• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anti-Disturbance Control for Tethered Aircraft System With Deferred Output Constraints

    2023-03-09 01:03:56MengshiSongFanZhangBingxiaoHuangandPanfengHuangSenior
    IEEE/CAA Journal of Automatica Sinica 2023年2期

    Mengshi Song,Fan Zhang,,Bingxiao Huang,and Panfeng Huang, Senior

    Abstract—In this paper,we investigate the peaking issue of extended state observers and the anti-disturbance control problem of tethered aircraft systems subject to the unstable flight of the main aircraft,airflow disturbances and deferred output constraints.Independent of exact initial values,a modified extended state observer is constructed from a shifting function such that not only the peaking issue inherently in the observer is circumvented completely but also the accurate estimation of the lumped disturbance is guaranteed.Meanwhile,to deal with deferred output constraints,an improved output constrained controller is employed by integrating the shifting function into the barrier Lyapunov function.Then,by combining the modified observer and the improved controller,an anti-disturbance control scheme is presented,which ensures that the outputs with any bounded initial conditions satisfy the constraints after a pre-specified finite time,and the tethered aircraft tracks the desired trajectory accurately.Finally,both a theoretical proof and simulation results verify the effectiveness of the proposed control scheme.

    I.INTRODUCTION

    THE relevant technology of the tethered aircraft system(TAS) is extensively applied in autonomous aerial refueling (AAR) systems [1],towed aerial recovery drogue systems[2],etc.It is known that the technological index of the position accuracy of the tethered aircraft is needed in practical applications,i.e.,the tethered aircraft is required to be constrained within a certain range and track the desired trajectory as accurately as possible.For example,in an AAR system,the drogue needs to stabilize itself in the neighborhood of the desired position to ensure the precise docking between the drogue and the receiver aircraft and avoid a collision with the receiver aircraft [3].

    However,due to the unstable flight of the main aircraft and complex airflow disturbances [4],especially gusts,it is difficult to maintain the tethered aircraft within the expected range without the output constraint controller (OCC).Consequently,the OCC is vital for TAS.A necessary condition of the traditional OCC is that initial outputs satisfy constraints.Nevertheless,under airflow disturbances,the tethered aircraft may fluctuate greatly before the OCC operates,resulting in a situation where the tethered aircraft violates the output constraints at the beginning.In [5],the deferred output constraint is presented,which indicates the output constraint is imposed after the system runs for a period of time.By assuming that the output constraint is not imposed for a period of time after the system operates,the deferred output constraint also includes the situation where the output constraint may be violated initially.To sum things up,we can draw the conclusion that TAS satisfies the deferred output constraint rather than the traditional output constraint.

    In recent decades,a lot of barrier Lyapunov function (BLF)-based control methods have been presented to cope with output/state constraints [6]–[8].In [9],a strict-feedback nonlinear system with output constraints is studied based on BLF.In[10],an adaptive control scheme is constructed for nonlinear stochastic systems with full state constraints by introducing symmetric and asymmetric BLFs.In [11],a BLF-based adaptive fault tolerant control method is presented to deal with the problem caused by state constraints and unknown faults of the elevators of hypersonic flight vehicles.It is known that these existing BLF-based control methods have a common prerequisite where the constraints are established from the beginning of the system operation.In other words,these methods cannot be directly used to solve the control problem of TAS subject to deferred output constraints.

    To further deal with such problems,Song and Zhou [5] proposed a shifting function-based tracking control scheme of strict-feedback systems in the presence of deferred and asymmetric yet time-varying constraints.Although the method presented by Song and Zhou can not deal with the output constrained issue of TAS due to its nonlinear coupling characteristics,the shifting function in [5] has the ability to solve such problems.In the light of the shifting function,Sunet al.[12]developed the tracking control strategy of unmanned surface vessels subject to deferred asymmetric constraints.

    From the control point of view,a key factor to enhance the tracking accuracy of the tethered aircraft is to improve the anti-disturbance ability of the controller by exactly estimating unknown disturbances.So far,many disturbance observers have been proposed to estimate disturbances accurately,such as the extended state observer (ESO) [13],sliding mode disturbance observer [14] and nonlinear disturbance observer[15].Among them,due to its high-performance and easy implementation [16],ESO is widely adopted in underwater vehicles [17],quadrotor unmanned aerial vehicles [18],AAR systems [19],etc.

    The basic idea of ESO is to expand the unknown disturbance into a new state and then establish a novel extended state equation to estimate the new state in real time.An implicit condition of ESO is to avoid the large initial estimation error of the new state.Otherwise,the peaking phenomenon will appear due to the large observer parameters.Nevertheless,it is difficult to obtain exact initial values of observers in practice.

    The peaking problem is an intrinsic characteristic of observers,which may lead to system performance degradation or hazards [20].Khalil and Praly [21] illustrated the basic principle of peak phenomenon in detail,and further analyzed it with simulations.Puet al.[22] designed an adaptive ESO with a linear time-varying form to inhibit the peaking phenomenon.Zhao and Guo [23] proposed a fal-based singleparameter-tuning ESO,resulting in better performance and smaller peaking value than the linear ESO.However,the existing ESOs only weaken the peaking value,and do not completely solve the peaking problem.Hence,an effective modified ESO to completely remove the peaking phenomenon is essential to improving system performance.

    Inspired by the aforementioned analysis,to solve deferred output constraints and peaking problems,an anti-disturbance control method for TAS with the unstable flight of the main aircraft and airflow disturbances is proposed by introducing the shifting function into ESO and BLF.The main contributions of this paper are concluded as follows:

    1) Unlike the previous works [24] and [25],the paper considers the fact that the main aircraft flies unsteadily,removing the common assumption that the main aircraft flies at a constant velocity.

    2) Different from the current ESO [23],which can only weaken the peaking value,the modified shifting functionbased ESO (SFESO) completely circumvents the peaking phenomenon and guarantees the accurate estimation performance.

    3) Compared with the existing BLF-based constrained control method [26] and [27],the improved output constrained controller solves the deferred output constraint problem of TAS by combining the shifting function and BLF.

    4) By integrating the modified observer and improved output constrained controller into the dynamic surface control(DSC) scheme,an anti-disturbance control method is proposed,which ensures that the tethered aircraft with any bounded initial condition tracks the desired trajectory exactly and satisfies the output constraints after a pre-specified finite time.

    The rest of this paper is organized as follows.In Section II,the tethered aircraft model and some technical lemmas are introduced.Section III constructs the SFESO and then designs the anti-disturbance control method for the TAS subject to deferred output constraints.In Section IV,the AAR system is simulated as an example to verify the effectiveness of the proposed control scheme.Finally,Section V concludes this paper.

    II.PROBLEM STATEMENT AND PRELIMINARIES

    A.Problem Statement

    As shown in Fig.1,o g xgygzgis the inertial frame.To conveniently express the unstable flight of the main aircraft and establish the dynamic model of the tethered aircraft,oIxIyIzIis introduced as the reference frame,parallel toog xg yg zg,whereoIflies at a constant speedvI.l his the position vector fromoItoob,andlhand ξh,?hare the length and orientations ofl h,respectively.l iis the position vector from jointi+1 to jointiwithi=1,...,n.oh xh yh zh,o1x1y1z1andob xb yb zbare the body-fixed frame ofl h,l1and the tethered aircraft,respectively.ψ,?andγare the yaw angle,the pitch angle,and the roll angle of the tethered aircraft,respectively.For any vectorY,Y h,Y1andY bdenote the representation ofYinoh xhyhzh,o1x1y1z1ando b xb yb zb,respectively.

    Fig.1.TAS configuration.

    Remark 1:The lumped mass model is adopted to represent the tether,where each link is massless and elastic,and the natural length of each link is constant,except for the last link.The main purpose of the last variable link is to change the position of the tethered aircraft by controlling the release and recovery of the tether.The lumped mass model is widely used in the previous works involving TAS [28],which is not described in detail here.

    The assumptions are given as follows.

    Assumption 1:Because the attitude of the main aircraft has no effect on the tethered aircraft,the main aircraft is assumed as a particle located at jointn+1 to conveniently display the unstable flight of the main aircraft.

    Assumption 2 [25]:Consider the situation that the reverse torque of the tether is large enough.The rolling angle of the tethered aircraft is very small,which is ignored here.

    Assumption 3:Since the tethered aircraft is dragged by the main aircraft through a tether and flies at a high speed in the air,the tether is tensioned.

    The translational dynamic model of the tethered aircraft inoh xhyhzhis formulated as

    The attitude kinematic model of the tethered aircraft inob xbybzbis derived as

    The attitude dynamic model of the tethered aircraft inob xb yb zbis given by

    wherex dis the desired trajectory.

    Further,define the deferred out constraints as

    The control objective is to design an anti-disturbance controller for TAS (8) subject to the unstable flight of the main aircraft,airflow disturbances and deferred output constraints such that the tracking errorz1evolves within the specified constraint despite any bounded initial condition,and the deferred out constraints (10) are never violated after the prespecified finite timeTc.

    Assumption 4 [2]:System statesx i(i=1,...,4) can be obtained directly or indirectly through the global positioning system(GPS),IMU,camera and tension sensor installed on the main aircraft and the IMU installed on the tethered aircraft.

    Assumption 5:The inverse matrix ofexists.

    B.Preliminaries

    The shifting function is defined as [5]

    whereTsis a pre-specified finite settling time.Nis a positive integer.

    Lemma 1 [5]: s(t) has the following properties:

    1)s(t) is strictly increasing for [0,Ts] withs(0)=0 ands(Ts)=1;

    2)s(t)=1 fort≥Ts;

    3) The time derivatives ofs(t) up to (N+1)th order are continuous and bounded.

    Lemma 2 [29]:Considering the system=f(x L,u L) withx L∈Rnandu L∈Rmbeing the systemstate and input,if there exists a Lyapunov functionVL(x L) satisfying ?1(∥x L∥)≤VL(x L)≤?2(∥x L∥) such that≤?σLVL(x L)+εL,in which ?1,?2are classKfunctions,and σL,εLare positive constants.Then,the system statex Lis bounded.

    Lemma 3 [30]:For |zb|<|kb| with ?kb∈R+,?zb∈R,the following inequality holds:

    III.OBSERVER AND CONTROLLER DESIGN

    In this section,the SFESO is constructed by combing the traditional ESO and shifting function,circumventing the inherent peaking problem in the observer.By using the shifting function to transform the output tracking errors,a SFESO based DSC scheme is developed,which ensures that the system outputs track the desired trajectories exactly and satisfy constraints after a pre-specified finite time,even if the initial outputs exceed constraint boundaries.

    A.SFESO Design

    Remark 6:Note thati=2,4 without special instructions in this subsection.In terms of the definition ofC3and Assumption 2,we know thatC3≈0,which does not need to be approximated by an observer but can be attenuated by the robustness of the controller itself.Therefore,onlyC2andC4are estimated by the SFESO designed in this subsection.

    Assumption 6 [31]: C2,C4andare bou nded.

    Because the shifting functions in the observer and controller do not affect each other,the setting time of the shifting function introduced in the SFESO can be different from that applied in the controller.Define the shifting function in the SFESO with the setting timeT oas

    whereNo=1 satisfyingNo≥1 to ensure thatin (15) is continuous and smooth.

    Define the auxiliary state as

    Taking the time derivative ofx s,iand substituting (8) into it,one yields

    Remark 9:About the constant vectorit is only introduced to guarantee the stability of the system at the initial stage,alleviating the negative influence of the excessive initial estimation error for the controller.Therefore,the exact initial value ofC iis not required.

    Remark 10:The large observer gains in the observer with the initial estimation error always induce serious peaking issues,which may lead to further instability of the system[21].The result is not expected and needs to be avoided as much as possible in practice.In this SFESO,(0)=0,resulting in the situations where the initial estimation errors of (17) and (18) are completely removed.Therefore,by estimatingx s,i,instead ofx i,C i,the peaking issue is completely circumvented,even if the large observer gains are used in the SFESO.

    B.Controller Design

    To cope with the strong coupling nonlinear termA2in the system model (8),a modified coordinate transformation is introduced.Define the following tracking errors as:

    where τiis the filtering output.

    To solve the differential explosion problem about the virtual control signal,the following first order low pass filter is introduced as:

    where λiis the positive diagonal matrix,and αiis the virtual control signal to be designed later.The filtering error is formulated as

    Unlike the shifting function in the SFESO,the shifting functionsc(t) with the different setting timeTcis constructed as the following form in the controller:

    Here,we adopt the above shifting functionsc(t) to obtain a novel transformation tracking error onz i,which is given by

    Remark 11:In terms of Lemma 1,(27) and (28),the novel transformation tracking errorz s,1satisfiesz s,1(0)=0 andz s,1(t)=z1(t) fort≥Tc,regardless of the initial value ofz1.In the following steps,the property will be used to solve the deferred output constraint problem.

    Step 1: According to (8),(23) and (28),the time derivative ofz s,1can be derived as

    To address the deferred output constraint onz1,a barrier Lyapunov function aboutz s,1is expressed as

    whereai(i=1,2,3) are the positive design parameters for the purpose of adjusting the magnitude of the followingk zssuch that its magnitude can be suitable for the virtual control law α1in (34).

    The time derivative ofV1is denoted as

    In terms of Young’s inequality,the following equations hold:

    Then,the virtual control law α1is constructed as

    Step 4: Similar to (37),the time derivative ofz4is described as the following form:

    In the end,the anti-disturbance control law for TAS in the presence of the unstable flight of the main aircraft,airflow disturbances and deferred output constraints is designed as

    wherek4is the positive diagonal matrix.

    From(30),(38),(45) and (52),define the Lyapunov function as

    On the basis of (35),(43),(50) and (55),the following inequality holds:

    Based on the above analysis,the following theorem is presented.

    Theorem 2:Consider the nonlinear system(8) under the unstable flight of the main aircraft,airflow disturbances and deferred output constraints.Suppose Assumptions 1–6 hold.By choosing the proper design parametersk i(i=1,...,4),λi(i=1,2,3) andb1satisfying the inequalities (58),the antidisturbance control law (54) is designed based on the SFESOs (13)?(21),the virtual control laws (34),(42),(49),and the first order low pass filter (24),which guarantees that 1)The tracking errorz1can be made arbitrarily small;2) The output constraint (10) is never violated after the pre-specified finite timeTc;3) A ll signals in the closed-loop system are bounded.

    Proof:Integrating (57) yields

    Considering (30),(56) and (59),the following inequality holds:

    In terms ofz1=x1?x dand the boundness ofz1,x d,we can prove thatx1is bounded.Due to the definitions ofk zs,Q zs,it follows thatk zs,Q zsare bounded.Further,by using the fact thatare bounded,the boundness of α1is ensured.Sincee1=τ1? α1ande1is bounded,τ1is also bounded.Furthermore,based onz2=x2?τ1and the boundness ofz2,it is obvious thatx2is bounded.By continuing this reasoning process,the boundness of αi,τi(i=1,2,3) anduis proved.Therefore,all signals in the closed-loop system are bounded.

    IV.SIMULATION RESULTS

    This paper adopts the controllable drogue-based AAR system[25] as the simulation object,in which the tanker,hose and drogue are regarded as the main aircraft,tether and tethered aircraft,respectively.The physical parameters are selected as Table I based on [25] and [32].The acceleration ofthe main aircraft is chosen as[0.3cos(t),0.4cos(t),0.01cos(t)]Tdenoted ino IxIyIzIto show the unstable flight of the main aircraft.The design parameters are selected as

    TABLE I PHYSICAL PARAMETERS

    To verify the effectiveness of the proposed control method under different initial conditions,the following two cases are simulated,where the design parameters under the two cases are the same.

    Case 1:Output constraints are violated at the beginning.The initialvalue of the tracking error isz1(0)=[0.0394,0.0013,0.0014]T.

    Case 2:Initial outputs satisfy the constraints.The initial value of the tracking error isz1(0)=[0.01,0.0005,0.0008]T.

    Fig.2 shows the composite airflow disturbances including the turbulence,gust and wake,in which the turbulence applies the Dryden turbulence model [25],the gust uses the cosine gust model,and the wake induced by the main aircraft adopts the Hallock-Burnham model [33].The figure proves that the airflow environment around TAS is complex and changeable,and that a gust is an extreme airflow disturbance,whose amplitude is much larger than that of the turbulence and wake within 6–12 s.The airflow disturbances bring great challenges to the accurate control of the tethered aircraft with deferred output constraints.

    Fig.2.Composite airflow disturbances including the turbulence,gust and wake.(a) v a,x;(b) v a,y ;(c) v a,z.

    Fig.3.Tracking trajectories.(a) lh ;(b) ξh ;(c) ?h.

    Fig.4.Tracking errors.(a) el ;(b) eξ ;(c) e?.

    Figs.3 and 4 represent the tracking trajectories and tracking errors with the proposed control method in the presence of the unstable flight of the main aircraft,airflow disturbances and deferred output constraints under Cases 1 and 2,respectively.It is clearly observed that the tracking trajectories and tracking errors can meet the constraints after the pre-specified finite timeTc,whether the initial conditions violate or satisfy output constraints.Furthermore,in the face of complex and changeable airflow disturbances described in Fig.2,the tethered aircraft under the proposed control method can still accurately track the desired trajectory,except that the fluctuation ofelis slightly larger at 6–12 s in Fig.4(a) due to an extreme gust.

    Fig.5 shows that the time response of the projection of the tether on thex-axis andy-axis in the presence of the unstable flight of the main aircraft at 15–30 s,where A0 denotes the barycenter of the tethered aircraft and A21 represents the jointn+1.It is obviously seen that the tethered aircraft is still stable in the case with unstable flight of the main aircraft.Fig.6 exhibits the time response ofls,which denotes the total length of the released tether.From Figs.5 and 6,we can draw the conclusion that the negative impact of the unstable flight of the main aircraft on the tethered aircraft can be eliminated by retracting and releasing the tether.

    As depicted in Figs.7 and 8,the real values and estimations ofC′s,2andC′s,4with the proposed control method under Case 1 are exhibited,respectively,confirming good estimation performance of the SFESO.In addition,the peaking issue of the observer is completely circumvented because the initial values of the real values and estimations are equal to zero vectors by introducing (15).Further,it is clearly observed from Fig.8 thatC′s,4,xis not plotted because it is equal to zero during the whole process.Finally,the boundedness of the attitude angles and control inputs is also verified in Figs.9 and 10.

    Fig.5.Time response of the projection of the tether on the x-axis and y-axis under Case 1.

    Fig.6.Total length of the released tether under Case 1.

    Fig.7.Time response of under Case 1.(a) ;(b) ;(c)

    Fig.8.Time response of under Case 1.(a) ;(b)

    Fig.9.Time response of ψ,?, γ .(a) ψ ;(b) ?;(c) γ.

    Fig.10.Control inputs.(a) tn ;(b) uz ;(c) uy.

    V.CONCLUSIONS

    This paper addresses the anti-disturbance control issue of TAS under the conditions of strong coupling nonlinearity,deferred output constraints,unmeasurable tether tension and tension torque,airflow disturbances,and unstable flight of the main aircraft.To deal with nonlinearity,the modified coordinate transformation is constructed.Then,the shifting function is introduced into the BLF-based DSC scheme to solve the deferred output constraint problem of TAS,even when the initial outputs violate constraints.Moreover,the lumped disturbances caused by unmeasurable tether tension and tension torque,airflow disturbances,and unstable flight of the main aircraft are estimated by the proposed SFESO,which also features the ability of completely removing the peaking phenomenon.Finally,the simulation results of the AAR system illustrate the effectiveness of the proposed control method for TAS.In the future,we will study the anti-disturbance control of TAS with deferred output constraints and input saturations,focusing on the trade off when they occur at the same time.

    APPENDIX

    黑人操中国人逼视频| 国产精品免费一区二区三区在线 | 50天的宝宝边吃奶边哭怎么回事| 中文亚洲av片在线观看爽 | 法律面前人人平等表现在哪些方面| 欧美乱码精品一区二区三区| 精品亚洲成a人片在线观看| 亚洲成av片中文字幕在线观看| 母亲3免费完整高清在线观看| 三级毛片av免费| 人人妻人人添人人爽欧美一区卜| 侵犯人妻中文字幕一二三四区| 免费看a级黄色片| 欧美激情 高清一区二区三区| 亚洲欧美一区二区三区黑人| 夜夜夜夜夜久久久久| 在线观看免费高清a一片| 黑人巨大精品欧美一区二区mp4| 巨乳人妻的诱惑在线观看| 成人亚洲精品一区在线观看| 久久久国产成人免费| 欧美国产精品一级二级三级| 高清欧美精品videossex| 一进一出抽搐gif免费好疼 | 欧美日韩一级在线毛片| 啦啦啦视频在线资源免费观看| 精品国产亚洲在线| 国产欧美日韩精品亚洲av| 国产精品偷伦视频观看了| 午夜成年电影在线免费观看| 亚洲五月色婷婷综合| 精品视频人人做人人爽| 男女免费视频国产| 国产成人欧美在线观看 | 国产精品 国内视频| 婷婷丁香在线五月| a级毛片黄视频| 精品亚洲成国产av| a级片在线免费高清观看视频| 久久亚洲精品不卡| 超色免费av| 黄频高清免费视频| 91av网站免费观看| 人人妻人人爽人人添夜夜欢视频| 日本欧美视频一区| 久久国产精品大桥未久av| 成人精品一区二区免费| 精品亚洲成国产av| 夜夜爽天天搞| 两个人看的免费小视频| 在线观看免费视频日本深夜| 中文字幕人妻丝袜一区二区| 中文欧美无线码| 欧美大码av| 一级黄色大片毛片| 91精品三级在线观看| 国产欧美日韩一区二区精品| 在线国产一区二区在线| 免费少妇av软件| 亚洲七黄色美女视频| 狂野欧美激情性xxxx| 亚洲专区字幕在线| 精品一区二区三卡| 国产高清激情床上av| 曰老女人黄片| 十八禁人妻一区二区| 久久性视频一级片| 国产99久久九九免费精品| 精品国产超薄肉色丝袜足j| 高清视频免费观看一区二区| 视频区图区小说| xxx96com| 天堂俺去俺来也www色官网| 欧美激情 高清一区二区三区| 黄片大片在线免费观看| 一级毛片精品| 日韩免费av在线播放| 大香蕉久久网| 99热网站在线观看| 欧美日韩精品网址| 国产精品二区激情视频| 国产成人一区二区三区免费视频网站| 中文字幕精品免费在线观看视频| 少妇被粗大的猛进出69影院| 久久久久久久精品吃奶| 亚洲avbb在线观看| 在线观看www视频免费| 亚洲男人天堂网一区| 国产精品成人在线| 少妇猛男粗大的猛烈进出视频| 日韩欧美国产一区二区入口| 啪啪无遮挡十八禁网站| 50天的宝宝边吃奶边哭怎么回事| 亚洲少妇的诱惑av| 夜夜爽天天搞| 日日摸夜夜添夜夜添小说| 三上悠亚av全集在线观看| av有码第一页| 亚洲一区高清亚洲精品| 国产亚洲av高清不卡| 日韩欧美三级三区| 日本一区二区免费在线视频| 91在线观看av| 国产主播在线观看一区二区| 两性夫妻黄色片| 看免费av毛片| 午夜影院日韩av| 大型av网站在线播放| www.精华液| 麻豆成人av在线观看| 欧美老熟妇乱子伦牲交| 国产欧美日韩综合在线一区二区| 色播在线永久视频| 午夜福利乱码中文字幕| 视频在线观看一区二区三区| 国产精品电影一区二区三区 | 亚洲国产精品一区二区三区在线| 亚洲欧洲精品一区二区精品久久久| 国产视频一区二区在线看| 高清视频免费观看一区二区| 亚洲免费av在线视频| 热99国产精品久久久久久7| av在线播放免费不卡| 久久久久国内视频| 精品国内亚洲2022精品成人 | 久久亚洲真实| 一级毛片女人18水好多| 午夜福利视频在线观看免费| 1024视频免费在线观看| 日日爽夜夜爽网站| 男女午夜视频在线观看| 国产精品久久视频播放| 丰满迷人的少妇在线观看| 少妇粗大呻吟视频| 99国产综合亚洲精品| 国产精品秋霞免费鲁丝片| 搡老熟女国产l中国老女人| 搡老岳熟女国产| 国产精品久久久久久人妻精品电影| √禁漫天堂资源中文www| 在线观看免费视频日本深夜| 日韩三级视频一区二区三区| 中出人妻视频一区二区| 在线观看www视频免费| av有码第一页| 欧洲精品卡2卡3卡4卡5卡区| 日本黄色视频三级网站网址 | 欧美日韩瑟瑟在线播放| 99国产精品免费福利视频| 18禁黄网站禁片午夜丰满| 真人做人爱边吃奶动态| 涩涩av久久男人的天堂| 18禁裸乳无遮挡免费网站照片 | 国产又色又爽无遮挡免费看| 欧美精品一区二区免费开放| 老司机深夜福利视频在线观看| 成年动漫av网址| 超色免费av| 久久 成人 亚洲| 精品亚洲成国产av| 欧美乱妇无乱码| 在线观看免费高清a一片| 在线视频色国产色| 国产av又大| 少妇猛男粗大的猛烈进出视频| 亚洲国产毛片av蜜桃av| 制服诱惑二区| 欧美人与性动交α欧美软件| 亚洲精品美女久久av网站| 精品久久久久久电影网| 在线观看66精品国产| 亚洲精品美女久久久久99蜜臀| 国产极品粉嫩免费观看在线| 亚洲va日本ⅴa欧美va伊人久久| 亚洲美女黄片视频| 十八禁高潮呻吟视频| 女人爽到高潮嗷嗷叫在线视频| 纯流量卡能插随身wifi吗| 一本一本久久a久久精品综合妖精| 捣出白浆h1v1| 久久中文字幕人妻熟女| 视频在线观看一区二区三区| 99久久精品国产亚洲精品| 国产男女内射视频| 亚洲欧美一区二区三区久久| 999久久久精品免费观看国产| 啦啦啦免费观看视频1| 国产有黄有色有爽视频| 国产精品秋霞免费鲁丝片| 国精品久久久久久国模美| 动漫黄色视频在线观看| a级片在线免费高清观看视频| 国产精品 国内视频| 大片电影免费在线观看免费| 韩国av一区二区三区四区| 午夜视频精品福利| 亚洲熟妇中文字幕五十中出 | 欧美日韩亚洲综合一区二区三区_| 女性生殖器流出的白浆| 日韩一卡2卡3卡4卡2021年| 国产精品乱码一区二三区的特点 | 久久人人97超碰香蕉20202| 午夜亚洲福利在线播放| 午夜免费鲁丝| 午夜免费成人在线视频| 欧美亚洲 丝袜 人妻 在线| 窝窝影院91人妻| 色在线成人网| 久久午夜亚洲精品久久| 欧美精品亚洲一区二区| 亚洲人成77777在线视频| 老司机福利观看| 妹子高潮喷水视频| 日本a在线网址| 伦理电影免费视频| tube8黄色片| 亚洲五月婷婷丁香| 一本大道久久a久久精品| 两个人免费观看高清视频| 男人操女人黄网站| 老熟妇乱子伦视频在线观看| 亚洲精品美女久久av网站| 欧美成人免费av一区二区三区 | 欧美精品人与动牲交sv欧美| 精品高清国产在线一区| 亚洲第一青青草原| 777米奇影视久久| 婷婷成人精品国产| 亚洲aⅴ乱码一区二区在线播放 | 好男人电影高清在线观看| 99国产精品一区二区蜜桃av | 精品国产一区二区三区久久久樱花| 国内久久婷婷六月综合欲色啪| 悠悠久久av| а√天堂www在线а√下载 | 最近最新中文字幕大全免费视频| 亚洲成人手机| 亚洲熟妇中文字幕五十中出 | 精品卡一卡二卡四卡免费| 国产蜜桃级精品一区二区三区 | 两个人免费观看高清视频| 操出白浆在线播放| 亚洲色图av天堂| 岛国毛片在线播放| 国产人伦9x9x在线观看| 精品视频人人做人人爽| 久久精品国产99精品国产亚洲性色 | 国产欧美日韩精品亚洲av| 亚洲精品乱久久久久久| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩成人在线一区二区| 色婷婷久久久亚洲欧美| 精品久久久久久久毛片微露脸| 校园春色视频在线观看| 成人av一区二区三区在线看| 电影成人av| 一级毛片精品| 黄片小视频在线播放| 性少妇av在线| 12—13女人毛片做爰片一| 男女免费视频国产| netflix在线观看网站| 国产91精品成人一区二区三区| 夜夜夜夜夜久久久久| 身体一侧抽搐| 又大又爽又粗| 亚洲午夜精品一区,二区,三区| 精品人妻熟女毛片av久久网站| 久久久久视频综合| 99久久人妻综合| 最新的欧美精品一区二区| 王馨瑶露胸无遮挡在线观看| 啦啦啦 在线观看视频| 亚洲欧洲精品一区二区精品久久久| 涩涩av久久男人的天堂| 久久午夜亚洲精品久久| 国产精品国产高清国产av | 欧美性长视频在线观看| 成人免费观看视频高清| 淫妇啪啪啪对白视频| 国产淫语在线视频| 在线av久久热| 丝瓜视频免费看黄片| 18禁裸乳无遮挡免费网站照片 | 美女高潮到喷水免费观看| 中文字幕最新亚洲高清| 成年动漫av网址| 国产麻豆69| 精品少妇一区二区三区视频日本电影| 亚洲一码二码三码区别大吗| 91在线观看av| 国产成人精品在线电影| 高潮久久久久久久久久久不卡| 一a级毛片在线观看| 国产成人av教育| 亚洲精品成人av观看孕妇| 亚洲九九香蕉| 91精品国产国语对白视频| 午夜免费观看网址| 色尼玛亚洲综合影院| 村上凉子中文字幕在线| 日本wwww免费看| 国产视频一区二区在线看| 亚洲av第一区精品v没综合| 啦啦啦视频在线资源免费观看| 国产精品国产av在线观看| 亚洲成a人片在线一区二区| 精品国产超薄肉色丝袜足j| av网站免费在线观看视频| 欧美人与性动交α欧美软件| 日韩视频一区二区在线观看| 久久国产亚洲av麻豆专区| 18禁国产床啪视频网站| 成人影院久久| 亚洲精品久久成人aⅴ小说| 亚洲欧美激情综合另类| 美女视频免费永久观看网站| 免费看十八禁软件| 精品福利观看| 交换朋友夫妻互换小说| 一本大道久久a久久精品| 国产精品九九99| 免费不卡黄色视频| 50天的宝宝边吃奶边哭怎么回事| 欧美成狂野欧美在线观看| 9191精品国产免费久久| 无遮挡黄片免费观看| 啦啦啦 在线观看视频| 老司机午夜十八禁免费视频| 欧美人与性动交α欧美软件| 久久狼人影院| 叶爱在线成人免费视频播放| 国产区一区二久久| 91九色精品人成在线观看| 日韩成人在线观看一区二区三区| 亚洲国产欧美一区二区综合| 黑人猛操日本美女一级片| 不卡一级毛片| 亚洲九九香蕉| 色尼玛亚洲综合影院| ponron亚洲| 久久中文字幕人妻熟女| 国产aⅴ精品一区二区三区波| 久久久久久人人人人人| 久久中文字幕一级| 老司机福利观看| 亚洲精品国产一区二区精华液| 亚洲一卡2卡3卡4卡5卡精品中文| 黄色丝袜av网址大全| 精品国产亚洲在线| 91成年电影在线观看| 国产单亲对白刺激| 777久久人妻少妇嫩草av网站| 亚洲,欧美精品.| 美女 人体艺术 gogo| 久久精品亚洲熟妇少妇任你| 亚洲视频免费观看视频| 亚洲一卡2卡3卡4卡5卡精品中文| 一本综合久久免费| 一级a爱片免费观看的视频| 中文字幕另类日韩欧美亚洲嫩草| 久久久国产成人免费| 在线国产一区二区在线| 国产不卡av网站在线观看| 人人妻人人澡人人看| 精品一区二区三区视频在线观看免费 | 飞空精品影院首页| 欧美人与性动交α欧美精品济南到| 久久久精品区二区三区| 大香蕉久久成人网| 热re99久久精品国产66热6| 一级片免费观看大全| 又黄又粗又硬又大视频| 免费女性裸体啪啪无遮挡网站| 午夜91福利影院| 国产免费现黄频在线看| 真人做人爱边吃奶动态| 黑丝袜美女国产一区| 欧美乱码精品一区二区三区| 丝袜美腿诱惑在线| 国产免费男女视频| 免费观看人在逋| 天天躁日日躁夜夜躁夜夜| 成人亚洲精品一区在线观看| 国产1区2区3区精品| 黄色视频不卡| 日日摸夜夜添夜夜添小说| 成人免费观看视频高清| 欧美乱码精品一区二区三区| 日本a在线网址| 热re99久久国产66热| 亚洲中文av在线| 国精品久久久久久国模美| 国产午夜精品久久久久久| 国精品久久久久久国模美| 亚洲av成人av| 热re99久久国产66热| 国产精品一区二区在线观看99| 国产激情欧美一区二区| 啦啦啦 在线观看视频| 免费观看精品视频网站| 亚洲精品国产精品久久久不卡| 免费一级毛片在线播放高清视频 | 国产欧美日韩一区二区三| √禁漫天堂资源中文www| 成年动漫av网址| 欧美另类亚洲清纯唯美| 午夜福利一区二区在线看| 国产精品免费大片| 国产欧美日韩一区二区三| 欧美久久黑人一区二区| 亚洲欧美色中文字幕在线| 亚洲九九香蕉| 男女床上黄色一级片免费看| 国产熟女午夜一区二区三区| 久久人人爽av亚洲精品天堂| 91成人精品电影| 久久精品亚洲av国产电影网| 亚洲精品久久午夜乱码| 日韩成人在线观看一区二区三区| 久久香蕉激情| 黑人巨大精品欧美一区二区蜜桃| 99热网站在线观看| 精品一区二区三卡| 在线播放国产精品三级| 国产91精品成人一区二区三区| 黄片播放在线免费| 视频区欧美日本亚洲| 国产1区2区3区精品| 欧美日韩中文字幕国产精品一区二区三区 | tube8黄色片| 大码成人一级视频| 亚洲国产看品久久| 国产亚洲欧美精品永久| 日韩欧美一区二区三区在线观看 | 国产又色又爽无遮挡免费看| 中文字幕最新亚洲高清| 99国产精品免费福利视频| av国产精品久久久久影院| 亚洲av日韩精品久久久久久密| 咕卡用的链子| 夜夜爽天天搞| 国产99白浆流出| 99精品久久久久人妻精品| av线在线观看网站| 成年女人毛片免费观看观看9 | 亚洲一卡2卡3卡4卡5卡精品中文| av天堂在线播放| 日本撒尿小便嘘嘘汇集6| videos熟女内射| 中出人妻视频一区二区| 国产av一区二区精品久久| 欧美精品av麻豆av| 久久久久精品人妻al黑| 色综合婷婷激情| 男女之事视频高清在线观看| 777久久人妻少妇嫩草av网站| 久久久久国内视频| 老司机靠b影院| 午夜精品久久久久久毛片777| 亚洲 国产 在线| 成人国语在线视频| 欧美日韩福利视频一区二区| 亚洲三区欧美一区| 99热国产这里只有精品6| 人人妻,人人澡人人爽秒播| 国产麻豆69| 欧美av亚洲av综合av国产av| 午夜久久久在线观看| 91麻豆精品激情在线观看国产 | 飞空精品影院首页| aaaaa片日本免费| 久久久国产欧美日韩av| 国产成人啪精品午夜网站| 欧美激情 高清一区二区三区| 国产成人免费无遮挡视频| 亚洲性夜色夜夜综合| 免费日韩欧美在线观看| 在线观看免费日韩欧美大片| 亚洲全国av大片| 最新在线观看一区二区三区| 在线永久观看黄色视频| 91精品国产国语对白视频| 99国产综合亚洲精品| 久久久久国产精品人妻aⅴ院 | www.自偷自拍.com| 久久草成人影院| 国产91精品成人一区二区三区| 日日爽夜夜爽网站| 亚洲av日韩在线播放| 日本黄色视频三级网站网址 | 国产主播在线观看一区二区| 亚洲 欧美一区二区三区| 天天添夜夜摸| 麻豆成人av在线观看| 欧美日韩一级在线毛片| 99re在线观看精品视频| av天堂久久9| 午夜福利免费观看在线| 欧美日韩瑟瑟在线播放| 午夜精品在线福利| 亚洲成人免费av在线播放| 国产片内射在线| 欧美日本中文国产一区发布| 免费在线观看视频国产中文字幕亚洲| 桃红色精品国产亚洲av| 亚洲少妇的诱惑av| 脱女人内裤的视频| 男男h啪啪无遮挡| 国产精品久久久人人做人人爽| 亚洲精品乱久久久久久| 一进一出抽搐gif免费好疼 | 18禁美女被吸乳视频| 搡老熟女国产l中国老女人| 久久精品人人爽人人爽视色| 人人妻人人添人人爽欧美一区卜| 精品国产美女av久久久久小说| 国产精品久久电影中文字幕 | 69av精品久久久久久| 一本大道久久a久久精品| 黄色视频,在线免费观看| 9191精品国产免费久久| 午夜福利,免费看| av一本久久久久| 久热这里只有精品99| 美女扒开内裤让男人捅视频| 在线观看一区二区三区激情| 久久久国产成人精品二区 | 老熟女久久久| 国产精品美女特级片免费视频播放器 | 午夜老司机福利片| 免费黄频网站在线观看国产| 久久ye,这里只有精品| 亚洲精品国产精品久久久不卡| 亚洲自偷自拍图片 自拍| 18在线观看网站| 伊人久久大香线蕉亚洲五| 一级片'在线观看视频| 日本精品一区二区三区蜜桃| 精品久久久精品久久久| 一级,二级,三级黄色视频| 免费在线观看影片大全网站| 亚洲欧美激情综合另类| 久热这里只有精品99| 免费一级毛片在线播放高清视频 | 午夜福利在线免费观看网站| 又黄又爽又免费观看的视频| 久久午夜亚洲精品久久| 色在线成人网| 国产成人av激情在线播放| 黄频高清免费视频| 999精品在线视频| 久久久国产成人精品二区 | 最新的欧美精品一区二区| 婷婷精品国产亚洲av在线 | 一个人免费在线观看的高清视频| 一级a爱视频在线免费观看| 在线观看免费午夜福利视频| 日韩 欧美 亚洲 中文字幕| 黄色怎么调成土黄色| 99精国产麻豆久久婷婷| 侵犯人妻中文字幕一二三四区| 日本wwww免费看| 日韩欧美一区二区三区在线观看 | 91精品三级在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美日韩一级在线毛片| 久久国产精品男人的天堂亚洲| 91老司机精品| 免费观看人在逋| 激情视频va一区二区三区| 狂野欧美激情性xxxx| 99在线人妻在线中文字幕 | 成年人黄色毛片网站| 亚洲第一av免费看| 一级毛片女人18水好多| 最近最新中文字幕大全免费视频| 纯流量卡能插随身wifi吗| 黑人猛操日本美女一级片| 99国产综合亚洲精品| 精品一区二区三区视频在线观看免费 | 成年人黄色毛片网站| 波多野结衣av一区二区av| 久久人人爽av亚洲精品天堂| 狠狠狠狠99中文字幕| 悠悠久久av| 多毛熟女@视频| 99精国产麻豆久久婷婷| 久久久久久免费高清国产稀缺| 亚洲第一欧美日韩一区二区三区| 亚洲精品美女久久久久99蜜臀| 免费日韩欧美在线观看| 18禁黄网站禁片午夜丰满| 精品人妻在线不人妻| 黄色毛片三级朝国网站| 电影成人av| 男女午夜视频在线观看| 午夜免费鲁丝| 亚洲精华国产精华精| 丝袜在线中文字幕| 精品无人区乱码1区二区| 波多野结衣av一区二区av| 亚洲片人在线观看| 午夜福利在线观看吧| 麻豆成人av在线观看| 国产麻豆69| 三上悠亚av全集在线观看| a在线观看视频网站| 久久香蕉精品热| 精品熟女少妇八av免费久了| 搡老岳熟女国产| 中文字幕最新亚洲高清| 久久久久精品人妻al黑| 亚洲中文日韩欧美视频| 欧美激情高清一区二区三区|