• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimizing Polynomial-Time Solutions to a Network Weighted Vertex Cover Game

    2023-03-09 01:04:14JieChenKaiyiLuoChangbingTangZhaoZhangandXiangLiSenior
    IEEE/CAA Journal of Automatica Sinica 2023年2期

    Jie Chen,Kaiyi Luo,Changbing Tang,,Zhao Zhang,,and Xiang Li, Senior

    Abstract—Weighted vertex cover (WVC) is one of the most important combinatorial optimization problems.In this paper,we provide a new game optimization to achieve efficiency and time of solutions for the WVC problem of weighted networks.We first model the WVC problem as a general game on weighted networks.Under the framework of a game,we new ly define several cover states to describe the WVC problem.Moreover,we reveal the relationship among these cover states of the weighted network and the strict Nash equilibriums (SNEs) of the game.Then,we propose a game-based asynchronous algorithm(GAA),which can theoretically guarantee that all cover states of vertices converging in an SNE with polynomial time.Subsequently,we improve the GAA by adding 2-hop and 3-hop adjustment mechanisms,termed the improved game-based asynchronous algorithm(IGAA),in which we prove that it can obtain a better solution to the WVC problemthan using a the GAA.Finally,numerical simulations demonstrate that the proposed IGAA can obtain a better approximate solution in promising computation time compared with the existing representative algorithms.

    I.INTRODUCTION

    IN recent years,there has been a growing interest in the controlling and monitoring of autonomous intelligent systems[1]–[8],data gathering in the internet of things [9]–[13],etc.Consider the efficient transmission of information where a set of agents is marked,from which all the information collected by the marked agents could be accessible with minimum cost.In particular,when each agent is heterogeneous,the above problem can be regarded as the weighted vertex cover (WVC)problem.Note that the WVC problem degrades into the socalled vertex cover problem when the vertices have equal weight.In fact,the WVC problem is a generalized type of the vertex cover problem,which is aimed at finding a minimum weighted set of network “covered”vertices covering all edges of the network [14].The WVC problem has also been found to have other applications in wireless sensor networks [1],network security [15],computational biology [16],etc.

    Since the WVC problem is a nondeterministic polynomial(NP) hard problem,this implies that an exact solution can not be obtained in a polynomial time,unless P=NP [17].In order to solve the (weighted) vertex cover problem,many researchers developed approximation algorithms,such as polynomial time algorithms [18]–[20],branch-and-bound search algorithms [21],quantum algorithms [22],evolutionary algorithms [23],and approximate algorithms [24],[25],etc.Although these algorithms have achieved good results with regards to efficiency,they are centralized.That is,there exists a central controller that controls the whole decision process.In a large-scale network system,such a requirement is difficult to satisfy.

    Fortunately,such shortcomings can be addressed within a distributed framework.With distributed algorithms,each agent makes decisions in response to local information.Game theory is suitable for such an autonomous requirement,which emerges as a powerful tool for distributed optimization[26]–[31].Note that two aspects should be considered when applying game theory.First,it is common to treat each vertex as a player and model the interaction framework of players within a game theoretic environment (game design),in which a set of strategies and a local utility function for each player is defined.Second,applying game theory involves specifying a game-based distributed algorithm that enables the strategies of all players to reach a desirable state,termed a (strict) Nash equilibrium.One of the core advantages of using game theory for a distributed system,is that it provides a hierarchical decomposition between the design of the interaction framework and the design of the game-based distributed algorithm[32].

    A t present,some researchers have designed or applied various game models to describe the (weighted) vertex cover problem,and proposed many efficient algorithms to obtain feasible solutions [33]–[36].Yang and Li [33] applied a snowdrift game model framework to describe the vertex cover problem of networks and proposed a memory-based best response (MBR) algorithm.Recently,Chen and Li [34] proposed a time variant binary log-linear learning algorithm for the vertex cover problem of networks,which can theoretically converge to the minimum vertex cover state in infinite time.In the case of weighted networks,Tanget al.[35] established an asymmetric game model to describe the WVC problem of weighted networks,in which they found a better approximate solution for the WVC problemunder using the feedback based best response algorithm.Subsequently,Sunet al.[36]established a potential game model to describe the WVC problem of weighted networks,and proposed a distributed relaxed greedy and memory-based algorithm.

    Although such works have achieved good results in solving the WVC problem,the aforementioned efforts are not sufficient towards completely understanding the WVC problem on networks.On one hand,the algorithms in [35],[36] can converge to an strict Nash equilibrium(SNE),which only satisfies the local minimum weighted vertex cover (LMWVC)state.This inspires us to further study the SNE of network weighted vertex cover game,which is related to the global minimum weighted vertex cover (GMWVC) state.On the other hand,numerical experiments show that the algorithms can obtain a better SNE by increasing the memory length,but an increased computing time is needed [35],[36].This shortcoming results in a challenge: Determining how to develop a more efficient algorithmthat can arrive at a desired solution with promising computation time.

    In this paper,we establish a general game model for the WVC problem,and explore the relationship between several cover states (such as LMWVC,GMWVC) and the SNEs of the game.Compared with the SNEs of the existing game model [35],[36],we redefine the SNE of the network weighted vertex cover game,which can narrow the scope of searching for the optimal solution for the WVC problem.Then,we design a new algorithm,i.e.,game-based asynchronous algorithm(GAA),which can arrive at an SNE in polynomial time.Unfortunately,the GAA can only find SNE within memory length 1,which makes it easy to fall into an inefficient solution.To improve efficiency of the solution,we further improve the GAA and propose an improved game based asynchronous algorithm(IGAA).We can then obtain a more efficient solution with promising computation time with memory lengthm≥1.The main contributions are summarized as follows.

    1) Description of Cover States:We establish a novel general game model for the WVC problem.Under the framework of the game,we define three cover states to describe the WVC problem,where we can narrow the scope of searching for the optimal solution for the WVC problem.Moreover,we reveal the relationship between the cover states of a weighted network and the SNEs of the established game model.

    2) Convergence Time of Solution:We propose a algorithm with memory lengthm=1,i.e.,GAA.The theoretical analysis shows that the GAA can obtain an SNE in polynomial time.

    3) Efficiency of Solution:By adding thel-hop(l=2,3)adjustment mechanism into the GAA,we propose a novel IGAA with memory lengthm≥1,which can guarantee that strategies of all players converge to an SNE.In particular,whenm=1,the IGAA can obtain a better solution for the WVC problem than that of the GAA.

    4) Verification of Simulation:By comparing with existing typical algorithms,numerical results illustrate that the proposed IGAA can obtain a better approximate solution in promising computation time.

    The rest of this paper is organized as follows.In Section II,we introduce the preliminaries.In Section III,we establish a game model for the WVC problem.Section IV analyzes the relationship between several cover states and the SNEs.In Section V,we propose two asynchronous algorithms,i.e.,GAA and IGAA,and analyze their convergence theoretically.In Section VI,we provide numerical examples to illustrate empirical performance of the proposed IGAA.Conclusions are discussed in Section VII.

    II.PRELIMINARIES

    In order to better characterize the WVC problem,we define several cover states as follows.

    Definition 1:An undirected weighted graphGsatisfies the WVC state,if the setVWVChas the global minimum total covered weight,then the set is called a GMWVC set (denoted it asVGMWVC).In this case,graphGsatisfies the GMWVC state.

    Definition 2:An undirected weighted graphGsatisfies the WVC state,if any covered vertex in setVWVCbecomes an uncovered vertex,and graphGno longer satisfies the WVC state,then the set is called a local minimum weighted vertex cover set (denoted it asVLMWVC).In this case,graphGsatisfies the LMWVC state.

    Definition 3:An undirected weighted graphGsatisfies the WVC state,if any covered vertex in graphGbecomes an uncovered vertex with all neighbors becoming covered vertices,and the total covered weight of the graphGdoes not decrease,then the network satisfies the Nash cover equilibrium(NCE) state.The covered vertices of the graphGcan for man NCE set (denoted it asVNCE).

    We illustrate all four cover states in Fig.1.Note that Figs.1(a)?1(d) satisfy the WVC state,and their total cover weights are 13,12,10,and 9,respectively.In Fig.1(b),if any covered vertex becomes an uncovered vertex,then Fig.1(b)no longer satisfies the WVC state.According to Definition 2,Fig.1(b) satisfies the LMWVC state.Similarly,according to Definition 3,we verify that Fig.1(c) satisfies the NCE state.Moreover,it is easy to check that the minimumtotal cover weight of Fig.1(d) is 9,which results in Fig.1(d) satisfying the GMWVC state.Note that the LMWVC and the NCE states are local definitions,while the GMWVC state is a global definition.Conveniently,we summarize the notations in Table I.

    Fig.1.Black nodes are covered vertices,and white nodes are uncovered vertices (the same as following figures).Numbers in nodes indicate vertex weights.(a) WVC state;(b) LMWVC state;(c) NCE state;(d) GMWVC state.

    III.GAME MODEL

    For two players,the one with a larger weight is said to be the stronger player,and the other is said to be the weaker player.When two players have the same weight,we regard themas stronger players,or weaker players.The stronger(weaker) player who chooses the strategyz(z∈A) is denotedasS Pz(W Pz).In [35],the authors proposed an asymmetric game,in which the degree of asymmetry is designed artificially.In this paper,we design a more general game model as

    TABLE I NOTATIONS IN THE PAPER

    IV.RELATIONSHIP AMONG COVER STATES AND SNE

    In this section,we further study the relationship among the LMWVC,the GMWVC,the NCE and the SNE states.We first give a lemma as follows.

    Lemma 1:If all elements in utility matrixMsatisfy the following conditions:

    1)b2?d2>max{c2?a2,c1?a1,c?a};

    2)b?d>max{c2?a2,c1?a1,c?a};

    3)b1?d1

    Theorem1:Consider an undirected weighted graphG.If all elements in utility matrixMsatisfy the conditions of Lemma 1,then,we have{VGMWVC}?{VSNE}?{VNCE}?{VLMWVC}?{VWVC}.

    NCE,i.e.,{VSNE}?{VNCE}.

    Finally,we prove that {VGMWVC}?{VSNE}.Suppose a setS∈{VGMWVC},andS?{VSNE}.Thus,there exists a playervi∈Scan change his strategy to obtain a higher utility.

    Since every LMWVC state is a WVC state,we have{VLMWVC}?{VWVC}.

    The relationship among the WVC,the LMWVC,the NCE,the SNE and the GMWVC is illustrated in Fig.2.Note that the authors in [35],[36] gave a relationship among the states,i.e.,{VGMWVC}?{VSNE}?{VWVC},where the SNEs in [35],[36] are: for each vertexvi,1) if=D,then it has onlyCneighbors and 2) if=C,then it has at least oneDneighbor.In this case,it is easy to check that the SNEs are equivalent to the LMWVC states in Definition 2.However,the SNE state of the games in [35],[36] only considered whether the neighbor is covered,but ignored the weights of neighbors.That is,the covered strategy is selected if there are uncovered neighbors,and an uncovered strategy is selected if all neighbors are covered.In this paper,the covered strategy is selected only when the weight of the uncovered neighbors is greater than the weight of focused vertices,which results in{VSNE}?{VLMWVC}(the SNEs of [35],[36]).

    Fig.2.Relationship among the WVC,the LMWVC,the NCE,the SNE,and the GMWVC states.

    V.DISTRIBUTED OPTIMIZATION ALGORITHM

    A.Game-Based Asynchronous Algorithm

    In this section,we propose a game-based asynchronous algorithm(GAA) for solving the WVC problem.The pseudocode of the GAA is shown in Algorithm1.At each iteration,each player only uses the information (strategy) of the previous iteration,i.e.,the memory lengthmof each player is 1.Moreover,we use strategyto represent the opposite strategy of strategyi.e.,if=C,then we have=D;if=D,then we have=C.

    An example is shown in Fig.3 to illustrate why we use an asynchronous game.The graphGin Fig.3(a) is a star graph,where the center playervihas weight 3,other players have a weight of 1,and the initial strategy for each player is strategyC.If all players make decisions simultaneously,then the process may fall into an endless loop.Sinceplayerviwill change his strategy fromCtoD,and other players will also choose strategyD.At the next iteration,all players will change their strategy fromDtoC.Thus,the loop goes on infinitely.The proposed GAA can avoid such a loop.In the GAA,at each iteration,each player updates their strategy sequentially.We take Fig.3(b) as an example,where the center playervimakes a decision first,and changes his strategy fromCtoD,and other players make their decision sequentially.Finally,we obtain a graph,which a covered (C)player surrounded by uncovered (D) players,the state of the network satisfies an SNE.

    Fig.3.Update mechanisms.(a) Synchronous update;(b) Asynchronous update.

    Lemma 2:Consider an undirected weighted graphG.If all elements in utility matrixMsatisfy the conditions in Lemma 1,then by employing the GAA,any strategy profile satisfies the WVC state after an iteration.

    Theorem 2:Consider an undirected weighted graphG.If all elements in utility matrixMsatisfy the conditions in Lemma 1,then,by employing the GAA,the total weight of the covered vertices is decreased by at least αminbefore each player’s state reaches an unchanging state,i.e.,

    Fig.4.A simple undirected weighted graph.

    Proof:By Theorem 2,the total covered weightafter each iteration is reduced by at least αmin>0.Combining it with Lemma 2,we obtain a WVC state after each iteration,whose total covered weight is smaller than that of the previous iteration.Thus,the number of iterations is not infinite.

    Corollary 1:Consider an undirected weighted graphG.If all elements in utility matrixMsatisfy the conditions of Lemma 1,andwv1=···=wvn,then,the GAA can guarantee that any strategy profile converge to an SNEin timeO(n2).

    B.Improved Game-Based Asynchronous Algorithm

    The proposed GAA in the previous subsection can theoretically guarantee that we obtain an SNE.However,there also exist a shortcoming: The proposed GAA can easily obtain a poor SNE.We will give an example to illustrate it.

    Example 3:Fig.5 shows two possible solutions by employing the GAA.Figs.5(a) and 5(b) are both NCE states,where the total covered weightof Fig.5(a) is greater than that of Fig.5(b).Thus,we want to obtain the state of Fig.5(b),but the GAA does not necessarily guarantee this state.

    Fig.5.Two possible output solutions of the proposed GAA.(a) The total covered weighted is 40;(b) The total covered weighted is 38.

    We can observe that the GAA only uses information in the 1-hop neighborhood,which will limit solution efficiency.Thus,we try to use information about nearby players to improve solution efficiency,and consider anl(l≥2)-hop adjustment mechanism(the region in the closed curve),which satisfies the following two conditions:

    1) In the closed region,the total weight of players with strategyDis smaller than that of players with strategyC;

    2) In the closed region,for any player with strategyC(D),his neighbors with strategyD(C) are also in this region.

    Then,all players in the closed region change their strategy,and can obtain a smaller total covered weight.In Fig.6,we consider a 2-hop adjustment mechanism,then Fig.6(a) will turn into Fig.6(b) .In Fig.7,we consider a 3-hop adjustment mechanism,after which Fig.7(a) will turn into Fig.7 (b).

    Based on the above analysis,we further propose a novel algorithm,i.e.,the so-called improved game-based asynchronous algorithm(IGAA).Compared with the GAA,the IGAA not only increases the players’ memory length,but also adds a 2-hop and 3-hop adjustment mechanism.Note that the memory lengthm=1 of the GAA is 1.The pseudo-code of the IGAA is shown in Algorithm2.

    When the memory lengthm=1,and the updated strategy is the strategy of the memory space,the random selection in Line 12 will not change the strategy.In this case,Lines 3?13 is the process of the GAA.We give an example to illustrate it.

    Fig.6.2-adjustment mechanism.(a) Subgraph before adjustment;(b) Subgraph after adjustment.

    Fig.7.3-adjustment mechanism.(a) Subgraph before adjustment;(b) Subgraph after adjustment.

    Proof:We first prove that the IGAA with memory lengthm=1will converge to an SNE.By using the IGAA,any strategy profile transitions to a NCE state at the end of Line 13.Suppose a 2-hop adjustment or 3-hop adjustment occurs on a WVC setVWVC.Since the strategyDis changed toC,this will not break feasibility (i.e.,the network still satisfies the WVC state after the change).Thus,we only consider two cases: 1) If playervjchanges the strategy fromCtoDin Line 17,thenvj∈Since each player inchanges their strategy fromDtoC,thus every edge connected to vertexvjhas one covered player;2) If playervjchanges their strategy fromCtoDin Line 20,thenvj∈Similarly,every edge connected to vertexvjhas one covered player.

    Next,we prove that the IGAA with memorym=1 will converge to an SNE in finite time,which is no worse than that of the GAA.Only when the covered weight is strictly reduced in Lines 16 and 19,can the strategy be transformed.Thus,at end of Line 23,we obtain a WVC state,whose total covered weight is not higher than that of the GAA.According to Lemma 1,execute Lines 3?13,the total covered weightwill strictly decrease before reaching an SNE.Thus,if a NCE state obtained at the end of Line 13 does not change Lines 14?23,then the IGAA terminates at Line 24.

    Consider an undirected weighted graphG,where the number of strategy profiles is at most 2n.Thus the IGAA terminates in finite time.In sum,when memory lengthm=1,the IGAA will converge in finite time to an SNE,which is no worse than that of the GAA.

    Fig.8.Comparison among RGMA,GAA,and IGAA on ER,WS,BA,and Grid networks,the memory length m=1.

    Note that when the memory lengthm=1,Lines 1–13 of the IGAA is the process of the GAA.When memory lengthm>1,the probability that the latest best response is selected is 1/m.Thus,there is a positive probability for the IGAA converge to an SNE.Further,the IGAA eventually converges to an SNE.

    VI.NUMERICAL RESULTS

    To evaluate the performance of the proposed algorithm,this section presents numerical simulation results on different weighted networks,including Erd?s-Rényi (ER) random networks [37],Grid networks [38],Watts-Strogatz (WS) smallworld networks [39],and Barabási Albert-László (BA) scalefree networks [40].

    We use the greedy algorithm(GA) as a baseline,where the GA starts from an empty set,and at each iteration adds a vertex which has the smallest cost-effectiveness.Here,the costeffectiveness is the cost ofvidivided by the number of edges new ly covered byvi.We regardPG=rY/rGAas a main measure for performance [36],whererYandrGAare the weights of each solution’s output with algorithmsYand GA,respectively.

    A.Memory Length m=1

    TABLE II THE AVERAGE RUNTIME OF THE RGMA,GAA,AND IGAA (m=1)

    TABLE II THE AVERAGE RUNTIME OF THE RGMA,GAA,AND IGAA (m=1)

    Fig.9.Comparison among MBR,RGMA,FBR,and IGAA on ER,WS,BA,and Grid networks,the memory length m=2.

    B.Memory Length m=2

    C.Memory Length m=30

    In this subsection,we consider a large memory lengthm,i.e.,m=30,and the related results are shown in Fig.10.As shown in Fig.10,the results of memory lengthm=30 are the same as that of memory lengthm=1 (m=2).The average runtimeof the RGMA,the FBR,the MBR,and the IGAA are recorded in Table IV,in which the average runtimeof the IGAA are much more close and reasonable for all networks.In sum,whenm=1,2 or 30,compared with typical algorithms,the IGAA can obtain the best results in terms of thein a promising computation time.

    The algorithms RGMA,FBR,MBR can ensure any strategy profile converge to SNE in [35],[36] and the GAA,IGAA can ensure any strategy profile converge to an SNE defined in this paper.Moreover,the solution state for the IGAA is more closer to the GMWVC state than the solution state for the MBR,the FBR,the RGMA and the GAA.

    VII.CONCLUSIONS

    In this paper,we have defined several new cover states,i.e.,the GMWVC state,the LMWVC state,and the NCE state.Moreover,we have designed a general game model framework to describe the WVC problem of weighted networks,and proven that the LMWVC states are the intermediate states between the NCE and the WVC states,and further proven that the SNE of the designed game model is the basis of the connection between the GMWVC and the NCE states.Then,we proposed a GAA,which ensures that any strategy profile converges SNE in the polynomial time.Furthermore,we have improved the GAA (called IGAA),which is superior to the GAA in terms of solution efficiency.The numerical simulations have shown that the proposed IGAA can obtain a better approximate solution in promising computation time,which is competitive with the other existing typical algorithms.

    TABLE III THE AVERAGE RUNTIME Tˉ OF THE RGMA,FBR,MBR AND IGAA (m=2)

    Fig.10.Comparison among MBR,RGMA,FBR,and IGAA on ER,WS,BA,and Grid networks,the memory length m=30.

    TABLE IV THE AVERAGE RUNTIME Tˉ REQUIRED FOR THE RGMA,FBR,MBR,AND IGAA (m=30)

    18禁观看日本| 老汉色av国产亚洲站长工具| 另类亚洲欧美激情| 亚洲精品aⅴ在线观看| 欧美bdsm另类| 久久久久人妻精品一区果冻| 日韩中文字幕欧美一区二区 | 国产亚洲一区二区精品| 午夜影院在线不卡| 天天操日日干夜夜撸| 色婷婷av一区二区三区视频| 一本久久精品| 久久久久久久国产电影| 午夜福利在线免费观看网站| 欧美bdsm另类| av国产久精品久网站免费入址| 韩国高清视频一区二区三区| 欧美+日韩+精品| 汤姆久久久久久久影院中文字幕| 欧美另类一区| 狂野欧美激情性bbbbbb| 久久亚洲国产成人精品v| 男的添女的下面高潮视频| 亚洲av福利一区| 人妻人人澡人人爽人人| 男人添女人高潮全过程视频| 人成视频在线观看免费观看| 男女国产视频网站| 久久精品久久久久久久性| 另类亚洲欧美激情| 午夜av观看不卡| 国产日韩一区二区三区精品不卡| 亚洲成人一二三区av| 亚洲精华国产精华液的使用体验| 久久99蜜桃精品久久| 亚洲欧洲精品一区二区精品久久久 | 成人亚洲精品一区在线观看| 亚洲综合色惰| 热99国产精品久久久久久7| 男女午夜视频在线观看| 亚洲欧美精品自产自拍| 有码 亚洲区| 中文乱码字字幕精品一区二区三区| 免费黄频网站在线观看国产| 满18在线观看网站| 国产亚洲午夜精品一区二区久久| 国产精品免费视频内射| 欧美人与善性xxx| 中文欧美无线码| 黑人欧美特级aaaaaa片| 国产爽快片一区二区三区| www.av在线官网国产| 69精品国产乱码久久久| 一区二区三区四区激情视频| 久久久久久久大尺度免费视频| 亚洲在久久综合| 欧美日韩视频精品一区| 日日爽夜夜爽网站| 男女午夜视频在线观看| 交换朋友夫妻互换小说| 成人影院久久| 免费黄色在线免费观看| 亚洲美女搞黄在线观看| 精品亚洲成国产av| 美女视频免费永久观看网站| 黑人巨大精品欧美一区二区蜜桃| 丝袜喷水一区| 亚洲国产精品999| 欧美日韩综合久久久久久| 午夜日本视频在线| 日韩制服骚丝袜av| 亚洲精品国产色婷婷电影| 午夜日韩欧美国产| 最近的中文字幕免费完整| 国产免费视频播放在线视频| 九色亚洲精品在线播放| 久久久久久免费高清国产稀缺| 中文字幕制服av| 伦理电影大哥的女人| 国产极品粉嫩免费观看在线| 国产精品久久久久久av不卡| 国产免费又黄又爽又色| 男女边摸边吃奶| 国产片内射在线| 亚洲精品成人av观看孕妇| 宅男免费午夜| 久久精品久久久久久噜噜老黄| 久久 成人 亚洲| 久久精品国产亚洲av天美| 免费高清在线观看日韩| av片东京热男人的天堂| 九色亚洲精品在线播放| 精品酒店卫生间| 亚洲av成人精品一二三区| av国产久精品久网站免费入址| 国产野战对白在线观看| 午夜日本视频在线| 毛片一级片免费看久久久久| 男人添女人高潮全过程视频| av在线观看视频网站免费| 久久人人爽av亚洲精品天堂| 伊人久久国产一区二区| 亚洲av欧美aⅴ国产| 男女高潮啪啪啪动态图| 国产精品久久久久久精品古装| 久久久久精品人妻al黑| 美女国产视频在线观看| 曰老女人黄片| 亚洲人成网站在线观看播放| 亚洲美女黄色视频免费看| 91在线精品国自产拍蜜月| 久久久久久久国产电影| 边亲边吃奶的免费视频| 亚洲 欧美一区二区三区| 精品99又大又爽又粗少妇毛片| 性高湖久久久久久久久免费观看| 一级毛片 在线播放| 国产精品熟女久久久久浪| 久久婷婷青草| 国产黄频视频在线观看| 久久97久久精品| 黑人巨大精品欧美一区二区蜜桃| 国产精品.久久久| 婷婷色综合大香蕉| av片东京热男人的天堂| 国产成人一区二区在线| 日本-黄色视频高清免费观看| 久久精品国产亚洲av高清一级| 午夜福利在线观看免费完整高清在| 成人手机av| 亚洲综合色网址| 久久 成人 亚洲| 精品少妇内射三级| 极品少妇高潮喷水抽搐| 看十八女毛片水多多多| 1024视频免费在线观看| 国产精品秋霞免费鲁丝片| 亚洲精品久久午夜乱码| 欧美日韩精品网址| 男人舔女人的私密视频| 亚洲在久久综合| 制服诱惑二区| 日本爱情动作片www.在线观看| 日韩中文字幕欧美一区二区 | 边亲边吃奶的免费视频| 中文字幕人妻熟女乱码| 日韩av免费高清视频| 国语对白做爰xxxⅹ性视频网站| 如何舔出高潮| 亚洲精品一二三| 麻豆av在线久日| av网站在线播放免费| 一级毛片我不卡| 狠狠精品人妻久久久久久综合| 亚洲男人天堂网一区| 男女边摸边吃奶| 欧美国产精品一级二级三级| 五月天丁香电影| 久久久国产欧美日韩av| 女人久久www免费人成看片| 香蕉国产在线看| 国产视频首页在线观看| 中文乱码字字幕精品一区二区三区| 新久久久久国产一级毛片| 人人妻人人澡人人爽人人夜夜| 久久久久精品久久久久真实原创| 卡戴珊不雅视频在线播放| 久久精品国产鲁丝片午夜精品| 伦理电影大哥的女人| 最黄视频免费看| 看免费av毛片| 女的被弄到高潮叫床怎么办| 大香蕉久久网| 久久这里只有精品19| 亚洲欧美一区二区三区久久| 国产一级毛片在线| 免费在线观看完整版高清| 国产精品成人在线| 一区二区三区四区激情视频| 欧美成人精品欧美一级黄| 久久久国产精品麻豆| 精品国产一区二区久久| 2021少妇久久久久久久久久久| 精品国产一区二区三区四区第35| 一级片免费观看大全| 亚洲国产精品一区三区| 男人舔女人的私密视频| 国产av精品麻豆| 精品久久蜜臀av无| 人妻人人澡人人爽人人| 婷婷成人精品国产| 99国产精品免费福利视频| 大话2 男鬼变身卡| 国产成人免费观看mmmm| 国产视频首页在线观看| 在线免费观看不下载黄p国产| 国产av一区二区精品久久| 国产熟女欧美一区二区| 久久久久久伊人网av| 亚洲欧美一区二区三区久久| 亚洲精品一区蜜桃| 成人亚洲精品一区在线观看| 久久久精品国产亚洲av高清涩受| 男女边摸边吃奶| 欧美日韩亚洲国产一区二区在线观看 | www.熟女人妻精品国产| 久久久a久久爽久久v久久| 国产精品偷伦视频观看了| 99久久综合免费| 久热这里只有精品99| 中文字幕人妻熟女乱码| 国产精品国产三级国产专区5o| 欧美最新免费一区二区三区| 久久青草综合色| 国产xxxxx性猛交| 亚洲色图 男人天堂 中文字幕| 国产精品久久久久成人av| 在线精品无人区一区二区三| 亚洲综合色网址| 国产欧美日韩一区二区三区在线| 亚洲av中文av极速乱| 日韩欧美精品免费久久| 亚洲精品美女久久av网站| 熟女少妇亚洲综合色aaa.| 久久久久久久国产电影| 两性夫妻黄色片| 色婷婷久久久亚洲欧美| 最近中文字幕2019免费版| 丰满迷人的少妇在线观看| 老女人水多毛片| 如日韩欧美国产精品一区二区三区| 2021少妇久久久久久久久久久| 精品人妻熟女毛片av久久网站| 在线观看三级黄色| 丁香六月天网| 国产精品秋霞免费鲁丝片| 99热全是精品| 欧美日韩一区二区视频在线观看视频在线| 两个人看的免费小视频| av视频免费观看在线观看| 99香蕉大伊视频| 欧美日韩av久久| 久久久久久久久久久免费av| www.熟女人妻精品国产| 日韩精品免费视频一区二区三区| 亚洲欧美成人综合另类久久久| 久久久久国产精品人妻一区二区| 亚洲欧美一区二区三区黑人 | 免费观看在线日韩| 国产成人a∨麻豆精品| 赤兔流量卡办理| 成人国语在线视频| 亚洲美女搞黄在线观看| 最黄视频免费看| 少妇 在线观看| 肉色欧美久久久久久久蜜桃| 国产精品久久久久久av不卡| 免费大片黄手机在线观看| 欧美国产精品一级二级三级| 日韩视频在线欧美| 免费播放大片免费观看视频在线观看| 久久久精品区二区三区| 丝袜人妻中文字幕| 国产 精品1| 国产熟女欧美一区二区| 王馨瑶露胸无遮挡在线观看| 五月开心婷婷网| 国产视频首页在线观看| 日韩欧美一区视频在线观看| 十分钟在线观看高清视频www| 另类精品久久| freevideosex欧美| 欧美日韩精品网址| 亚洲精品aⅴ在线观看| 久久午夜福利片| 十八禁网站网址无遮挡| 人人澡人人妻人| h视频一区二区三区| 色吧在线观看| 久久久久久人妻| 超色免费av| 老司机影院成人| 欧美最新免费一区二区三区| 美女福利国产在线| 在线天堂中文资源库| 久久午夜综合久久蜜桃| 免费看不卡的av| 大片电影免费在线观看免费| 少妇精品久久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 丰满饥渴人妻一区二区三| 男女下面插进去视频免费观看| 久久午夜福利片| 日本黄色日本黄色录像| 最近中文字幕高清免费大全6| 国产成人午夜福利电影在线观看| 久久久精品94久久精品| 久久精品熟女亚洲av麻豆精品| 少妇人妻久久综合中文| 乱人伦中国视频| 看非洲黑人一级黄片| 久久精品久久久久久久性| 精品人妻偷拍中文字幕| 亚洲欧美一区二区三区国产| 天天操日日干夜夜撸| 我要看黄色一级片免费的| 看十八女毛片水多多多| 毛片一级片免费看久久久久| 成人亚洲精品一区在线观看| 毛片一级片免费看久久久久| 久久久国产精品麻豆| 最近中文字幕高清免费大全6| a级片在线免费高清观看视频| 精品午夜福利在线看| 女人高潮潮喷娇喘18禁视频| 亚洲av男天堂| 十八禁高潮呻吟视频| 观看av在线不卡| 黄网站色视频无遮挡免费观看| 精品人妻偷拍中文字幕| 久久久久国产精品人妻一区二区| 视频在线观看一区二区三区| 麻豆乱淫一区二区| 久久精品亚洲av国产电影网| 国产亚洲一区二区精品| 如日韩欧美国产精品一区二区三区| 韩国av在线不卡| av网站免费在线观看视频| 免费日韩欧美在线观看| 在线看a的网站| 国语对白做爰xxxⅹ性视频网站| 久久久久久久久久久免费av| 91精品国产国语对白视频| 精品人妻熟女毛片av久久网站| 亚洲情色 制服丝袜| 另类亚洲欧美激情| 成人18禁高潮啪啪吃奶动态图| 久久久精品免费免费高清| 2018国产大陆天天弄谢| 亚洲精品久久成人aⅴ小说| 久久久久国产一级毛片高清牌| 亚洲精品一区蜜桃| 色吧在线观看| 日本欧美视频一区| 中文精品一卡2卡3卡4更新| 国产在线一区二区三区精| 亚洲欧美成人综合另类久久久| 女的被弄到高潮叫床怎么办| 亚洲欧洲国产日韩| 国产在线一区二区三区精| 欧美日韩精品成人综合77777| 下体分泌物呈黄色| 亚洲经典国产精华液单| 国产激情久久老熟女| 国产精品蜜桃在线观看| 精品福利永久在线观看| 午夜福利视频精品| 18+在线观看网站| 亚洲精品日韩在线中文字幕| 国产免费视频播放在线视频| 欧美激情 高清一区二区三区| 爱豆传媒免费全集在线观看| 日韩中文字幕欧美一区二区 | 免费看av在线观看网站| 中文字幕另类日韩欧美亚洲嫩草| 中国国产av一级| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲色图 男人天堂 中文字幕| 色婷婷久久久亚洲欧美| 亚洲国产日韩一区二区| 2018国产大陆天天弄谢| www.自偷自拍.com| 两性夫妻黄色片| 日韩免费高清中文字幕av| 91精品三级在线观看| 欧美中文综合在线视频| 新久久久久国产一级毛片| 黄片无遮挡物在线观看| 欧美日韩亚洲高清精品| 亚洲伊人久久精品综合| 在线观看一区二区三区激情| 大片电影免费在线观看免费| 另类亚洲欧美激情| 午夜免费鲁丝| 美女高潮到喷水免费观看| 国精品久久久久久国模美| 亚洲精品美女久久av网站| 亚洲色图综合在线观看| 夫妻性生交免费视频一级片| 高清欧美精品videossex| 亚洲欧美一区二区三区黑人 | 如日韩欧美国产精品一区二区三区| 国产无遮挡羞羞视频在线观看| 91国产中文字幕| 国产一级毛片在线| 亚洲国产av影院在线观看| 精品人妻一区二区三区麻豆| 大码成人一级视频| 成人午夜精彩视频在线观看| 久久人人爽av亚洲精品天堂| 美女高潮到喷水免费观看| av卡一久久| 大陆偷拍与自拍| 久久午夜福利片| 欧美激情高清一区二区三区 | 日韩一区二区视频免费看| 97在线视频观看| a级片在线免费高清观看视频| 亚洲情色 制服丝袜| 老汉色av国产亚洲站长工具| 国产精品久久久久久av不卡| 亚洲第一区二区三区不卡| 午夜老司机福利剧场| 天堂中文最新版在线下载| 亚洲国产精品成人久久小说| freevideosex欧美| 18禁动态无遮挡网站| 国产一区二区在线观看av| av在线老鸭窝| www.精华液| 另类亚洲欧美激情| av国产精品久久久久影院| 女人久久www免费人成看片| 亚洲国产最新在线播放| 人成视频在线观看免费观看| 国产精品一二三区在线看| 日本av免费视频播放| 999久久久国产精品视频| av片东京热男人的天堂| 精品一品国产午夜福利视频| 久久热在线av| 90打野战视频偷拍视频| 欧美 亚洲 国产 日韩一| 亚洲av欧美aⅴ国产| 人妻系列 视频| 岛国毛片在线播放| 中文欧美无线码| 国产精品久久久久久精品电影小说| 丝袜美腿诱惑在线| 午夜日韩欧美国产| 黄色一级大片看看| 我的亚洲天堂| 国产伦理片在线播放av一区| 亚洲欧洲精品一区二区精品久久久 | 亚洲色图综合在线观看| 精品少妇黑人巨大在线播放| 欧美日韩视频高清一区二区三区二| 国产av一区二区精品久久| 激情五月婷婷亚洲| 午夜免费观看性视频| 国产精品免费大片| 国产野战对白在线观看| 少妇人妻 视频| 狠狠精品人妻久久久久久综合| 成人黄色视频免费在线看| 麻豆精品久久久久久蜜桃| 午夜福利在线观看免费完整高清在| 美国免费a级毛片| 五月开心婷婷网| 久久青草综合色| 日韩在线高清观看一区二区三区| 日本猛色少妇xxxxx猛交久久| 亚洲欧美色中文字幕在线| 七月丁香在线播放| 亚洲精品一区蜜桃| 国产国语露脸激情在线看| 丝袜在线中文字幕| 青草久久国产| 人妻系列 视频| 亚洲一区二区三区欧美精品| a级毛片黄视频| 亚洲av日韩在线播放| 欧美人与性动交α欧美软件| 国产男女超爽视频在线观看| 久久韩国三级中文字幕| 日韩,欧美,国产一区二区三区| 人人澡人人妻人| 国产毛片在线视频| 精品第一国产精品| 蜜桃在线观看..| √禁漫天堂资源中文www| 日本欧美视频一区| 大码成人一级视频| 国产成人一区二区在线| 精品久久久精品久久久| 亚洲一区二区三区欧美精品| 熟妇人妻不卡中文字幕| 国产精品免费大片| 黄色配什么色好看| 中文乱码字字幕精品一区二区三区| 最新的欧美精品一区二区| 久久久久久久国产电影| 高清av免费在线| 深夜精品福利| 一本大道久久a久久精品| 亚洲精品自拍成人| 欧美成人精品欧美一级黄| 少妇的丰满在线观看| 久久毛片免费看一区二区三区| 国产1区2区3区精品| 最近最新中文字幕大全免费视频 | a 毛片基地| 观看av在线不卡| 一级爰片在线观看| 我的亚洲天堂| 日本-黄色视频高清免费观看| 麻豆精品久久久久久蜜桃| 日韩制服骚丝袜av| 久久久欧美国产精品| 国产精品久久久久久av不卡| a级毛片在线看网站| 久久久久久久国产电影| 有码 亚洲区| 捣出白浆h1v1| 亚洲国产最新在线播放| 2022亚洲国产成人精品| 老熟女久久久| 欧美精品av麻豆av| 国产精品一区二区在线观看99| 九色亚洲精品在线播放| 日韩伦理黄色片| 免费少妇av软件| 校园人妻丝袜中文字幕| 最近最新中文字幕大全免费视频 | 99热全是精品| 国产成人免费观看mmmm| 亚洲国产精品999| 亚洲综合精品二区| 2022亚洲国产成人精品| 丁香六月天网| 国产成人av激情在线播放| 黄频高清免费视频| 老汉色∧v一级毛片| 18禁裸乳无遮挡动漫免费视频| 欧美激情 高清一区二区三区| av国产久精品久网站免费入址| 亚洲一区二区三区欧美精品| 精品亚洲乱码少妇综合久久| 男女国产视频网站| 最近中文字幕2019免费版| 麻豆精品久久久久久蜜桃| 国产97色在线日韩免费| 亚洲第一青青草原| 人妻人人澡人人爽人人| 91aial.com中文字幕在线观看| 国产精品麻豆人妻色哟哟久久| 午夜免费鲁丝| 男女下面插进去视频免费观看| 中文字幕亚洲精品专区| √禁漫天堂资源中文www| 国产免费现黄频在线看| 精品少妇一区二区三区视频日本电影 | 丝袜人妻中文字幕| 国产野战对白在线观看| 色视频在线一区二区三区| 黄频高清免费视频| 女的被弄到高潮叫床怎么办| 国产亚洲午夜精品一区二区久久| 欧美激情极品国产一区二区三区| 九色亚洲精品在线播放| 亚洲欧洲日产国产| 精品人妻熟女毛片av久久网站| 中文乱码字字幕精品一区二区三区| 最黄视频免费看| 人妻 亚洲 视频| 久久青草综合色| 丝袜美腿诱惑在线| 欧美日韩av久久| 亚洲色图 男人天堂 中文字幕| 十八禁高潮呻吟视频| 精品国产一区二区久久| 精品午夜福利在线看| 久久ye,这里只有精品| 女性生殖器流出的白浆| 美国免费a级毛片| 伊人亚洲综合成人网| 青春草国产在线视频| 欧美bdsm另类| av在线老鸭窝| www.精华液| 国产欧美亚洲国产| 亚洲四区av| 汤姆久久久久久久影院中文字幕| 久久久久久人妻| av又黄又爽大尺度在线免费看| 考比视频在线观看| xxxhd国产人妻xxx| 老司机影院毛片| a 毛片基地| 欧美人与性动交α欧美精品济南到 | 一区二区三区激情视频| av福利片在线| 一个人免费看片子| 久久久久人妻精品一区果冻| 90打野战视频偷拍视频| 水蜜桃什么品种好| 成人黄色视频免费在线看| 丝袜喷水一区| 欧美精品av麻豆av| 国产白丝娇喘喷水9色精品| 亚洲一区中文字幕在线| 国产黄频视频在线观看| 自线自在国产av| xxx大片免费视频| 国产精品国产av在线观看| 久久青草综合色| 99精国产麻豆久久婷婷| 水蜜桃什么品种好| 日韩中字成人| 少妇精品久久久久久久| 国产高清国产精品国产三级| 性高湖久久久久久久久免费观看| 中文字幕精品免费在线观看视频| 亚洲激情五月婷婷啪啪| 在线亚洲精品国产二区图片欧美|