• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Detecting the One-Shot Dummy Attack on the Power Industrial Control Processes With an Unsupervised Data-Driven Approach

    2023-03-09 01:04:40ZhenyongZhangYanQinJingpeiWangHuiLiandRuilongDeng
    IEEE/CAA Journal of Automatica Sinica 2023年2期

    Zhenyong Zhang,Yan Qin,Jingpei Wang,Hui Li,and Ruilong Deng,

    Dear Editor,

    Dummy attack (DA),a deep stealthy but impactful data integrity attack on power industrial control processes,is recently recognized as hiding the corrupted measurements in normal measurements.In this letter,targeting a more practical case,we aim to detect the one shot DA,with the purpose of revealing the DA once it is launched.Specifically,we first formulate an optimization problemto generate one-shot DAs.Then,an unsupervised data-driven approach based on a modified local out lier factor (MLOF) is proposed to detect them.To improve the detection performance,the measurements are preprocessed with the gamma transformation and the power patterns are extracted from historical data and integrated into the MLOF algorithm.Finally,extensive experiments are conducted to evaluate the performance of the proposed approach with real-world load data.

    The industrial control processes of power systems are enabled by integrating advanced information and communication technology(ICT) into the physical infrastructures.However,the vulnerabilities exposed in ICT devices make power systems attractive to cyberattacks [1].The false data injection attack (FDIA) [2] is one of the cyberat tacks that aims to stealthily inflict the power system’s control processes (e.g.,state estimation,load frequency control,etc.).However,the bad data detection-bypassed FDIA is no longer stealthy if the detector evaluates the distances between the corrupted measurements and the near historical measurements.Thus,a deep stealthy attack,the DA is recently proposed to hide the corrupted measurements in historical measurements [3].The DA is a variant of FDIA by enhancing the stealthiness against detectors using clustering methods.

    As an emerging research topic,it is still an open issue to detect DAs effectively.The revisit of existing defense against traditional FDIAs [4] is beneficial to understanding DA.Among them,the measurement/state protection [5] is the most studied approach,which prevents the power system from being attacked by securing some critical measurements.But,the shortage of this approach is that only a few measurements can be trusted and the real-time operation might be affected if the data is protected with encryption.To provide a dynamic protection capability,the moving target defense approach[6] is recently put forward to thwart FDIAs by dynamically changing the network and physical parameters of power systems.But the active perturbation of system parameters might affect the safety and stability of the voltage,grid frequency,etc.To alleviate the impact of defensive approaches,the data-driven methods are promising alternatives to detect and identify FDIAs [7] and [8].However,there are three challenges for the data-driven approaches to detect FDIAs.First,it is impossible to completely label the adversarial data for supervised approaches since the state space is uncountable.The same measurement might be contradictorily labeled since the modified measurements by FDIA sometimes are legal (i.e.,satisfying the physics laws).Second,the assumption regarding specific distribution for a tested dataset,requested by some approaches,may not hold in practice,as different power systems are likely to yield different data distributions.Third,some complicated machine/deep learning methods have plenty of parameters that should be adjusted according to different power systems.

    In this letter,our goal is to detect DAs with a data-driven approach to fill the gap.We pay a special emphasis on the one-shot DA.The one-shot setting is more reasonable because: from the attacker's perspective,he/she aims to destroy the system’s control processes by using only one hit;while from the defender’s perspective,it is the best to detect the attack at once after its execution.However,there are challenges to detecting the one-shot DA.First,prior know ledge about the one-shot attack is lacking,as it is rare during the system’s operation.Second,since the DA is executed in a one-shot manner,it is almost impossible to monitor the long-termchange of measurements since the system might have already crashed down.To address these issues,in this letter,we propose an unsupervised data-driven approach based on the local out lier factor (LOF) to detect one-shot DAs.According to our know ledge,it is the first work to propose an efficient algorithm to detect one-shot DAs.The main contributions are summarized as follows: 1) We present a formulation of the constrained one-shot DA;2) The interval information andγtransformation method are adopted to enlarge the deviation of abnormal measurements;3) A modified LOF algorithm is proposed to enable the efficient detection of one-shot DAs;4) The performance of the proposed approach in terms of detecting one-shot DAs is evaluated with the real-world load data.

    Problem formulation:Here,we consider a power transmission network that has a set N of buses and a set L of transmission lines.The DA is constructed to bypass the bad data detector and minimize the distance between the malicious and normal measurements.To compute a malicious measurementz′for DA,the following problemshould be solved,which is:

    wherez1,z2,...,z rarerhistorical measurements,∥·∥ denotes the norm operation (?2normis used here),z iis the measurement collected at time instanti,1|N|is anN-dimension vector with all elements equal to 1,?p dis a vector of maliciously injected loads of original loadsp d,σiis theith element of vectorσ,?flis the injected error into the power flow measurement of branchl,is the maximum tolerable power flow of branchl,δlis the overloading threshold of branchl,?fis a vector of maliciously injected errors into power flows,?(·) represents the nonlinear relationship between power loads and power flows with the alternating current (AC)model,Ndis a set of loads that are corrupted by DA,is the number of loads that can be corrupted,andNdis the total number of loads.The first constraint (1a) guarantees the stealthiness of DA.The second constraint (1b) limits the magnitudes of modified loads.The third constraint (1c) reflects the impact of DA on the power system.The fourth constraint (1d) is the stealthy constraint caused by physics laws.The fifth constraint (1e) gives the malicious measurement after DA.The last constraint (1f) limits the capability of the attacker to modify power loads.Due to the nonlinear and nonconvex properties caused by constraint (1d),we linearize it by using the Jacobian matrix:denotes the Jacobian matrix by deriving ?(?p d) with respect top d.Thus,if the targeted loads are determined,the above problem becomes a convex optimization problem that is easy to solve.

    The DA is proposed because traditional FDIAs can be easily detected using the clustering-based and principal component analysis (PCA)-based approaches [9],[10].The malicious measurements of the DA are deeply hidden in normal measurements because the distances between them and normal ones are minimized.Besides,the DA can be executed in a one-shot manner and the power system is knocked down in a short time.Thus,the defender needs to detect the attack at the beginning when it starts.Therefore,in this letter,our goal is to detect one-shot DAs in an accurate and efficient way.

    Main results:In the following,we propose an unsupervised datadriven approach to detect one-shot DAs based on the LOF,which has been widely used to detect outliers [11].In this letter,the LOF is modified to make it compatible with the detection of one-shot DAs.Since a restricted neighborhood of each measurement point is taken into account,the proposed approach does not require any explicit or implicit notion of clusters.

    However,there are challenges to directly applying the LOF algorithm to detect one-shot DAs.First,the collected measurements of power systems are in a form of the high-velocity data stream.Unlike the static dataset,the stream data might have different patterns during different periods.It is possible to mistake the adversarial data as normal although it is illegal in the current period.Second,the LOF algorithm is usually computational intensive since it works by analyzing the data in a global view.Its computational complexity increases with the size of the tested dataset.However,it is not acceptable to detect the one-shot DA for a long time since the power system changes very fast.Therefore,in this letter,we propose a MLOF algorithmto improve the efficiency of detecting one-shot DAs by utilizing the common power patterns extracted from historical measurements.

    For example,the power patterns can be estimated according to load profiles and updated in an adaptive way.Here the power patterns are extracted from the real-world load data of New York State1NYISO load data.2021,Available: https://www.nyiso.com/load-data.The load profiles on the date 20-01-2021 are plotted in Fig.1.We can see that there are three patterns (dropping,climbing,steady) for the load change in a day.Although the amount of loads is changed with time,the load-change patterns remain the same for a certain period.Thus,the load-change patterns can be utilized to reduce the computational complexity of the LOF algorithm.

    Fig.1.Load-change patterns of the real-world load profiles.

    By integrating the power patterns,the proposed MLOF works as follows.First,the normal measurements are divided intoqdata chunks (C1,C2,···,Cq) according toqpower patterns (p1,p2,··· ,pq)(e.g.,dropping,climbing,and steady).Then,for each incoming measurement,the time periodt(t=1,2,...,q) that its belonging is first determined,then thek-nearest-neighbor search is performed only within the data chunk Ct.Based on the estimatedk-nearest-neighbor,the LOF value is computed for all measurements in the data chunk Ct.If the incoming measurement has the largest LOF value,then it is recognized as a malicious measurement of the one-shot DA.The pseudo-code of MLOF can be found in Algorithm1.Note that theqdata chunks should be updated after a period of time since the power patterns might change due to the construction of new power facilities,the penetration of new energy resources,and etc.

    The computational complexity of LOF can be formulated asCLOF=O(f(n)),wherenis the size of the tested dataset,f(n) is a monotonically increasing function,and O(·) calculates the computa-CMLOF=O(N),whereNis a constant number,i.e.,the size of the tional complexity.As for MLOF,the computational complexity is data chunk,which is independent of the increasing number of collected measurements.

    Experimental results:The performance of the proposed approach in terms of detecting one-shot DAs is evaluated with the IEEE 14-bus power system.To make the tested scenario more practical,the real world load profiles of the New York State from 01-01-2021 to 31-03-2021 are incorporated to generate the attack data.The 11 loads from 11 main regions are used to act as loads of the IEEE 14-bus power system,while the measurements are created based on the load data.The one-shot DA is constructed by using the latestrmeasurements to solve the problem(1).To detect the one-shot DA,the historical measurements from the beginning to timeiare used for LOF,COF [12],LDOF [13],NOF,DBSCAN,and iForest.The measurements on 20-01-2021 are used to extract the power patterns for MLOF.The evaluation metric “TP”means true positive and “FP”stands for false positive.As for LOF,COF,LDOF,NOF,DBSCAN,and iForest,the historical measurementsz1,z2,...,z i?1 are normal,but the measurementz iis attacked by the one-shot DA.The goal of LOF,COF,LDOF,NOF,DBSCAN,and iForest is to capture the abnormal measurementz iwithz1,z2,...,z i.As for MLOF,three data chunks C1,C2,and C3,according to three power patterns (i.e.,dropping,climbing,and steady),are extracted based on the measurements on 20-01-2021.The malicious measurementz iis fed into C1,C2,or C3to test whether it is a malicious measurement or not.The parameterγis set the same for all sensor measurements.

    By default,the historical measurements for LOF,COF,LDOF,NOF,DBSCAN,and iForest are collected based on the loads from 01-01-2021 to 21-02-2021,while the historical measurements for MLOF are collected based on the loads on the date 20-01-2021.The malicious measurements are generated based on the measurements on 21-01-2021.The attack parameterris 30.The transformation parameterγis 1.1.All malicious measurements are constructed by solving the problem(1).

    First,we compare the performance of MLOF and LOF in terms of detecting one-shot DAs with differentkvalues.The experimental results are shown in Table 1.We find that the detection rate (i.e.,TP rate) of one-shot DAs decreases when thekvalue increases with both MLOF and LOF.But the performance with MLOF is much better than that with LOF,which indicates that the LOF will treat the abnormal measurements as normal since it uses the historical measurements collected in a long term.On the other hand,the FP rates are below 5% with MLOF and below 1% with LOF,which shows that the LOF sacrifices the TP rate to reduce the FP rate.

    Table 1.The TP and FP Rates of Detecting One-Shot DAs With MLOF,LOF,COF,and LDOF ( γ=1.1)

    We also evaluate the detection performance of one-shot DAs with the variants of LOF.COF is a variant of LOF to address the issue that the outlier has a similar neighborhood density as the normal data [12],while LDOF is extended from LOF to address the low-sensitive issue caused by the scattered real-world data [13].The results are also presented in Table 1.It seems that the variants (i.e.,COF and LDOF) of LOF have better performance in terms of detecting one-shot DAs than that of LOF but worse than that of MLOF.The results indicate that the power patterns are critical for detecting one-shot DAs.

    Further,we also evaluate the performance of other algorithms beyond LOF to detect one-shot DAs.NOF is a variant of theK-nearest neighbor method by alleviating the difficulty to select an appropriateKvalue.DBSCAN is a common data clustering algorithm to detect outliers with data noise.Isolation forest (iForest) is a famous anomaly detection method to identify outliers from normal data points by measuring the distance between the data point and the rest data points.The TP rates of detecting one-shot DAs with the evaluated algorithms are presented in Table 2.We find that the TP rates with the NOF,DBSCAN,and iForest algorithms are lower than that with the variants of the LOF algorithm.In our opinion,this is because the evaluated algorithms are developed based on the distances between the outliers and normal data points,while the LOF algorithm is derived based on density estimation.

    Table 2.The TP and FP Rates of Detecting One-Shot DAs With NOF,DBSCAN,and iForest ( γ=1.1)

    Second,we compare the running time of LOF and MLOF with the same platform.The algorithms are computed in a core i7 laptop,which has a 1.10 GHz CPU and 16.0 GB memory.As shown in Fig.2,the running time of LOF increases with the number of tested measurements,but that of the MLOF remains almost the same,which is always below 100 ms.The running time of the LOF algorithmreaches nearly 30 s when the tested measurements are collected for more than a month.The fitting curve for the running time of LOF isrt=2.061×10?7n2?4.346n+1.2247,wherertis the running time of LOF andnis the number of tested measurements.The results show that it is hard to burden the intensive computations when there are too many tested measurements with LOF.Therefore,it is more efficient to use MLOF to detect one-shot DAs.

    Fig.2.The running time of LOF and MLOF algorithms.

    Third,we evaluate the performance of MLOF when the input measurements are preprocessed with theγtransformation.The results are shown in Fig.3.We find that the TP rate with the preprocessed measurements is much larger than those that are not preprocessed,while the FP rate is reversed.Therefore,the input measurements should be preprocessed with theγtransformation to improve the performance of MLOF in terms of detecting one-shot DAs.The experimental results also show that the MLOF algorithm has a good transferability to detect one-shot DAs since the performance does not degrade when the malicious measurements are constructed on the other dates (not on the date 20-01-2021).

    Finally,we evaluate the performance of MLOF with different transformation parameters and the numbers of nearest neighbors.The results are shown in Fig.4.We find that the TP rate is relatively larger when theγvalue is between 0.5 and 1.1 and thekvalue is between 20 and 30,while the FP rate is relatively larger whenγis beyond 1.2 and thekvalue is beyond 35.From the results,the transformation parameter and the number of nearest neighbors of MLOF should be properly set to improve its performance of detecting oneshot DAs.

    Fig.3.The attack detection performance of MLOF with and without the γ transformation.The malicious measurements are constructed based on the load profiles on the dates 21-01-2021,22-01-2021,···,08-02-2021.“Transformed-TP”and “Transformed-FP”mean the TP and FP rates when the measurements are preprocessed with the γ-transformation.

    Fig.4.The attack detection performance of MLOF with different γ and k values.

    Acknowledgments:This work was supported in part by the Guizhou Provincial Science and Technology Projects (ZK[2022]149),the Guizhou Provincial Research Project for Universities([2022]104),the Special Foundation of Guizhou University([2021]47),the GZU cultivation project of National Natural Science Foundation of China ([2020]80),Shanghai Engineering Research Center of Big Data Management,and the National Natural Science Foundation of China (62073285,62061130220).

    如日韩欧美国产精品一区二区三区 | 黑人巨大精品欧美一区二区蜜桃 | 如日韩欧美国产精品一区二区三区 | 美女国产视频在线观看| 新久久久久国产一级毛片| 日韩制服骚丝袜av| 精品一区二区三区视频在线| 亚洲av成人精品一二三区| 国产精品久久久久久久电影| 在线观看免费视频网站a站| 嘟嘟电影网在线观看| 老司机影院成人| 热re99久久国产66热| 久久午夜综合久久蜜桃| 多毛熟女@视频| 女人精品久久久久毛片| av专区在线播放| 日本欧美视频一区| 免费黄网站久久成人精品| 午夜91福利影院| 两个人的视频大全免费| 久久精品国产亚洲网站| 一级毛片我不卡| 啦啦啦在线观看免费高清www| 亚洲欧美精品专区久久| 全区人妻精品视频| 日日摸夜夜添夜夜添av毛片| 久久久久久人妻| av国产久精品久网站免费入址| 国内揄拍国产精品人妻在线| 人人妻人人澡人人爽人人夜夜| 又爽又黄a免费视频| 黄色视频在线播放观看不卡| 黄色怎么调成土黄色| 一本—道久久a久久精品蜜桃钙片| 美女大奶头黄色视频| 国产在线视频一区二区| 一个人免费看片子| 免费黄色在线免费观看| 嫩草影院入口| 国产男女内射视频| 免费不卡的大黄色大毛片视频在线观看| 久久久久久久久久久久大奶| 国产精品一区二区性色av| 秋霞伦理黄片| 狠狠精品人妻久久久久久综合| 亚洲欧美中文字幕日韩二区| 婷婷色综合www| 18禁在线无遮挡免费观看视频| 亚洲情色 制服丝袜| 色哟哟·www| 在线观看三级黄色| xxx大片免费视频| 亚洲一级一片aⅴ在线观看| 男女啪啪激烈高潮av片| 成人美女网站在线观看视频| 国产乱人偷精品视频| 熟妇人妻不卡中文字幕| 亚洲av综合色区一区| 秋霞在线观看毛片| 久久久久久久精品精品| 最近最新中文字幕免费大全7| 亚洲美女视频黄频| 日韩av不卡免费在线播放| 纵有疾风起免费观看全集完整版| 免费观看av网站的网址| 人妻制服诱惑在线中文字幕| 欧美高清成人免费视频www| 久热这里只有精品99| 亚洲av免费高清在线观看| 亚洲天堂av无毛| 久久久久久久久久久久大奶| 高清黄色对白视频在线免费看 | 国产精品秋霞免费鲁丝片| 日日撸夜夜添| 国产极品粉嫩免费观看在线 | 日韩免费高清中文字幕av| 久久国产亚洲av麻豆专区| av在线播放精品| 国产极品天堂在线| 国产av码专区亚洲av| 女性生殖器流出的白浆| 国产伦在线观看视频一区| 国产伦精品一区二区三区四那| 大又大粗又爽又黄少妇毛片口| 免费黄频网站在线观看国产| 国产精品久久久久久久久免| 久久人人爽人人片av| 亚洲四区av| 一二三四中文在线观看免费高清| 男女国产视频网站| 99久久中文字幕三级久久日本| 久久99蜜桃精品久久| 男女免费视频国产| 99视频精品全部免费 在线| 日本黄色日本黄色录像| 精品亚洲成国产av| 精品99又大又爽又粗少妇毛片| 日韩一区二区三区影片| 国产 精品1| 春色校园在线视频观看| 日日爽夜夜爽网站| 激情五月婷婷亚洲| 日韩中文字幕视频在线看片| 99久久精品热视频| 99热国产这里只有精品6| 日本与韩国留学比较| 日本午夜av视频| 又大又黄又爽视频免费| 亚洲av男天堂| 亚洲国产av新网站| 婷婷色麻豆天堂久久| 日韩一本色道免费dvd| 在线看a的网站| 久久热精品热| 国产一区二区三区av在线| 国产欧美日韩综合在线一区二区 | 大话2 男鬼变身卡| 日韩人妻高清精品专区| 亚洲激情五月婷婷啪啪| 午夜福利在线观看免费完整高清在| 国产色爽女视频免费观看| 乱码一卡2卡4卡精品| 久久久a久久爽久久v久久| 亚洲精品自拍成人| 十八禁高潮呻吟视频 | 80岁老熟妇乱子伦牲交| 丝袜喷水一区| 亚洲av不卡在线观看| 啦啦啦啦在线视频资源| 超碰97精品在线观看| 纯流量卡能插随身wifi吗| 熟妇人妻不卡中文字幕| 亚洲人成网站在线播| 亚洲精品乱码久久久v下载方式| 亚洲人成网站在线播| 免费看日本二区| 99久久人妻综合| 丝袜喷水一区| 精品一区二区三卡| 日本91视频免费播放| 精品亚洲乱码少妇综合久久| 久久久a久久爽久久v久久| 日韩精品免费视频一区二区三区 | av视频免费观看在线观看| 80岁老熟妇乱子伦牲交| a级片在线免费高清观看视频| a级一级毛片免费在线观看| 人妻 亚洲 视频| 亚洲欧美成人精品一区二区| 亚洲国产精品999| 日韩一区二区视频免费看| 日韩成人伦理影院| 久久久久国产网址| 欧美人与善性xxx| 人人妻人人爽人人添夜夜欢视频 | 交换朋友夫妻互换小说| 永久免费av网站大全| 亚洲真实伦在线观看| 日日啪夜夜撸| 久久热精品热| 日韩av不卡免费在线播放| 日韩av在线免费看完整版不卡| 日韩人妻高清精品专区| 午夜日本视频在线| 亚洲精品日韩在线中文字幕| 亚洲精品久久久久久婷婷小说| 亚洲激情五月婷婷啪啪| 看非洲黑人一级黄片| 精华霜和精华液先用哪个| av又黄又爽大尺度在线免费看| 国产国拍精品亚洲av在线观看| 搡老乐熟女国产| 午夜91福利影院| 一区二区三区乱码不卡18| 最后的刺客免费高清国语| 国产精品嫩草影院av在线观看| 国产中年淑女户外野战色| 在线亚洲精品国产二区图片欧美 | 免费看av在线观看网站| 亚洲图色成人| 亚洲精品一二三| 99视频精品全部免费 在线| 高清黄色对白视频在线免费看 | 一区二区三区四区激情视频| 日本av手机在线免费观看| 亚洲欧洲精品一区二区精品久久久 | 久久99精品国语久久久| 国产亚洲5aaaaa淫片| 国产精品秋霞免费鲁丝片| 激情五月婷婷亚洲| av卡一久久| 在线免费观看不下载黄p国产| 精品99又大又爽又粗少妇毛片| 免费黄频网站在线观看国产| a级片在线免费高清观看视频| .国产精品久久| 国产女主播在线喷水免费视频网站| 天天躁夜夜躁狠狠久久av| 日韩中字成人| 免费久久久久久久精品成人欧美视频 | 国产精品成人在线| 欧美bdsm另类| 18禁裸乳无遮挡动漫免费视频| 亚洲情色 制服丝袜| 精品一区二区三区视频在线| 美女福利国产在线| 亚洲va在线va天堂va国产| 下体分泌物呈黄色| 婷婷色av中文字幕| 中文字幕人妻熟人妻熟丝袜美| 免费人成在线观看视频色| 色5月婷婷丁香| 欧美区成人在线视频| 在线观看免费日韩欧美大片 | 亚洲精品乱码久久久久久按摩| 丝袜喷水一区| 久久久久久久亚洲中文字幕| a级一级毛片免费在线观看| 色5月婷婷丁香| 国产黄片美女视频| 人妻夜夜爽99麻豆av| 国产黄频视频在线观看| 3wmmmm亚洲av在线观看| 一本色道久久久久久精品综合| 成人特级av手机在线观看| 人人妻人人添人人爽欧美一区卜| av卡一久久| 欧美日韩av久久| 国产爽快片一区二区三区| 老女人水多毛片| 欧美+日韩+精品| 欧美三级亚洲精品| 亚洲精品日韩av片在线观看| 中国三级夫妇交换| 成人影院久久| 亚洲成人手机| 亚洲欧美日韩另类电影网站| 中文在线观看免费www的网站| 高清视频免费观看一区二区| 亚洲第一区二区三区不卡| 久久久午夜欧美精品| 久久久久久伊人网av| 青青草视频在线视频观看| 熟女人妻精品中文字幕| 国产亚洲av片在线观看秒播厂| 亚洲,欧美,日韩| 高清午夜精品一区二区三区| 久久人妻熟女aⅴ| freevideosex欧美| 中国三级夫妇交换| 99久久综合免费| 亚洲成人一二三区av| 免费人成在线观看视频色| 人妻一区二区av| 我的老师免费观看完整版| 观看av在线不卡| xxx大片免费视频| 久久午夜福利片| 如何舔出高潮| 少妇被粗大的猛进出69影院 | 少妇被粗大猛烈的视频| 激情五月婷婷亚洲| 国产精品久久久久久精品电影小说| 极品教师在线视频| 欧美老熟妇乱子伦牲交| 男人舔奶头视频| 丰满人妻一区二区三区视频av| 国产高清有码在线观看视频| 狂野欧美白嫩少妇大欣赏| 又黄又爽又刺激的免费视频.| 成人亚洲精品一区在线观看| 观看av在线不卡| 一级毛片电影观看| 毛片一级片免费看久久久久| 色婷婷久久久亚洲欧美| 国产91av在线免费观看| 不卡视频在线观看欧美| 国产精品偷伦视频观看了| 97在线视频观看| 六月丁香七月| a级毛色黄片| 欧美精品高潮呻吟av久久| 国产一区二区三区综合在线观看 | 一级毛片我不卡| 晚上一个人看的免费电影| 日韩一区二区视频免费看| 精品熟女少妇av免费看| 免费播放大片免费观看视频在线观看| 久久人人爽av亚洲精品天堂| 精品一区二区三区视频在线| 亚洲人成网站在线播| 97超碰精品成人国产| 亚洲欧美精品自产自拍| 久久久久精品久久久久真实原创| 亚洲精品国产色婷婷电影| 最后的刺客免费高清国语| 一级av片app| 国产av一区二区精品久久| 你懂的网址亚洲精品在线观看| 少妇人妻一区二区三区视频| 国产精品欧美亚洲77777| 最近手机中文字幕大全| 麻豆精品久久久久久蜜桃| 精品一区二区三卡| 老司机影院毛片| 国产精品偷伦视频观看了| 国产精品免费大片| 人妻人人澡人人爽人人| a 毛片基地| videos熟女内射| 国产精品一区二区三区四区免费观看| 国产黄色免费在线视频| 亚洲av福利一区| 精品卡一卡二卡四卡免费| 色视频www国产| 两个人免费观看高清视频 | 日日摸夜夜添夜夜爱| 热re99久久精品国产66热6| 两个人免费观看高清视频 | 亚洲va在线va天堂va国产| 老熟女久久久| 欧美区成人在线视频| 久久久久久伊人网av| 亚洲色图综合在线观看| 狂野欧美白嫩少妇大欣赏| 在线观看一区二区三区激情| 国产又色又爽无遮挡免| 伊人亚洲综合成人网| 日本欧美国产在线视频| 51国产日韩欧美| 在线播放无遮挡| 汤姆久久久久久久影院中文字幕| 少妇的逼好多水| 国产美女午夜福利| 日韩在线高清观看一区二区三区| 这个男人来自地球电影免费观看 | 妹子高潮喷水视频| 久久久国产欧美日韩av| 免费观看av网站的网址| 久久久国产一区二区| 欧美xxxx性猛交bbbb| 秋霞伦理黄片| 亚洲欧美精品自产自拍| 成人国产麻豆网| 六月丁香七月| 亚洲精品乱码久久久v下载方式| www.av在线官网国产| 国产 一区精品| 天堂8中文在线网| 九九爱精品视频在线观看| 久久久久久久久久人人人人人人| 99热网站在线观看| 中文字幕av电影在线播放| 亚洲av综合色区一区| 熟女av电影| 男人舔奶头视频| 丰满乱子伦码专区| 日韩 亚洲 欧美在线| 男人添女人高潮全过程视频| 欧美精品一区二区大全| 一级a做视频免费观看| 国产老妇伦熟女老妇高清| 久久国产精品男人的天堂亚洲 | 久久精品国产亚洲av天美| 2022亚洲国产成人精品| 久久免费观看电影| 国产精品国产三级国产av玫瑰| 亚洲国产精品成人久久小说| 80岁老熟妇乱子伦牲交| 最新的欧美精品一区二区| 噜噜噜噜噜久久久久久91| 亚洲精品成人av观看孕妇| 秋霞伦理黄片| 成人毛片a级毛片在线播放| 黑人猛操日本美女一级片| 少妇熟女欧美另类| 黄色一级大片看看| 99久久精品热视频| 亚洲精品日本国产第一区| av黄色大香蕉| 国产精品国产av在线观看| 日韩av在线免费看完整版不卡| 国内揄拍国产精品人妻在线| 欧美日韩视频高清一区二区三区二| 国产一级毛片在线| 黄色配什么色好看| 色婷婷av一区二区三区视频| 老司机亚洲免费影院| 国产精品人妻久久久久久| 国产精品偷伦视频观看了| 啦啦啦中文免费视频观看日本| 亚洲国产欧美日韩在线播放 | 91aial.com中文字幕在线观看| 日本爱情动作片www.在线观看| 自线自在国产av| 国产有黄有色有爽视频| 亚洲精品国产成人久久av| 国产69精品久久久久777片| 亚洲成色77777| 日韩中文字幕视频在线看片| 国产片特级美女逼逼视频| 成人美女网站在线观看视频| 成人毛片60女人毛片免费| 午夜久久久在线观看| 亚洲精品第二区| 九草在线视频观看| 国产男女内射视频| 国产视频内射| 大香蕉久久网| 99热网站在线观看| 欧美日韩av久久| 亚洲久久久国产精品| 菩萨蛮人人尽说江南好唐韦庄| 午夜福利影视在线免费观看| 国产av一区二区精品久久| 五月伊人婷婷丁香| 一本大道久久a久久精品| 色5月婷婷丁香| 日本午夜av视频| 18禁在线无遮挡免费观看视频| 亚洲国产毛片av蜜桃av| 亚洲精品视频女| 国产精品女同一区二区软件| 国产精品久久久久久精品古装| 日韩熟女老妇一区二区性免费视频| 桃花免费在线播放| 久久久久精品性色| 日韩成人伦理影院| 免费播放大片免费观看视频在线观看| 国语对白做爰xxxⅹ性视频网站| 国产成人精品一,二区| 欧美精品人与动牲交sv欧美| 丰满迷人的少妇在线观看| 亚洲美女搞黄在线观看| 欧美日韩一区二区视频在线观看视频在线| 高清av免费在线| 日本黄色片子视频| 国产精品.久久久| 97超视频在线观看视频| 国产精品一区www在线观看| 伦精品一区二区三区| 少妇人妻久久综合中文| 亚洲国产精品成人久久小说| 蜜桃在线观看..| 亚洲欧洲国产日韩| 色婷婷久久久亚洲欧美| 亚洲欧美成人精品一区二区| 日韩不卡一区二区三区视频在线| 2021少妇久久久久久久久久久| 一区二区三区四区激情视频| 国产一区亚洲一区在线观看| 国产亚洲一区二区精品| 大话2 男鬼变身卡| 嫩草影院新地址| 美女中出高潮动态图| 日韩伦理黄色片| 午夜福利影视在线免费观看| 人妻 亚洲 视频| 草草在线视频免费看| 麻豆乱淫一区二区| 一级毛片黄色毛片免费观看视频| 国产精品女同一区二区软件| 在线观看一区二区三区激情| 最黄视频免费看| 欧美日韩av久久| 少妇高潮的动态图| 一级毛片电影观看| 乱码一卡2卡4卡精品| 日产精品乱码卡一卡2卡三| 成人无遮挡网站| 日韩在线高清观看一区二区三区| 亚洲国产av新网站| 女性被躁到高潮视频| 成人亚洲精品一区在线观看| 亚洲欧洲精品一区二区精品久久久 | 国产高清国产精品国产三级| 高清在线视频一区二区三区| 两个人的视频大全免费| 日韩成人av中文字幕在线观看| 黑人巨大精品欧美一区二区蜜桃 | 国产精品99久久99久久久不卡 | 热re99久久国产66热| 少妇被粗大的猛进出69影院 | 天美传媒精品一区二区| 国产日韩欧美亚洲二区| 免费人妻精品一区二区三区视频| 美女内射精品一级片tv| 91精品一卡2卡3卡4卡| 亚洲自偷自拍三级| 国产91av在线免费观看| 亚洲精品视频女| 丰满少妇做爰视频| 内射极品少妇av片p| 又粗又硬又长又爽又黄的视频| 国产欧美日韩一区二区三区在线 | 天堂中文最新版在线下载| 国产免费一区二区三区四区乱码| 伦理电影大哥的女人| 亚洲,一卡二卡三卡| 国产精品国产av在线观看| 97超视频在线观看视频| 纯流量卡能插随身wifi吗| 全区人妻精品视频| 国国产精品蜜臀av免费| 久久久久久久国产电影| 伊人亚洲综合成人网| 美女福利国产在线| 欧美老熟妇乱子伦牲交| 精品午夜福利在线看| 妹子高潮喷水视频| 天天操日日干夜夜撸| 高清不卡的av网站| 国产在线男女| 一级毛片 在线播放| 91精品国产九色| 国产成人精品无人区| 卡戴珊不雅视频在线播放| 赤兔流量卡办理| 七月丁香在线播放| 特大巨黑吊av在线直播| 91午夜精品亚洲一区二区三区| 六月丁香七月| 国产伦在线观看视频一区| 男女边吃奶边做爰视频| 97在线人人人人妻| 国产熟女午夜一区二区三区 | 精品少妇久久久久久888优播| 亚洲av成人精品一区久久| 国产精品无大码| 简卡轻食公司| 一级毛片黄色毛片免费观看视频| 国产色爽女视频免费观看| 极品人妻少妇av视频| 午夜精品国产一区二区电影| 日本与韩国留学比较| 久久精品国产亚洲网站| 欧美精品人与动牲交sv欧美| 婷婷色综合www| 精品国产一区二区三区久久久樱花| 日本爱情动作片www.在线观看| 人妻一区二区av| 我要看日韩黄色一级片| 国产伦精品一区二区三区四那| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久午夜欧美精品| 日韩亚洲欧美综合| 女性生殖器流出的白浆| 亚洲情色 制服丝袜| 亚洲三级黄色毛片| 大码成人一级视频| 涩涩av久久男人的天堂| 极品人妻少妇av视频| 99久久人妻综合| 草草在线视频免费看| 纯流量卡能插随身wifi吗| 亚洲天堂av无毛| 熟女人妻精品中文字幕| 午夜福利在线观看免费完整高清在| 18禁在线无遮挡免费观看视频| 亚洲成色77777| 亚洲高清免费不卡视频| 看十八女毛片水多多多| 色视频在线一区二区三区| 在线精品无人区一区二区三| 亚洲一级一片aⅴ在线观看| 乱码一卡2卡4卡精品| 女人精品久久久久毛片| 精品亚洲乱码少妇综合久久| 国产一区二区在线观看av| 国产在线一区二区三区精| 亚洲伊人久久精品综合| 国产精品蜜桃在线观看| 91aial.com中文字幕在线观看| 亚洲欧美日韩另类电影网站| 亚洲精品乱码久久久久久按摩| 免费黄色在线免费观看| 男女边摸边吃奶| 国产精品99久久99久久久不卡 | 欧美日韩av久久| 亚洲av欧美aⅴ国产| 热99国产精品久久久久久7| 亚洲av日韩在线播放| 久久久久网色| 国产成人精品无人区| 亚洲国产色片| 男的添女的下面高潮视频| 简卡轻食公司| 男女边摸边吃奶| 99热全是精品| 亚洲精品,欧美精品| 女的被弄到高潮叫床怎么办| 精品国产乱码久久久久久小说| 极品教师在线视频| 欧美bdsm另类| 国产爽快片一区二区三区| 国产伦精品一区二区三区视频9| 亚洲精品一区蜜桃| 一本色道久久久久久精品综合| 精品一区二区三区视频在线| 亚洲成人av在线免费| 男人爽女人下面视频在线观看| 欧美精品人与动牲交sv欧美| 最近的中文字幕免费完整| 亚洲真实伦在线观看| 嘟嘟电影网在线观看| 亚洲av成人精品一二三区| 精品亚洲成a人片在线观看| 国产一区亚洲一区在线观看| 精品一品国产午夜福利视频| 成人影院久久| 国产一区二区三区综合在线观看 | 国产精品99久久久久久久久| 久久6这里有精品| av天堂中文字幕网|