• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Driver-Centric Velocity Prediction With Multidimensional Fuzzy Granulation

    2023-03-09 01:04:36JiLiQuanZhouXuHeandHongmingXu
    IEEE/CAA Journal of Automatica Sinica 2023年2期

    Ji Li,,Quan Zhou,,Xu He,and Hongming Xu

    Dear Editor,

    This letter deals with a real-world problem regarding chaotic time series prediction,where a driver-centric velocity prediction model is presented for vehicle intelligent control and advanced driver assistance,i.e.,multi-dimension fuzzy predictor.Inspired by fuzzy granulation technology,a finite-state Markov chain (MC) is reinforced to capture probabilities of the transitions between velocity and acceleration and present signals that vary in a continuous range.The predictability of the multi-dimensional fuzzy predictor is examined by comparing two existing MC-based predictors over the two laboratory cycles and one virtual driving cycle,both of which have high accuracy.

    There are idiosyncrasies in the driving behavior of drivers.Different drivers differ in using the accelerator,brake pedal,and steering wheel [1].Given these differences,energy management based on individual driving habits can be more efficient [2].In order to successfully implement this differential energy management,one approach is to control the vehicle by analyzing a representative driver model to help each driver [3].Individual driver models or models under a subset of driving behavior categories can be trained offline or online.For supporting the target driver efficiently,a vehicle controller chooses a suitable driver model by differentiating drivers or assigning a model appropriate to their driving behavior.

    Unlike previously,Augustynowicz divided the driver behavior into the region (?1,1);within 1,0,and ?1 mean offensive,moderate,and mild separately [4].This is usually calculated based on fuel consumption,and the operating efficiency of vehicles reflected the aggressiveness level of driver behavior.Manzoniet al.[5] calculated the percentage of excessive consumption reflected the additional cost by comparing the estimated fuel consumption during the trip and a benchmarked consumption.Neubauer and Wood [6] calculated the vehicle efficiency to represent the driving behavior by using fuel consumption.Cortiet al.[7] introduced a cost function faced to energy to assess the driving behavior and predict fuel overconsumption.However,the feasibility of implementing this continuous index or discrete class-based classification approach for HEV energy management needs to be further analyzed and validated.

    Related work:Considering the related algorithms for driver recognition,the driver torque demand is assumed to be exponentially varying over the predictive horizon based on the empirical formula [8].In contrast,the RB algorithmlimits the number of managed parameters.The RB algorithm can produce redundant and complex rules when dealing with larger data sets of variables.Fuzzy logic (FL) graphs are used instead of RB algorithms to address this situation.Syedet al.[3] introduced an FL algorithmto optimize the application of pedals in hybrid vehicles.Liet al.[9] introduce type-2 fuzzy sets to describe the driving style used for driver-oriented energy management.Based on these two algorithms,the results are simplistic and uniformin an acceptable way,but the classification quality is closely related to the threshold value.

    The RB algorithmthreshold defines the resulting robustness and needs a huge number of data to be analyzed.Unsupervised algorithms can work efficiently without a clear understanding of the underlying process.Miyajimaet al.[10] implemented a Gaussian mixture model by analyzing the vehicle-following behavior and the signal spectrum of pedal operation.In the work of Liet al.[11],the spectrum-informed long short-termmemory networks have been developed that achieve the real-time recognition of drivers under the same driving scenario.The Markov model has also proven to be suitable for driving behavior recognition.Therefore,the driving behavior representation can be generated from the randompatterns of previous data.

    Fuzzy granulation for Markov chains:Firstly,the velocity and acceleration of vehicles are expressed as a finite state MC [12].The state spaces of these two parameters are represented asV={vi|i=1,...,M}?X?R andW={aj|j=1,...,N}?Y?R .VandWdenote the state space of velocity and acceleration,separately;MandNdenote the sample numbers of velocity and acceleration,separately.Meanwhile,XandYdenote the finite set of variables,and R denotes the set of real numbers.Considering the balance of accuracy and computational efficiency,the collected samples of vehicle speed with the range of 0?135 km/h are uniformly discretized as 135 elements.The collected samples of vehicle acceleration with the range of ?6 to 3 m/s2are uniformly discretized as 90 elements.The frequencies of its transition could be evaluated based on the possibilities of transition observation as follow:

    wherevmeans the velocity;a+means the acceleration of the next time step;pijmeans the transition probability betweenvitoaj;Hijdenotes the number of transitions fromvitoaj;Himeans the number of total transitions fromvi;the matrixrepresents the transition probability matrix which is occupied withpij.Followed by (2),the probability vector of the next step is obtained as:

    where λT(v)=[0...1...0] means a multi-dimensional probability vector with thejth element to denote a discontinuous stateajin disjoint zonesI j,j=1,...,N;means thejt h row of the matrixXandYare subdivided into finite groups,respectively,with fuzzy subsets Φi,i=1,...,Mand Φj,j=1,...,Nwhen using fuzzy granulation technology.The fuzzy subset Φiand Φjare pairs of(X,μi(·))and (Y,μj(·)),wherein μi(·),μj(·) are Lebesgue member functions which can be measured to satisfy the following equation:

    where μi(v) displays the membership degree ofv∈Xin μi;μj(a)denotes the membership degree ofa∈Yin μj.Followed by the theory of approximate reasoning [13],the transformation assigned a multi-dimensional probability vector for eachv∈Xas:

    This transformation is applied to develop the fuzzy norms and map velocity in theXto vector in multi-dimensional probability vector space.Furthermore,the elements in the probability vector~O(v)are summed as 1.The next step’s probability distribution inis calculated from (5) and gathered with member function μ(a) to decode the vectors inYback to the spaceYas

    where in the transition probability matrix,pijis explained as a transition probability between Φiand Φj.The member function μ(a) is applied to encode the probability vector of the next step in spaceY.

    The centroid and volume of the membership function μ(a) are expressed as

    Multi-dimensional fuzzy granulation:The multi-dimension fuzzy predictor (MDFP) with multi-dimensional fuzzy granulation is introduced to enhance the prediction performance of vehicle velocity by considering the driver behaviors for look-ahead steps.By using cluster algorithms,the original samples are classified into the personalized Markov chain models and then aggregate their outputs to improve sensitivity of the prediction model to sudden change of driving behaviors.Here,two types of clustering algorithms are explored,i.e.,fuzzy C-mean (FCM) with soft margin and support vector machine (SVM) with hard margin.

    The auto-regression (AR) model is an efficient tool for generalizing the signal’s mean-time regressive pattern and predicting by the following dynamically.The applied AR model follows the structure displayed as [14]:

    where ?rare the AR model coefficients;Kis the order of the AR model;?kreflects theith noise;v(k) means the vehicle speed at stepk.In this research,the sample period τ is 0.1 s.

    As real-world driving involves frequent transitions of the driving behavior,the AR models are applied to obtain driver speed information in moving horizontal lines,where parameters measure the length of these lines and the orderRof the models.According to the Corrected Akaike Information Criterion [15],the second-order AR models with a 200-second horizontal line showed a consistent advantage.The results are related to the data vector γrof speed interval samples,which includes four information sets as

    where the AR coefficient set ? displays the tendency of sample speed change;mean acceleration ratioar_avgmeasures the mean state and the maximum acceleration ratear_maxRmeasures the range of acceleration changes.

    Markov chain models with five layers show efficient computational efficiency and high predictive performance through training[14].The AR model coefficient sets are divided into five groups reflecting different acceleration statuses to represent specific driver states in this research.The five groups are fuzzified to display the acceleration range relationship for different driver behaviors.These behaviors are marked as Over mild;Mild;Moderate;Offensive and Over offensive.Given the unknowability of a priori information about vehicle performance and driving behavior preferences,two clustering algorithms of FCM and SVM in the unsupervised learning process are used to classify information with inaccurate internal boundaries as well as unknowable external boundaries [16],[17].

    The results show the data member distributions for all of the groups.Based on the driving behavior classification,the transition probability matrixin (2) is detailed to be five specific transition probability matrixes as follows:

    The acceleration probability distribution with different driving behaviors can be obtained more exactly by these detailed transition probability matrixes.Based on these matrixes,the next one-stepahead accelerations by driver groups can be displayed as

    Here,the weighted sum coefficient is the member criterion aggregating acceleration prediction from five driver MC models.Equation(12) shows the next one-step-ahead velocity calculated as

    where the member criterion vector ωn(v) reflects the data vector γrof the speed zone sample obtained by FCM;but the weights obtained by SVM,which only has 0 or 1 due to its binary classification,are introduced to replace ωn(v).

    Experiments:In this study,the experiments are based on a cockpit package where five drivers are invited as observation subjects for 8000 s of virtual driving [18].The entire route consisted of a mix of highways and local roads with multiple stop signs,traffic lights and speed limit changes provided by IPG Car Maker.A Thrust master T500RS cockpit package and a host PC with I5-6500 3.2 GHz processor and 8 GB RAM are connected by a 3.0 USB cable to provide a static system experience platform driving simulators to human drivers.

    In this letter,existing MC-based predictors are introduced for analysis,including the Markov chain predictor (MCP) [19] and the single-dimension fuzzy predictor (SDFP) [20].Fig.1 shows the prediction speeds obtained by three predictors based on the personalized Worldwide harmonized light vehicles test cycles (WLTC) and personalized China light-duty vehicle test cycle (CLTC) by using FCM and SVM.MCP is proven with weak prediction performance in the low-speed zone because of the minute transition probability calculated by using one discrete MC model in this zone.The fuzzy granulation helps the SDFP fix the problem above in the low-speed zone.However,maintaining uniformity in the handling of different driving habits makes the predictability unsatisfied in the medium-high-speed zone.Due to the training dataset of the predictive model is continuously updating during virtual driving,MDFP displays a better prediction performance compared to the other two predictors mentioned above.More details about the comparison are shown in Table 1.Compared to FCM,SVM helps MDFP to reduce 98.4% of ITAE and 76.3% of maximumerror.

    Fig.1.Speed prediction results of three MC-based predictors: The speed prediction errors by (a) using SVM;and (b) by using FCM;the speed prediction results under WLTC by (c) using FCM;and (d) using SVM;(e) the speed prediction results by using SVM under CLTC.

    Fig.2.Online prediction results over virtual driving by SVM.

    Fig.2 shows the driving simulation results of the DiL experiment with human drivers operating in a simulated driving scenario,where the absolute errors between prediction and reference speed are displayed.After 600 s of initialization,the MDFP begins to generate a 10 s look-ahead horizon,and its prediction model is updated in real-time every 5 s.The MDFP relies on the last driving step independent of the driver change while predicting speed,which helps the model to adaptively adjust speed based on the new pedal action if the individual driver’s driving behavior changes dramatically.It needs to be emphasized that the data recorded by the MDFP will be completely overwritten within 600 s.Therefore,the required cool downtime after a new driver replaced is 10 ms.

    Conclusions:This letter presents a driver-centric velocity prediction model for vehicle intelligent control and advanced driver assistance,i.e.,multi-dimension fuzzy predictor.Its predictability is proven and examined with existing MC-based predictors.Two laboratory cycles and one virtual driving cycle are implemented for vehicle performance validation.The proposed multi-dimension fuzzy predictor has an ability to distinguish driving behaviors in real time.

    99香蕉大伊视频| 777久久人妻少妇嫩草av网站| 亚洲国产欧美网| 王馨瑶露胸无遮挡在线观看| 女人爽到高潮嗷嗷叫在线视频| 国产精品熟女久久久久浪| 免费在线观看视频国产中文字幕亚洲 | 日韩制服骚丝袜av| 菩萨蛮人人尽说江南好唐韦庄| 久久久精品国产亚洲av高清涩受| 又大又黄又爽视频免费| 嫁个100分男人电影在线观看 | 国产1区2区3区精品| 亚洲中文日韩欧美视频| 国产亚洲欧美精品永久| 国产亚洲欧美精品永久| 国产亚洲午夜精品一区二区久久| 国产精品 欧美亚洲| 青春草亚洲视频在线观看| svipshipincom国产片| www.精华液| 久久午夜综合久久蜜桃| www.精华液| 久久人人爽av亚洲精品天堂| 在线观看国产h片| 亚洲色图综合在线观看| 国产av国产精品国产| 99久久精品国产亚洲精品| 在线av久久热| 18禁裸乳无遮挡动漫免费视频| 大码成人一级视频| 高清av免费在线| 丰满迷人的少妇在线观看| 高清不卡的av网站| 国语对白做爰xxxⅹ性视频网站| 久久久久网色| 一边摸一边抽搐一进一出视频| 一级a爱视频在线免费观看| 一区二区三区激情视频| 丝袜在线中文字幕| 好男人电影高清在线观看| 91成人精品电影| 国产主播在线观看一区二区 | 精品一区二区三区四区五区乱码 | 欧美国产精品va在线观看不卡| 一级黄片播放器| 激情视频va一区二区三区| 黄网站色视频无遮挡免费观看| 每晚都被弄得嗷嗷叫到高潮| av线在线观看网站| 国产一区有黄有色的免费视频| 国产av一区二区精品久久| 亚洲成人国产一区在线观看 | 黄片播放在线免费| 久久久久久久精品精品| 中国国产av一级| 精品欧美一区二区三区在线| 午夜激情久久久久久久| 一级片'在线观看视频| 久久九九热精品免费| av网站免费在线观看视频| 亚洲成色77777| 捣出白浆h1v1| 色94色欧美一区二区| 免费观看av网站的网址| 日韩一本色道免费dvd| 一级片免费观看大全| 久久久亚洲精品成人影院| 只有这里有精品99| 亚洲人成电影免费在线| 精品国产超薄肉色丝袜足j| 欧美日韩黄片免| 人人妻,人人澡人人爽秒播 | 香蕉丝袜av| 男女免费视频国产| 亚洲精品日韩在线中文字幕| 麻豆国产av国片精品| 日韩一卡2卡3卡4卡2021年| 日韩av免费高清视频| 久久影院123| 久久国产亚洲av麻豆专区| 国产在视频线精品| 侵犯人妻中文字幕一二三四区| 亚洲国产欧美日韩在线播放| 中文字幕亚洲精品专区| 精品人妻1区二区| 久久狼人影院| 深夜精品福利| 国产精品av久久久久免费| 纵有疾风起免费观看全集完整版| 日本色播在线视频| 天天影视国产精品| 在线天堂中文资源库| 看免费成人av毛片| 人体艺术视频欧美日本| 亚洲国产精品一区二区三区在线| 青草久久国产| 国产97色在线日韩免费| av网站在线播放免费| 黄片播放在线免费| 欧美乱码精品一区二区三区| 国产精品一区二区精品视频观看| 蜜桃国产av成人99| 国产又爽黄色视频| 99国产精品免费福利视频| 99精国产麻豆久久婷婷| 亚洲精品久久久久久婷婷小说| 亚洲国产av影院在线观看| 日韩中文字幕视频在线看片| 国产视频首页在线观看| 午夜日韩欧美国产| 下体分泌物呈黄色| 飞空精品影院首页| 国产精品久久久av美女十八| 国产不卡av网站在线观看| videosex国产| av网站免费在线观看视频| 亚洲熟女精品中文字幕| 黄色片一级片一级黄色片| 日本vs欧美在线观看视频| 色综合欧美亚洲国产小说| 两个人看的免费小视频| 人妻人人澡人人爽人人| 一级黄片播放器| 久久精品国产a三级三级三级| 亚洲国产看品久久| 人妻一区二区av| 男女免费视频国产| 亚洲色图 男人天堂 中文字幕| 国产精品人妻久久久影院| 国产视频首页在线观看| av电影中文网址| 国产视频一区二区在线看| 好男人电影高清在线观看| 国产在线观看jvid| 亚洲成av片中文字幕在线观看| 男女下面插进去视频免费观看| 男人操女人黄网站| 国产精品人妻久久久影院| 国精品久久久久久国模美| 中文乱码字字幕精品一区二区三区| 男人舔女人的私密视频| 热99久久久久精品小说推荐| 狠狠婷婷综合久久久久久88av| 精品欧美一区二区三区在线| 性少妇av在线| 久久狼人影院| 热99国产精品久久久久久7| 丝袜美足系列| av在线老鸭窝| 好男人视频免费观看在线| 欧美变态另类bdsm刘玥| 亚洲国产精品成人久久小说| 国产成人免费观看mmmm| 国产福利在线免费观看视频| 日本91视频免费播放| 国产一区有黄有色的免费视频| 97在线人人人人妻| 男人爽女人下面视频在线观看| 免费久久久久久久精品成人欧美视频| 女人精品久久久久毛片| 69精品国产乱码久久久| 十分钟在线观看高清视频www| 黑人欧美特级aaaaaa片| 国产精品一区二区免费欧美 | 久久久久久久久免费视频了| 亚洲精品久久午夜乱码| 丁香六月欧美| 国产亚洲午夜精品一区二区久久| 伦理电影免费视频| av在线app专区| 亚洲精品日本国产第一区| av电影中文网址| 亚洲欧美日韩另类电影网站| 在线观看一区二区三区激情| 久久国产精品大桥未久av| 久9热在线精品视频| 曰老女人黄片| 亚洲欧洲精品一区二区精品久久久| 日本av手机在线免费观看| 亚洲欧美一区二区三区久久| 大片免费播放器 马上看| www日本在线高清视频| 中文字幕亚洲精品专区| 国产在线一区二区三区精| 丝袜脚勾引网站| 91国产中文字幕| 亚洲国产毛片av蜜桃av| 精品亚洲乱码少妇综合久久| 亚洲av成人不卡在线观看播放网 | 国产成人精品久久久久久| 青春草视频在线免费观看| 多毛熟女@视频| 精品欧美一区二区三区在线| 久久国产亚洲av麻豆专区| 狂野欧美激情性bbbbbb| 婷婷色av中文字幕| 国产亚洲av片在线观看秒播厂| 91麻豆精品激情在线观看国产 | 国产一区二区三区av在线| 成人国产av品久久久| 狂野欧美激情性bbbbbb| 97人妻天天添夜夜摸| 青青草视频在线视频观看| 国产欧美日韩综合在线一区二区| 中文字幕人妻丝袜制服| 成人免费观看视频高清| 国产免费福利视频在线观看| 母亲3免费完整高清在线观看| 精品福利永久在线观看| 成年人黄色毛片网站| 免费不卡黄色视频| 9色porny在线观看| 亚洲精品第二区| 精品亚洲成国产av| 另类亚洲欧美激情| 亚洲精品美女久久久久99蜜臀 | 最近中文字幕2019免费版| 日韩av不卡免费在线播放| 99久久综合免费| 天天躁日日躁夜夜躁夜夜| 又黄又粗又硬又大视频| 男女午夜视频在线观看| 日本a在线网址| 一边亲一边摸免费视频| 老司机在亚洲福利影院| 中文字幕亚洲精品专区| 亚洲,欧美精品.| 亚洲天堂av无毛| 精品少妇久久久久久888优播| 99久久99久久久精品蜜桃| 亚洲成人免费电影在线观看 | 免费在线观看完整版高清| 18禁国产床啪视频网站| 深夜精品福利| 狠狠婷婷综合久久久久久88av| 香蕉国产在线看| 精品一区在线观看国产| 色婷婷久久久亚洲欧美| 精品亚洲成a人片在线观看| 久久鲁丝午夜福利片| 美女主播在线视频| 精品第一国产精品| 亚洲成人免费电影在线观看 | 国产高清videossex| 免费人妻精品一区二区三区视频| 一级毛片电影观看| 亚洲专区国产一区二区| 午夜福利乱码中文字幕| 在线看a的网站| 国产成人欧美在线观看 | 午夜福利视频在线观看免费| 丝袜美腿诱惑在线| 熟女少妇亚洲综合色aaa.| 国产一区亚洲一区在线观看| 婷婷色麻豆天堂久久| 中文字幕最新亚洲高清| 男女国产视频网站| 黄色一级大片看看| 永久免费av网站大全| 99久久精品国产亚洲精品| 啦啦啦中文免费视频观看日本| 免费看av在线观看网站| 亚洲精品久久成人aⅴ小说| 在线看a的网站| 国产成人av教育| 亚洲,一卡二卡三卡| 久久人人爽人人片av| 亚洲精品久久成人aⅴ小说| 久久99一区二区三区| 亚洲伊人久久精品综合| 国产精品三级大全| 中文乱码字字幕精品一区二区三区| 中文字幕亚洲精品专区| 无遮挡黄片免费观看| 成人午夜精彩视频在线观看| 国产伦理片在线播放av一区| 性色av乱码一区二区三区2| 菩萨蛮人人尽说江南好唐韦庄| 99久久99久久久精品蜜桃| 97在线人人人人妻| 波多野结衣av一区二区av| 久久久精品区二区三区| 十八禁网站网址无遮挡| 91国产中文字幕| 99国产精品99久久久久| 亚洲欧美色中文字幕在线| 1024视频免费在线观看| 国产成人a∨麻豆精品| 青春草视频在线免费观看| 如日韩欧美国产精品一区二区三区| 久久青草综合色| 乱人伦中国视频| 老鸭窝网址在线观看| av国产精品久久久久影院| 国产免费又黄又爽又色| 国产女主播在线喷水免费视频网站| 日本猛色少妇xxxxx猛交久久| 中文字幕精品免费在线观看视频| 男人舔女人的私密视频| 国产三级黄色录像| 日本av免费视频播放| 可以免费在线观看a视频的电影网站| 国产免费视频播放在线视频| 女性被躁到高潮视频| 精品人妻一区二区三区麻豆| 纵有疾风起免费观看全集完整版| 国产亚洲午夜精品一区二区久久| 国产在视频线精品| 国产成人欧美在线观看 | 精品少妇内射三级| 国产淫语在线视频| 亚洲激情五月婷婷啪啪| av天堂久久9| 飞空精品影院首页| 久久99一区二区三区| 久久精品国产亚洲av高清一级| 免费观看a级毛片全部| 日日摸夜夜添夜夜爱| 久久人人97超碰香蕉20202| 永久免费av网站大全| 午夜福利视频精品| 丁香六月天网| 国产黄频视频在线观看| 人人妻人人爽人人添夜夜欢视频| 人人妻人人澡人人看| 一本大道久久a久久精品| 亚洲国产精品国产精品| 高清黄色对白视频在线免费看| 夫妻午夜视频| 午夜两性在线视频| 国产伦理片在线播放av一区| 波多野结衣一区麻豆| 婷婷色综合www| 尾随美女入室| 最新在线观看一区二区三区 | 黄网站色视频无遮挡免费观看| 99国产精品99久久久久| 每晚都被弄得嗷嗷叫到高潮| 久久精品人人爽人人爽视色| xxx大片免费视频| 日韩一区二区三区影片| 亚洲成人国产一区在线观看 | 老司机亚洲免费影院| 亚洲视频免费观看视频| 午夜av观看不卡| 天天躁日日躁夜夜躁夜夜| 亚洲精品美女久久av网站| 日韩中文字幕视频在线看片| 国产黄色视频一区二区在线观看| videosex国产| 亚洲国产精品一区三区| 日韩电影二区| 如日韩欧美国产精品一区二区三区| 国产精品久久久久成人av| 极品少妇高潮喷水抽搐| 在线看a的网站| 校园人妻丝袜中文字幕| 亚洲国产毛片av蜜桃av| 精品熟女少妇八av免费久了| 日韩一区二区三区影片| 大陆偷拍与自拍| 亚洲欧洲精品一区二区精品久久久| 国产在线观看jvid| 两性夫妻黄色片| 国产老妇伦熟女老妇高清| 黄色一级大片看看| 欧美国产精品一级二级三级| 成年av动漫网址| 免费观看av网站的网址| 国产99久久九九免费精品| av欧美777| 欧美日韩福利视频一区二区| 999精品在线视频| 美女扒开内裤让男人捅视频| 女人爽到高潮嗷嗷叫在线视频| 久久精品国产亚洲av涩爱| 亚洲人成电影免费在线| 欧美精品亚洲一区二区| 日韩,欧美,国产一区二区三区| 国产男人的电影天堂91| 美女国产高潮福利片在线看| 90打野战视频偷拍视频| 一级毛片电影观看| 乱人伦中国视频| 男人操女人黄网站| 夜夜骑夜夜射夜夜干| 国产在线视频一区二区| 狂野欧美激情性xxxx| 久久久久久久大尺度免费视频| 国产熟女欧美一区二区| 一本—道久久a久久精品蜜桃钙片| 又大又爽又粗| 亚洲精品av麻豆狂野| 午夜福利乱码中文字幕| 免费高清在线观看视频在线观看| 国语对白做爰xxxⅹ性视频网站| 国产伦理片在线播放av一区| 免费久久久久久久精品成人欧美视频| 国产日韩欧美亚洲二区| 中文欧美无线码| 国产精品人妻久久久影院| 水蜜桃什么品种好| 啦啦啦 在线观看视频| 免费在线观看黄色视频的| 亚洲中文av在线| 一本色道久久久久久精品综合| 久久久久久免费高清国产稀缺| 一二三四社区在线视频社区8| 久久久久视频综合| 日韩一区二区三区影片| 肉色欧美久久久久久久蜜桃| 久久人人爽av亚洲精品天堂| 亚洲少妇的诱惑av| 婷婷色综合大香蕉| 啦啦啦啦在线视频资源| 国产av精品麻豆| 人人妻人人添人人爽欧美一区卜| av在线老鸭窝| 久久久久久亚洲精品国产蜜桃av| 丰满饥渴人妻一区二区三| 伊人亚洲综合成人网| 校园人妻丝袜中文字幕| 另类精品久久| 777久久人妻少妇嫩草av网站| 一二三四社区在线视频社区8| 亚洲精品国产一区二区精华液| 自线自在国产av| 日韩av在线免费看完整版不卡| 91精品国产国语对白视频| 男女无遮挡免费网站观看| 性少妇av在线| 亚洲av综合色区一区| 十八禁人妻一区二区| 超碰成人久久| 视频区欧美日本亚洲| 国产成人av激情在线播放| 免费看不卡的av| 国产激情久久老熟女| 国产精品香港三级国产av潘金莲 | 欧美人与性动交α欧美软件| 国产欧美亚洲国产| 亚洲av电影在线观看一区二区三区| 午夜影院在线不卡| 满18在线观看网站| 欧美97在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲一区中文字幕在线| 丝袜美腿诱惑在线| 一级毛片我不卡| 精品国产一区二区三区久久久樱花| 日日摸夜夜添夜夜爱| 精品人妻熟女毛片av久久网站| 国产亚洲午夜精品一区二区久久| 国产又爽黄色视频| 最新在线观看一区二区三区 | 国产在线观看jvid| 精品国产乱码久久久久久小说| 纵有疾风起免费观看全集完整版| 亚洲国产欧美在线一区| 女人高潮潮喷娇喘18禁视频| 日本av免费视频播放| 亚洲欧美激情在线| 免费女性裸体啪啪无遮挡网站| 日日夜夜操网爽| 久久亚洲国产成人精品v| 高清av免费在线| av天堂在线播放| 波多野结衣一区麻豆| 午夜两性在线视频| 亚洲黑人精品在线| 热99国产精品久久久久久7| 久久精品人人爽人人爽视色| 久久国产精品人妻蜜桃| 精品人妻在线不人妻| 一本色道久久久久久精品综合| 亚洲精品国产区一区二| 丝袜人妻中文字幕| 最近手机中文字幕大全| 飞空精品影院首页| av天堂在线播放| 欧美人与性动交α欧美精品济南到| 777久久人妻少妇嫩草av网站| 大型av网站在线播放| 我要看黄色一级片免费的| 国产三级黄色录像| 丁香六月欧美| h视频一区二区三区| 亚洲国产欧美在线一区| 一个人免费看片子| 国产精品秋霞免费鲁丝片| 91老司机精品| 99国产精品一区二区三区| 亚洲自偷自拍图片 自拍| 日韩电影二区| 久久久久视频综合| 久久久国产欧美日韩av| 最新在线观看一区二区三区 | 天天影视国产精品| 一区二区av电影网| 天堂俺去俺来也www色官网| 满18在线观看网站| 中文字幕高清在线视频| 成人午夜精彩视频在线观看| 成人国语在线视频| 欧美日韩黄片免| 亚洲av欧美aⅴ国产| 亚洲精品国产av成人精品| 国产精品一区二区在线观看99| 啦啦啦视频在线资源免费观看| 午夜福利,免费看| 欧美日韩亚洲国产一区二区在线观看 | 欧美人与性动交α欧美精品济南到| 99国产精品99久久久久| 国产不卡av网站在线观看| 欧美另类一区| 亚洲人成网站在线观看播放| 亚洲情色 制服丝袜| 黄色一级大片看看| 99久久综合免费| 亚洲中文av在线| 国产av国产精品国产| 19禁男女啪啪无遮挡网站| 黄色怎么调成土黄色| 热99久久久久精品小说推荐| 夫妻午夜视频| 男女床上黄色一级片免费看| 国产成人免费无遮挡视频| 成人亚洲精品一区在线观看| 婷婷色综合www| 国产精品久久久久久人妻精品电影 | 男女午夜视频在线观看| 99久久精品国产亚洲精品| 精品亚洲成国产av| 女人精品久久久久毛片| 精品人妻1区二区| 日本一区二区免费在线视频| 欧美 日韩 精品 国产| 汤姆久久久久久久影院中文字幕| 日韩 亚洲 欧美在线| 国产成人精品久久二区二区91| 99国产精品一区二区三区| 国产亚洲精品久久久久5区| av不卡在线播放| 男女免费视频国产| 国产精品久久久久成人av| 90打野战视频偷拍视频| 最近中文字幕2019免费版| 国产一区二区在线观看av| 午夜精品国产一区二区电影| 国产一区二区三区综合在线观看| e午夜精品久久久久久久| av线在线观看网站| 久久精品亚洲av国产电影网| 亚洲专区国产一区二区| 日本av免费视频播放| 999久久久国产精品视频| 日本vs欧美在线观看视频| 精品一区二区三卡| 国产高清videossex| 国产欧美日韩一区二区三 | 中文字幕人妻丝袜制服| 高清欧美精品videossex| 一级毛片黄色毛片免费观看视频| 亚洲欧美中文字幕日韩二区| 18在线观看网站| 久久久久久久国产电影| 国产麻豆69| 国产精品麻豆人妻色哟哟久久| 成人国产av品久久久| av网站在线播放免费| 巨乳人妻的诱惑在线观看| 大码成人一级视频| 成年动漫av网址| 高潮久久久久久久久久久不卡| 亚洲精品美女久久久久99蜜臀 | 精品少妇黑人巨大在线播放| 又粗又硬又长又爽又黄的视频| av在线app专区| 又粗又硬又长又爽又黄的视频| 天天躁狠狠躁夜夜躁狠狠躁| 性少妇av在线| 青春草视频在线免费观看| 中国国产av一级| 日韩,欧美,国产一区二区三区| 亚洲国产最新在线播放| 成人亚洲欧美一区二区av| 欧美另类一区| 飞空精品影院首页| 国产97色在线日韩免费| 日韩精品免费视频一区二区三区| 在线观看国产h片| 精品人妻熟女毛片av久久网站| 精品高清国产在线一区| av有码第一页| 午夜福利影视在线免费观看| 亚洲国产精品一区二区三区在线| 亚洲三区欧美一区| 国产国语露脸激情在线看| 国产精品麻豆人妻色哟哟久久| 亚洲欧洲日产国产| www.999成人在线观看| 最近手机中文字幕大全| 亚洲精品日韩在线中文字幕| 在线观看www视频免费| 两人在一起打扑克的视频| 精品人妻在线不人妻| 欧美国产精品一级二级三级| 19禁男女啪啪无遮挡网站| 久久精品亚洲熟妇少妇任你| 十八禁人妻一区二区| 成年av动漫网址| 男女边吃奶边做爰视频| 国产欧美日韩精品亚洲av| 99国产精品一区二区三区|