an LTI system,one usually considers the eigenvalues in the open right-half complex plane due to the fact that such eigenvalues have a direct influence on the stability of the system.The characteristic function of an LTI system without time delay is a polynomial.One can analyze the distribution of zeros of a polynomial by applying some mathematic tools including the Routh-Hurwitz criterion,Nyquist plot,root locus,and so forth [2].These tools can not only judge the stability of such an LTI system but also determine the number of zeros of the characteristic function in the open right-half complex plane.In addition,one can obtain the location of the zeros by numerical computation because the number of zeros of a polynomial is finite.

    A time-delay system is also called a system with after-effect or dead-time [3].Time-delay systems have received considerable attention due to the fact that time delays exist in a wide range of practical applications,including networked control systems,vehicular traffic flow,and biology [4]–[6].Time-delay systems are a class ofinfinite dimensional systems,which have complicated dynamic properties compared with delay-free systems.For an LTI time-delay system,the location of zeros of the characteristic function plays a significant role in analysis and synthesis of the system[7]–[9].However,it should be pointed out that determination of the distribution of zeros of the characteristic function has always been a difficult issue [10].

    The characteristic functions of LTI time-delay systems can be described by a class of quasi-polynomials [11].Over the last decade,we have conducted research on the distribution of zeros of the quasipolynomials for LTI time-delay systems and derived some results on revealing information about the distribution of zeros of quasi-polynomials with real coefficients and the design of PID type controllers via dominant eigenvalue assignment for LTI systems with single delay[12],[13].Based on our own experience and results in the literature over the past decades,we would like to present some problems on the distribution of zeros of quasi-polynomials for LTI time-delay systems.

    A large class of models of LTI systems with lumped delays can be described by a differential difference equation in the form of

    where x is then-dimensional state variable,Ak,Ckwithk=0,1,...,qare givenn×nreal (or complex) constant matrices,0=τ0<τ1<···<τqare time delays,andq≥1,or in the form of

    where x is a system variable,ak,j,j=0,1,...,n,k=0,1,...,m,are real (or complex) constant numbers,and 0=τ0<τ1<···<τmare time delays.The characteristic function of (1) or (2) can be described by a quasi-polynomial as

    wheresis a complex variable, αk,j,j=0,1,...,n,k=0,1,...,m,are real (or complex) constant numbers,andm=qn.

    ThisPerspectiveis concerned with the following questions:1)How can one determine whether or not all the zeros of the quasipolynomial(3)are located in the open left-half complex plane? and 2) If there exist some zeros of the quasi-polynomial(3)in the open right-half complex plane,how can one determine the number of zeros?

    Determining the distribution of zeros of the quasi-polynomial (3)bydirect calculationis difficult because the inclusion of delays leads to an infinite-dimensional function which hasan infinite number of zeros.Over the past decades,several mathematical methods and techniques for analyzing the distribution of zeros of different types of the quasi-polynomial (3) have been developed.It is necessary for us to introduce some types of the quasi-polynomial (3).

    (i) Commensurate and Incommensurate Delays

    For the delay parameters in the quasi-polynomial (3),τk,k=0,1,...,m,they are calledcommensurateif there exists a positive real number τ which leads to

    where ?kis a nonnegative integer number.Other wise,the delays are calledincommensurate.

    (ii) Retarded Type and Neutral Type

    For (3),if α0,n≠0 and α1,n= α2,n=···= αm,n=0,it reduces to a quasi-polynomial of retarded type.Otherwise,if α0,n≠0 and at least one of αk,n≠0,k=1,2,...,m,the corresponding characteristic function is a quasi-polynomial of neutral type.τk k=0,1,...,m

    If,in (3) are commensurate,the quasi-polynomial can be written as

    by substitutings=into δ(s),where λ is a complex variable,βk,j,j=0,1,...,N,k=0,1,...,M,are real (or complex) constant numbers,M=?mandN=n.Note that δ(s) and H(λ) have the same number of zeros in the open left-half complex plane,in the open right-half complex plane,and on the imaginary axis,respectively,because τ is a positive real number.Then,multiplying H(λ) byeMλ,we have a functionH(λ) in the form of

    where γk,j,j=0,1,...,N,k=0,1,...,M,are real (or complex)constant numbers.Here,H(λ) is also a quasi-polynomial [11].It should be pointed out that the location of zeros of the quasi-polynomialH(λ) is the same as that of H (λ) since the terme Mλ≠0 in the whole complex plane.Therefore,one can exactly analyze the stability and instability of an LTI system with commensurate delays through the location of zeros of the quasi-polynomialH(λ) in (6),which is the work by Pontryagin in 1942 [14].The main results derived by Pontryagin are listed as follows.

    Theorem1:LetH(λ) be a quasi-polynomial in the form (6) with γNM≠0.Write

    where ω is a real number,andHr(ω)andHi(ω) present the real part and the imagi nary part ofH(iω),respectively.IfH(λ)is Hurwitz stable,then the zeros of the functionsHrandHiare real,alternate,and for each ω,

    Each of the conditions given below is sufficient forH(λ) being Hurwitz stable:

    (i) All the zeros of the functionsHr(ω) andHi(ω) are real,alternate,and (8) holds at some ω;

    (ii) All the zeros of the functionsare real and at each zero ω0(8)holds,i.e.,

    (iii)All the zeros of the functionsHi(ω) are real and at each zero ω0(8) holds,i.e.,

    In Theorem1,checking whether all the zeros ofHr(ω) orHi(ω) are real plays a crucial role.To ascertain such a property,one can apply the following theorem due to Pontryagin [14],[15].

    Theorem 2:Let η be a real number such that the coefficient of the term of the highest degree inHr(ω) orHi(ω) does not vanish at ω= η .Then,Hr(ω) orHi(ω) has only real zeros if and only ifHr(ω) orHi(ω) has exactly 4lM+Nreal zeros over the interval [?2lπ+η,2lπ+η],wherelis asufficiently largepositive integer.

    In theory,Protryagin’s Theorems can serve as stability criteria for an LTI system with commensurate delays,whose characteristic function is a quasi-polynomial of retarded type or neutral type,where the coefficients are real or complex.However,they are difficult to benumerically implementedin practice due to the fact that there is no effective method for determining thesufficiently largenumberl.Thus,it is difficult to apply Pontryagin’s Theorems to judge whether or not an LTI time-delay system is asymptotically stable.Consequently,there is no further development in the direction of Pontryagin’s theorems for a long period.

    Since 1969,a τ-decomposition method has been widely developed in the analysis of the location of zeros of the quasi-polynomials for LTI time-delay systems.Such a method involves first decomposing the positive time delay τ axis into many intervals over each of which the number of zeros of the quasi-polynomial in the open right-half plane never change,and then investigating the change of the number of zeros in the open right-half plane when crossing the boundary points of the intervals [16].One can analyze the Hurwitz stability of an LTI system with fixed time delays indirectly via the τ-decomposition method.Most of the existing results in the distribution analysis of zeros of the quasi-polynomials for LTI time-delay systems in the literature are based on the τ-decomposition method,see e.g.,[16]–[26],where references [16]–[19],[23],[25],[26] considered the quasi-polynomials of retarded type for LTI systems with commensurate delays,and reference [21] stressed the quasi-polynomial of neutral type for LTI systems with commensurate delays.Besides,there are other methods for the analysis of the distribution of zeros of the quasi-polynomials for LTI systems with commensurate delays.A Lambert W function based method can be applied to calculation of zeros of the characteristic function of retarded type one by one from right to left in the complex plane for the LTI systems with single delay or commensurate delays [27].Reference [28] is devoted to the analytic study of the distribution of zeros of the quasi-polynomial with respect to the coefficient variation for a scaler retarded single delay system with either real or complex coefficients.Reference [29]describes DDE-BIFTOOL,a Matlab package for numerical bifurcation analysis of systems of delay differential equations with several fixed,discrete delays.For more information about time-delay systems,one can see references [4],[30],[31].

    It should be pointed out that on the one hand,only a few studies in the literature consider the distribution of zeros of quasi-polynomials with complex coefficients.In fact,a quasi-polynomial with complex coefficients also plays an important role in applications,such as consensus of multi-agent systems with a directed network topology [32].On the other hand,many results in the literature focus on LTI systems withcommensurate delays,where most of the results are only valid for the quasi-polynomials of retarded type due to the messy property of the quasi-polynomials of neutral type [31].For an LTI system withincommensurate delays,the analysis of the distribution of zeros of the corresponding quasi-polynomial is a challenge issue[11].Most of the previous studies on this issue are still based on a τ decomposition method with respect to the quasi-polynomials with real coefficients.The cluster treatment of characteristic zeros for LTI systems with two delays of retarded type or neutral type was studied in [20],[33]–[35].Stability switching hypersurfaces of a class of LTI systems with three or multiple time delays were extracted [22].Stability crossing sets were obtained for an LTI system of neutral type with two delays [36] and with three or multiple delays [24] in the delay parameter space.

    We are now back to Pontryagin’s Theorems and would like to discuss about future research.Among the existing results on the distribution of zeros of quasi-polynomials for LTI time-delay systems,Pontryagin’s Theorems can be directly applied to stability judgement in theory.Furthermore,the quasi-polynomial form due to Pontryagin is probably one of the most general [16] in various methods for stability analysis of LTI time-delay systems.Besides,over the past two decades,the stability criteria by Pontryagin for quasi-polynomials play an important role in low-order stabilization of time-delay systems,see e.g.,[11],[37]–[42].Based on Pontryagin’s Theorems,we proposed a new one revealing information about zeros of quasi-polynomials with real coefficients in the open right-half plane and presented some PID controllers for LTI systems with single delay via dominant eigenvalue assignment to further improve the dynamic performance in addition to stability [12].However,due to the difficulty innumerical implementation,Pontyagin’s Theorems have not found wide applications expect for some single delay systems [11].It seems that it is challenging to solve the problemon the numerical implementation for Pontryagin’s Theorems.

    To end this perspective,we raise two open questions for future research.

    i) How to derive Pontryagin-like results that can be numerically implemented for the determination of the number of zeros in the open right-half complex plane of the quasi-polynomials for LTI systems with commensurate delays?

    ii) How to develop a general mathematical analysis of the distribution of zeros of the quasi-polynomials for LTI systems with incommensurate delays?

    We do hope you will join us in this endeavor to discuss about this important issue with your own insight and research.

    ACKNOWLEDGMENTS

    This work was supported in part by the National Natural Science Foundation of China (NSFC) (61703086),the Fundamental Research Funds for the Central Universities (N2104009),the IAPI Fundamental Research Funds (2013ZCX02-03).

    国产欧美另类精品又又久久亚洲欧美| 简卡轻食公司| 国产成人91sexporn| 九草在线视频观看| 亚洲国产精品国产精品| 久久人人爽人人爽人人片va| 免费看不卡的av| 欧美 日韩 精品 国产| 色哟哟·www| 午夜福利高清视频| 日本熟妇午夜| 久久久色成人| 中国国产av一级| 日日啪夜夜撸| 天天一区二区日本电影三级| 熟妇人妻不卡中文字幕| 禁无遮挡网站| 精品久久久久久久久av| 国产乱人视频| 夜夜看夜夜爽夜夜摸| 亚洲av二区三区四区| 国产伦精品一区二区三区四那| 少妇裸体淫交视频免费看高清| 丝袜美腿在线中文| 久久久久久久久大av| 美女大奶头视频| 国产乱人视频| 不卡视频在线观看欧美| 国产成人a区在线观看| 国产单亲对白刺激| 亚洲欧美一区二区三区国产| 亚洲精品影视一区二区三区av| 亚洲欧美日韩卡通动漫| 亚洲av成人av| 只有这里有精品99| 国产黄频视频在线观看| 成人毛片a级毛片在线播放| 亚洲性久久影院| 高清在线视频一区二区三区| 亚洲精品456在线播放app| 男人和女人高潮做爰伦理| 一个人免费在线观看电影| 亚洲av男天堂| 边亲边吃奶的免费视频| 九草在线视频观看| 少妇熟女aⅴ在线视频| 欧美变态另类bdsm刘玥| 国产91av在线免费观看| 99久久精品国产国产毛片| 毛片女人毛片| 一区二区三区乱码不卡18| 亚洲高清免费不卡视频| 久久韩国三级中文字幕| 国产av国产精品国产| 国产精品爽爽va在线观看网站| 亚洲精品色激情综合| 美女黄网站色视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 不卡视频在线观看欧美| 女的被弄到高潮叫床怎么办| 亚洲国产色片| 久久午夜福利片| 国产免费视频播放在线视频 | 久久久久网色| av国产久精品久网站免费入址| 综合色丁香网| 91精品伊人久久大香线蕉| 最近中文字幕高清免费大全6| 久久久久精品久久久久真实原创| 人人妻人人看人人澡| 极品教师在线视频| 毛片一级片免费看久久久久| 久久久久久国产a免费观看| 国产精品久久久久久精品电影| 黄片无遮挡物在线观看| 22中文网久久字幕| av.在线天堂| 欧美日韩综合久久久久久| 免费大片黄手机在线观看| 波多野结衣巨乳人妻| 真实男女啪啪啪动态图| 精品亚洲乱码少妇综合久久| 精品一区二区三区视频在线| 日本爱情动作片www.在线观看| 欧美性感艳星| 欧美性猛交╳xxx乱大交人| 七月丁香在线播放| 午夜福利在线在线| 99视频精品全部免费 在线| 欧美日韩综合久久久久久| 亚洲第一区二区三区不卡| 久久久久久久久久成人| 欧美高清成人免费视频www| 欧美丝袜亚洲另类| 亚洲精品影视一区二区三区av| 99九九线精品视频在线观看视频| 99热网站在线观看| 少妇丰满av| 最近中文字幕2019免费版| 人妻制服诱惑在线中文字幕| 欧美+日韩+精品| 不卡视频在线观看欧美| 亚洲,欧美,日韩| 女人久久www免费人成看片| 夫妻性生交免费视频一级片| 久久久久久久久久久免费av| .国产精品久久| 日本-黄色视频高清免费观看| 白带黄色成豆腐渣| 成人高潮视频无遮挡免费网站| 亚洲丝袜综合中文字幕| 久久久久性生活片| 97精品久久久久久久久久精品| 久久草成人影院| 99久国产av精品| 国产91av在线免费观看| 国产大屁股一区二区在线视频| 亚洲在线观看片| 久久久久久久亚洲中文字幕| 午夜视频国产福利| 不卡视频在线观看欧美| 国产高清不卡午夜福利| 国产熟女欧美一区二区| 国产免费福利视频在线观看| 日本-黄色视频高清免费观看| 边亲边吃奶的免费视频| freevideosex欧美| 亚洲欧美日韩无卡精品| 日本wwww免费看| 一边亲一边摸免费视频| 成人漫画全彩无遮挡| 最近中文字幕高清免费大全6| 卡戴珊不雅视频在线播放| 久久97久久精品| 嫩草影院入口| 国产精品久久视频播放| 性插视频无遮挡在线免费观看| 免费观看的影片在线观看| 日韩亚洲欧美综合| 大香蕉97超碰在线| 国产成人a∨麻豆精品| 五月天丁香电影| 秋霞在线观看毛片| 亚洲av不卡在线观看| 精品99又大又爽又粗少妇毛片| 丝瓜视频免费看黄片| 国产大屁股一区二区在线视频| 亚洲图色成人| 国产日韩欧美在线精品| av专区在线播放| kizo精华| 亚洲最大成人中文| 熟女电影av网| 亚洲av中文av极速乱| 亚洲精品久久久久久婷婷小说| 国产精品国产三级专区第一集| 91av网一区二区| 久久久久久久久久黄片| 最近中文字幕高清免费大全6| 一二三四中文在线观看免费高清| 国产老妇伦熟女老妇高清| 狠狠精品人妻久久久久久综合| 中文字幕人妻熟人妻熟丝袜美| av在线老鸭窝| 日韩成人伦理影院| 成人亚洲精品一区在线观看 | 神马国产精品三级电影在线观看| 国产一区二区三区av在线| 精品国产三级普通话版| 高清日韩中文字幕在线| 亚洲熟妇中文字幕五十中出| 天堂√8在线中文| 国产亚洲最大av| 日日干狠狠操夜夜爽| 免费观看性生交大片5| 性插视频无遮挡在线免费观看| 久久国内精品自在自线图片| 午夜爱爱视频在线播放| 国产精品国产三级国产专区5o| 女的被弄到高潮叫床怎么办| 熟妇人妻不卡中文字幕| 久久精品熟女亚洲av麻豆精品 | a级一级毛片免费在线观看| 免费av观看视频| 欧美最新免费一区二区三区| 麻豆久久精品国产亚洲av| 国产精品无大码| 又粗又硬又长又爽又黄的视频| 精品一区在线观看国产| 亚洲婷婷狠狠爱综合网| 亚洲精品第二区| 亚洲av电影不卡..在线观看| 日韩一区二区视频免费看| 免费无遮挡裸体视频| 亚洲av中文av极速乱| 亚洲精品乱久久久久久| 国产国拍精品亚洲av在线观看| 欧美激情在线99| 久久精品夜色国产| 极品少妇高潮喷水抽搐| a级一级毛片免费在线观看| 欧美三级亚洲精品| 深夜a级毛片| 男女国产视频网站| 午夜免费激情av| 欧美丝袜亚洲另类| 国产高清三级在线| 国产成人freesex在线| 欧美区成人在线视频| 亚洲国产精品sss在线观看| 精品午夜福利在线看| 亚洲av一区综合| 久久久色成人| 亚洲国产精品国产精品| 国产午夜精品论理片| av在线蜜桃| 日本熟妇午夜| 免费看不卡的av| 最近中文字幕2019免费版| 只有这里有精品99| 国产精品人妻久久久影院| 丝袜美腿在线中文| 亚洲精品中文字幕在线视频 | 国产亚洲91精品色在线| 亚洲精品久久午夜乱码| 国产乱来视频区| 男人舔奶头视频| 国产成人精品久久久久久| freevideosex欧美| 欧美精品国产亚洲| 欧美xxxx黑人xx丫x性爽| 午夜福利成人在线免费观看| 赤兔流量卡办理| 边亲边吃奶的免费视频| 色综合亚洲欧美另类图片| 舔av片在线| 成年人午夜在线观看视频 | 赤兔流量卡办理| 身体一侧抽搐| 色综合亚洲欧美另类图片| 亚洲欧美日韩卡通动漫| 人妻系列 视频| 美女被艹到高潮喷水动态| 波野结衣二区三区在线| 中文欧美无线码| 狂野欧美激情性xxxx在线观看| 亚洲最大成人手机在线| 国产单亲对白刺激| 日韩在线高清观看一区二区三区| 国产av码专区亚洲av| 婷婷色综合大香蕉| 欧美另类一区| 午夜免费激情av| 亚洲不卡免费看| 国产探花极品一区二区| 亚洲av国产av综合av卡| 国产成人91sexporn| 毛片一级片免费看久久久久| 亚洲人与动物交配视频| 免费观看精品视频网站| 国产av码专区亚洲av| 国产成人免费观看mmmm| 在线观看免费高清a一片| 免费看日本二区| 联通29元200g的流量卡| 国产一级毛片七仙女欲春2| 免费av毛片视频| 乱人视频在线观看| 最近中文字幕高清免费大全6| videossex国产| 亚洲四区av| 国产亚洲av片在线观看秒播厂 | 日韩av不卡免费在线播放| 亚洲精品色激情综合| 性插视频无遮挡在线免费观看| 日日啪夜夜爽| 国产伦在线观看视频一区| 日本-黄色视频高清免费观看| 美女黄网站色视频| 午夜免费激情av| 又黄又爽又刺激的免费视频.| 在线a可以看的网站| 亚洲美女视频黄频| 亚洲av一区综合| 秋霞在线观看毛片| 中文字幕av在线有码专区| 亚洲精品亚洲一区二区| 国产高清国产精品国产三级 | 国产av码专区亚洲av| av国产免费在线观看| 欧美性感艳星| 麻豆精品久久久久久蜜桃| 亚洲欧美成人精品一区二区| 亚洲激情五月婷婷啪啪| 国国产精品蜜臀av免费| 能在线免费看毛片的网站| 丝瓜视频免费看黄片| 久久久久久久久久成人| 国产黄色免费在线视频| 91久久精品国产一区二区三区| 久久久久精品性色| 亚洲在线自拍视频| 大话2 男鬼变身卡| 亚洲熟妇中文字幕五十中出| 嫩草影院入口| 午夜久久久久精精品| 成年版毛片免费区| 精品久久久久久久久亚洲| 亚洲精品国产成人久久av| 最近2019中文字幕mv第一页| 午夜精品一区二区三区免费看| 亚洲国产高清在线一区二区三| 精品午夜福利在线看| 国产亚洲av嫩草精品影院| 成人美女网站在线观看视频| 日本-黄色视频高清免费观看| 亚洲av免费在线观看| 亚洲四区av| 亚洲人成网站高清观看| 高清午夜精品一区二区三区| 亚洲自偷自拍三级| 国内精品宾馆在线| 成人欧美大片| 日韩欧美 国产精品| 精品一区在线观看国产| 成人av在线播放网站| 联通29元200g的流量卡| 日韩欧美 国产精品| 男女国产视频网站| 三级毛片av免费| 又粗又硬又长又爽又黄的视频| 简卡轻食公司| 精品少妇黑人巨大在线播放| 国产精品一及| 亚洲国产精品成人久久小说| 久久久久免费精品人妻一区二区| 少妇被粗大猛烈的视频| 午夜免费激情av| 日韩成人伦理影院| 九九久久精品国产亚洲av麻豆| 国产亚洲精品久久久com| 国产在线男女| 男女下面进入的视频免费午夜| 在现免费观看毛片| 日韩国内少妇激情av| 黑人高潮一二区| 干丝袜人妻中文字幕| 成人亚洲欧美一区二区av| 狂野欧美激情性xxxx在线观看| 亚洲精品一区蜜桃| 日韩精品青青久久久久久| 好男人视频免费观看在线| 中文字幕av在线有码专区| 婷婷六月久久综合丁香| 亚洲精品第二区| 欧美区成人在线视频| a级毛片免费高清观看在线播放| 免费观看精品视频网站| 国国产精品蜜臀av免费| 亚洲欧美成人精品一区二区| 欧美日韩视频高清一区二区三区二| 久久久久免费精品人妻一区二区| 午夜亚洲福利在线播放| 精品酒店卫生间| 日日摸夜夜添夜夜爱| 伊人久久精品亚洲午夜| 国产综合精华液| 伦精品一区二区三区| 少妇裸体淫交视频免费看高清| 高清视频免费观看一区二区 | av天堂中文字幕网| 午夜免费激情av| 肉色欧美久久久久久久蜜桃 | 国产高清三级在线| 一级片'在线观看视频| 日韩电影二区| 狂野欧美激情性xxxx在线观看| 欧美高清成人免费视频www| 搡老乐熟女国产| 国产精品人妻久久久久久| 亚洲最大成人av| 国产午夜精品一二区理论片| 免费看美女性在线毛片视频| 免费大片黄手机在线观看| 国产高清有码在线观看视频| .国产精品久久| 午夜老司机福利剧场| 国产精品一区二区在线观看99 | kizo精华| 欧美一区二区亚洲| 日本熟妇午夜| 欧美激情在线99| 一个人看的www免费观看视频| 国产精品久久视频播放| 亚洲欧美精品自产自拍| 国产麻豆成人av免费视频| 日日啪夜夜撸| 超碰97精品在线观看| 五月伊人婷婷丁香| 尤物成人国产欧美一区二区三区| 国产精品一区二区三区四区久久| 波多野结衣巨乳人妻| 夫妻午夜视频| 欧美+日韩+精品| 日本免费a在线| 一个人看视频在线观看www免费| 日日干狠狠操夜夜爽| 国产黄片美女视频| 18禁裸乳无遮挡免费网站照片| 人体艺术视频欧美日本| 亚洲国产精品成人久久小说| 日产精品乱码卡一卡2卡三| 亚洲成人一二三区av| 国产不卡一卡二| 欧美高清性xxxxhd video| 国产成人91sexporn| 十八禁国产超污无遮挡网站| 国产一区二区亚洲精品在线观看| 欧美日本视频| 国产黄片视频在线免费观看| 色网站视频免费| 大香蕉97超碰在线| 亚洲av中文av极速乱| 超碰97精品在线观看| 又大又黄又爽视频免费| 日本一本二区三区精品| 男女国产视频网站| 人妻制服诱惑在线中文字幕| 18禁裸乳无遮挡免费网站照片| 三级国产精品欧美在线观看| 97精品久久久久久久久久精品| 国产黄频视频在线观看| 中文字幕制服av| 亚洲怡红院男人天堂| 国产在线一区二区三区精| 亚洲美女视频黄频| 精品久久久噜噜| 色综合站精品国产| 国产精品99久久久久久久久| 午夜福利在线观看吧| 寂寞人妻少妇视频99o| 简卡轻食公司| 亚洲欧美日韩无卡精品| 直男gayav资源| 精品午夜福利在线看| 赤兔流量卡办理| 综合色丁香网| 一个人看的www免费观看视频| 午夜福利视频1000在线观看| 国内少妇人妻偷人精品xxx网站| 99热这里只有是精品在线观看| eeuss影院久久| 精品人妻一区二区三区麻豆| 亚洲国产欧美人成| 中文资源天堂在线| 久久97久久精品| 插逼视频在线观看| 97精品久久久久久久久久精品| 亚洲国产精品sss在线观看| 欧美高清性xxxxhd video| 亚州av有码| 亚洲人成网站在线观看播放| 日本av手机在线免费观看| 免费无遮挡裸体视频| 大香蕉97超碰在线| 国产av在哪里看| 精品久久久久久成人av| 丰满人妻一区二区三区视频av| 国产探花在线观看一区二区| 亚洲av一区综合| av福利片在线观看| 国产成人aa在线观看| 亚洲精品日韩av片在线观看| 久久久a久久爽久久v久久| 色综合站精品国产| 精品酒店卫生间| 大香蕉97超碰在线| 国产三级在线视频| 精品人妻一区二区三区麻豆| 久久久精品94久久精品| 欧美不卡视频在线免费观看| 国产探花极品一区二区| 一区二区三区四区激情视频| 永久网站在线| 青春草国产在线视频| 国产不卡一卡二| 国产成人a区在线观看| 我要看日韩黄色一级片| 老司机影院毛片| 午夜爱爱视频在线播放| 3wmmmm亚洲av在线观看| 欧美一级a爱片免费观看看| 亚洲av电影在线观看一区二区三区 | 草草在线视频免费看| 亚洲人成网站高清观看| 免费看美女性在线毛片视频| 国产av码专区亚洲av| 97精品久久久久久久久久精品| 看非洲黑人一级黄片| 免费少妇av软件| 亚洲最大成人av| 国产黄片美女视频| 久99久视频精品免费| 五月伊人婷婷丁香| 日韩视频在线欧美| 69人妻影院| 寂寞人妻少妇视频99o| 美女高潮的动态| 99久久精品热视频| 少妇的逼水好多| 亚洲欧美日韩卡通动漫| 两个人的视频大全免费| 精品一区二区三区视频在线| 免费观看a级毛片全部| 国产一区有黄有色的免费视频 | 可以在线观看毛片的网站| 亚洲最大成人av| 人人妻人人澡人人爽人人夜夜 | 美女脱内裤让男人舔精品视频| 97精品久久久久久久久久精品| 免费播放大片免费观看视频在线观看| 欧美潮喷喷水| 卡戴珊不雅视频在线播放| 国产免费福利视频在线观看| 亚洲精品456在线播放app| 亚洲精品色激情综合| 亚洲,欧美,日韩| 禁无遮挡网站| 国产黄频视频在线观看| 蜜桃久久精品国产亚洲av| 有码 亚洲区| 国产精品一区二区三区四区免费观看| 在线免费十八禁| 97人妻精品一区二区三区麻豆| 亚洲av成人精品一区久久| 亚洲精品国产成人久久av| 中文资源天堂在线| 视频中文字幕在线观看| 欧美日韩亚洲高清精品| 久久鲁丝午夜福利片| 一级毛片久久久久久久久女| 欧美人与善性xxx| 免费看美女性在线毛片视频| 麻豆成人av视频| 免费观看无遮挡的男女| 男女那种视频在线观看| 国产三级在线视频| 欧美日韩亚洲高清精品| 国产黄频视频在线观看| 国产精品久久久久久久久免| 日本色播在线视频| 国产一级毛片在线| 男女下面进入的视频免费午夜| 亚洲图色成人| 99热网站在线观看| 久久久a久久爽久久v久久| 久久久久久久久久黄片| 亚洲在线观看片| 精品午夜福利在线看| 精品国内亚洲2022精品成人| 国产国拍精品亚洲av在线观看| 秋霞伦理黄片| 日韩强制内射视频| 亚洲欧美成人精品一区二区| 亚洲av一区综合| 成人高潮视频无遮挡免费网站| 日韩av在线大香蕉| 色网站视频免费| 亚洲最大成人手机在线| 成人毛片a级毛片在线播放| 97精品久久久久久久久久精品| 蜜臀久久99精品久久宅男| 又爽又黄无遮挡网站| 亚洲乱码一区二区免费版| 成年av动漫网址| 亚洲av男天堂| 免费人成在线观看视频色| 精品一区在线观看国产| 日韩成人伦理影院| 久久久久九九精品影院| 日本午夜av视频| 日韩电影二区| 欧美xxxx黑人xx丫x性爽| 亚洲欧美精品专区久久| 啦啦啦韩国在线观看视频| 18禁在线无遮挡免费观看视频| 2021天堂中文幕一二区在线观| 天堂网av新在线| 男女视频在线观看网站免费| 免费看a级黄色片| 亚洲人成网站高清观看| 亚洲aⅴ乱码一区二区在线播放| 中文天堂在线官网| 精品久久久久久久久久久久久| 青春草亚洲视频在线观看| 寂寞人妻少妇视频99o| 欧美高清性xxxxhd video| 99九九线精品视频在线观看视频| 精品一区二区三区人妻视频| 欧美极品一区二区三区四区| 激情 狠狠 欧美| 三级国产精品欧美在线观看| av线在线观看网站| 观看美女的网站| 国产乱人视频| 真实男女啪啪啪动态图| 啦啦啦中文免费视频观看日本| 男人舔奶头视频| 国产日韩欧美在线精品| 嫩草影院入口| 深夜a级毛片| 亚洲人成网站在线观看播放| 亚洲四区av| 99久久精品热视频| 搞女人的毛片|