• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Anti-Disturbance Control for Tethered Aircraft System With Deferred Output Constraints

    2023-03-09 01:03:56MengshiSongFanZhangBingxiaoHuangandPanfengHuangSenior
    IEEE/CAA Journal of Automatica Sinica 2023年2期

    Mengshi Song,Fan Zhang,,Bingxiao Huang,and Panfeng Huang, Senior

    Abstract—In this paper,we investigate the peaking issue of extended state observers and the anti-disturbance control problem of tethered aircraft systems subject to the unstable flight of the main aircraft,airflow disturbances and deferred output constraints.Independent of exact initial values,a modified extended state observer is constructed from a shifting function such that not only the peaking issue inherently in the observer is circumvented completely but also the accurate estimation of the lumped disturbance is guaranteed.Meanwhile,to deal with deferred output constraints,an improved output constrained controller is employed by integrating the shifting function into the barrier Lyapunov function.Then,by combining the modified observer and the improved controller,an anti-disturbance control scheme is presented,which ensures that the outputs with any bounded initial conditions satisfy the constraints after a pre-specified finite time,and the tethered aircraft tracks the desired trajectory accurately.Finally,both a theoretical proof and simulation results verify the effectiveness of the proposed control scheme.

    I.INTRODUCTION

    THE relevant technology of the tethered aircraft system(TAS) is extensively applied in autonomous aerial refueling (AAR) systems [1],towed aerial recovery drogue systems[2],etc.It is known that the technological index of the position accuracy of the tethered aircraft is needed in practical applications,i.e.,the tethered aircraft is required to be constrained within a certain range and track the desired trajectory as accurately as possible.For example,in an AAR system,the drogue needs to stabilize itself in the neighborhood of the desired position to ensure the precise docking between the drogue and the receiver aircraft and avoid a collision with the receiver aircraft [3].

    However,due to the unstable flight of the main aircraft and complex airflow disturbances [4],especially gusts,it is difficult to maintain the tethered aircraft within the expected range without the output constraint controller (OCC).Consequently,the OCC is vital for TAS.A necessary condition of the traditional OCC is that initial outputs satisfy constraints.Nevertheless,under airflow disturbances,the tethered aircraft may fluctuate greatly before the OCC operates,resulting in a situation where the tethered aircraft violates the output constraints at the beginning.In [5],the deferred output constraint is presented,which indicates the output constraint is imposed after the system runs for a period of time.By assuming that the output constraint is not imposed for a period of time after the system operates,the deferred output constraint also includes the situation where the output constraint may be violated initially.To sum things up,we can draw the conclusion that TAS satisfies the deferred output constraint rather than the traditional output constraint.

    In recent decades,a lot of barrier Lyapunov function (BLF)-based control methods have been presented to cope with output/state constraints [6]–[8].In [9],a strict-feedback nonlinear system with output constraints is studied based on BLF.In[10],an adaptive control scheme is constructed for nonlinear stochastic systems with full state constraints by introducing symmetric and asymmetric BLFs.In [11],a BLF-based adaptive fault tolerant control method is presented to deal with the problem caused by state constraints and unknown faults of the elevators of hypersonic flight vehicles.It is known that these existing BLF-based control methods have a common prerequisite where the constraints are established from the beginning of the system operation.In other words,these methods cannot be directly used to solve the control problem of TAS subject to deferred output constraints.

    To further deal with such problems,Song and Zhou [5] proposed a shifting function-based tracking control scheme of strict-feedback systems in the presence of deferred and asymmetric yet time-varying constraints.Although the method presented by Song and Zhou can not deal with the output constrained issue of TAS due to its nonlinear coupling characteristics,the shifting function in [5] has the ability to solve such problems.In the light of the shifting function,Sunet al.[12]developed the tracking control strategy of unmanned surface vessels subject to deferred asymmetric constraints.

    From the control point of view,a key factor to enhance the tracking accuracy of the tethered aircraft is to improve the anti-disturbance ability of the controller by exactly estimating unknown disturbances.So far,many disturbance observers have been proposed to estimate disturbances accurately,such as the extended state observer (ESO) [13],sliding mode disturbance observer [14] and nonlinear disturbance observer[15].Among them,due to its high-performance and easy implementation [16],ESO is widely adopted in underwater vehicles [17],quadrotor unmanned aerial vehicles [18],AAR systems [19],etc.

    The basic idea of ESO is to expand the unknown disturbance into a new state and then establish a novel extended state equation to estimate the new state in real time.An implicit condition of ESO is to avoid the large initial estimation error of the new state.Otherwise,the peaking phenomenon will appear due to the large observer parameters.Nevertheless,it is difficult to obtain exact initial values of observers in practice.

    The peaking problem is an intrinsic characteristic of observers,which may lead to system performance degradation or hazards [20].Khalil and Praly [21] illustrated the basic principle of peak phenomenon in detail,and further analyzed it with simulations.Puet al.[22] designed an adaptive ESO with a linear time-varying form to inhibit the peaking phenomenon.Zhao and Guo [23] proposed a fal-based singleparameter-tuning ESO,resulting in better performance and smaller peaking value than the linear ESO.However,the existing ESOs only weaken the peaking value,and do not completely solve the peaking problem.Hence,an effective modified ESO to completely remove the peaking phenomenon is essential to improving system performance.

    Inspired by the aforementioned analysis,to solve deferred output constraints and peaking problems,an anti-disturbance control method for TAS with the unstable flight of the main aircraft and airflow disturbances is proposed by introducing the shifting function into ESO and BLF.The main contributions of this paper are concluded as follows:

    1) Unlike the previous works [24] and [25],the paper considers the fact that the main aircraft flies unsteadily,removing the common assumption that the main aircraft flies at a constant velocity.

    2) Different from the current ESO [23],which can only weaken the peaking value,the modified shifting functionbased ESO (SFESO) completely circumvents the peaking phenomenon and guarantees the accurate estimation performance.

    3) Compared with the existing BLF-based constrained control method [26] and [27],the improved output constrained controller solves the deferred output constraint problem of TAS by combining the shifting function and BLF.

    4) By integrating the modified observer and improved output constrained controller into the dynamic surface control(DSC) scheme,an anti-disturbance control method is proposed,which ensures that the tethered aircraft with any bounded initial condition tracks the desired trajectory exactly and satisfies the output constraints after a pre-specified finite time.

    The rest of this paper is organized as follows.In Section II,the tethered aircraft model and some technical lemmas are introduced.Section III constructs the SFESO and then designs the anti-disturbance control method for the TAS subject to deferred output constraints.In Section IV,the AAR system is simulated as an example to verify the effectiveness of the proposed control scheme.Finally,Section V concludes this paper.

    II.PROBLEM STATEMENT AND PRELIMINARIES

    A.Problem Statement

    As shown in Fig.1,o g xgygzgis the inertial frame.To conveniently express the unstable flight of the main aircraft and establish the dynamic model of the tethered aircraft,oIxIyIzIis introduced as the reference frame,parallel toog xg yg zg,whereoIflies at a constant speedvI.l his the position vector fromoItoob,andlhand ξh,?hare the length and orientations ofl h,respectively.l iis the position vector from jointi+1 to jointiwithi=1,...,n.oh xh yh zh,o1x1y1z1andob xb yb zbare the body-fixed frame ofl h,l1and the tethered aircraft,respectively.ψ,?andγare the yaw angle,the pitch angle,and the roll angle of the tethered aircraft,respectively.For any vectorY,Y h,Y1andY bdenote the representation ofYinoh xhyhzh,o1x1y1z1ando b xb yb zb,respectively.

    Fig.1.TAS configuration.

    Remark 1:The lumped mass model is adopted to represent the tether,where each link is massless and elastic,and the natural length of each link is constant,except for the last link.The main purpose of the last variable link is to change the position of the tethered aircraft by controlling the release and recovery of the tether.The lumped mass model is widely used in the previous works involving TAS [28],which is not described in detail here.

    The assumptions are given as follows.

    Assumption 1:Because the attitude of the main aircraft has no effect on the tethered aircraft,the main aircraft is assumed as a particle located at jointn+1 to conveniently display the unstable flight of the main aircraft.

    Assumption 2 [25]:Consider the situation that the reverse torque of the tether is large enough.The rolling angle of the tethered aircraft is very small,which is ignored here.

    Assumption 3:Since the tethered aircraft is dragged by the main aircraft through a tether and flies at a high speed in the air,the tether is tensioned.

    The translational dynamic model of the tethered aircraft inoh xhyhzhis formulated as

    The attitude kinematic model of the tethered aircraft inob xbybzbis derived as

    The attitude dynamic model of the tethered aircraft inob xb yb zbis given by

    wherex dis the desired trajectory.

    Further,define the deferred out constraints as

    The control objective is to design an anti-disturbance controller for TAS (8) subject to the unstable flight of the main aircraft,airflow disturbances and deferred output constraints such that the tracking errorz1evolves within the specified constraint despite any bounded initial condition,and the deferred out constraints (10) are never violated after the prespecified finite timeTc.

    Assumption 4 [2]:System statesx i(i=1,...,4) can be obtained directly or indirectly through the global positioning system(GPS),IMU,camera and tension sensor installed on the main aircraft and the IMU installed on the tethered aircraft.

    Assumption 5:The inverse matrix ofexists.

    B.Preliminaries

    The shifting function is defined as [5]

    whereTsis a pre-specified finite settling time.Nis a positive integer.

    Lemma 1 [5]: s(t) has the following properties:

    1)s(t) is strictly increasing for [0,Ts] withs(0)=0 ands(Ts)=1;

    2)s(t)=1 fort≥Ts;

    3) The time derivatives ofs(t) up to (N+1)th order are continuous and bounded.

    Lemma 2 [29]:Considering the system=f(x L,u L) withx L∈Rnandu L∈Rmbeing the systemstate and input,if there exists a Lyapunov functionVL(x L) satisfying ?1(∥x L∥)≤VL(x L)≤?2(∥x L∥) such that≤?σLVL(x L)+εL,in which ?1,?2are classKfunctions,and σL,εLare positive constants.Then,the system statex Lis bounded.

    Lemma 3 [30]:For |zb|<|kb| with ?kb∈R+,?zb∈R,the following inequality holds:

    III.OBSERVER AND CONTROLLER DESIGN

    In this section,the SFESO is constructed by combing the traditional ESO and shifting function,circumventing the inherent peaking problem in the observer.By using the shifting function to transform the output tracking errors,a SFESO based DSC scheme is developed,which ensures that the system outputs track the desired trajectories exactly and satisfy constraints after a pre-specified finite time,even if the initial outputs exceed constraint boundaries.

    A.SFESO Design

    Remark 6:Note thati=2,4 without special instructions in this subsection.In terms of the definition ofC3and Assumption 2,we know thatC3≈0,which does not need to be approximated by an observer but can be attenuated by the robustness of the controller itself.Therefore,onlyC2andC4are estimated by the SFESO designed in this subsection.

    Assumption 6 [31]: C2,C4andare bou nded.

    Because the shifting functions in the observer and controller do not affect each other,the setting time of the shifting function introduced in the SFESO can be different from that applied in the controller.Define the shifting function in the SFESO with the setting timeT oas

    whereNo=1 satisfyingNo≥1 to ensure thatin (15) is continuous and smooth.

    Define the auxiliary state as

    Taking the time derivative ofx s,iand substituting (8) into it,one yields

    Remark 9:About the constant vectorit is only introduced to guarantee the stability of the system at the initial stage,alleviating the negative influence of the excessive initial estimation error for the controller.Therefore,the exact initial value ofC iis not required.

    Remark 10:The large observer gains in the observer with the initial estimation error always induce serious peaking issues,which may lead to further instability of the system[21].The result is not expected and needs to be avoided as much as possible in practice.In this SFESO,(0)=0,resulting in the situations where the initial estimation errors of (17) and (18) are completely removed.Therefore,by estimatingx s,i,instead ofx i,C i,the peaking issue is completely circumvented,even if the large observer gains are used in the SFESO.

    B.Controller Design

    To cope with the strong coupling nonlinear termA2in the system model (8),a modified coordinate transformation is introduced.Define the following tracking errors as:

    where τiis the filtering output.

    To solve the differential explosion problem about the virtual control signal,the following first order low pass filter is introduced as:

    where λiis the positive diagonal matrix,and αiis the virtual control signal to be designed later.The filtering error is formulated as

    Unlike the shifting function in the SFESO,the shifting functionsc(t) with the different setting timeTcis constructed as the following form in the controller:

    Here,we adopt the above shifting functionsc(t) to obtain a novel transformation tracking error onz i,which is given by

    Remark 11:In terms of Lemma 1,(27) and (28),the novel transformation tracking errorz s,1satisfiesz s,1(0)=0 andz s,1(t)=z1(t) fort≥Tc,regardless of the initial value ofz1.In the following steps,the property will be used to solve the deferred output constraint problem.

    Step 1: According to (8),(23) and (28),the time derivative ofz s,1can be derived as

    To address the deferred output constraint onz1,a barrier Lyapunov function aboutz s,1is expressed as

    whereai(i=1,2,3) are the positive design parameters for the purpose of adjusting the magnitude of the followingk zssuch that its magnitude can be suitable for the virtual control law α1in (34).

    The time derivative ofV1is denoted as

    In terms of Young’s inequality,the following equations hold:

    Then,the virtual control law α1is constructed as

    Step 4: Similar to (37),the time derivative ofz4is described as the following form:

    In the end,the anti-disturbance control law for TAS in the presence of the unstable flight of the main aircraft,airflow disturbances and deferred output constraints is designed as

    wherek4is the positive diagonal matrix.

    From(30),(38),(45) and (52),define the Lyapunov function as

    On the basis of (35),(43),(50) and (55),the following inequality holds:

    Based on the above analysis,the following theorem is presented.

    Theorem 2:Consider the nonlinear system(8) under the unstable flight of the main aircraft,airflow disturbances and deferred output constraints.Suppose Assumptions 1–6 hold.By choosing the proper design parametersk i(i=1,...,4),λi(i=1,2,3) andb1satisfying the inequalities (58),the antidisturbance control law (54) is designed based on the SFESOs (13)?(21),the virtual control laws (34),(42),(49),and the first order low pass filter (24),which guarantees that 1)The tracking errorz1can be made arbitrarily small;2) The output constraint (10) is never violated after the pre-specified finite timeTc;3) A ll signals in the closed-loop system are bounded.

    Proof:Integrating (57) yields

    Considering (30),(56) and (59),the following inequality holds:

    In terms ofz1=x1?x dand the boundness ofz1,x d,we can prove thatx1is bounded.Due to the definitions ofk zs,Q zs,it follows thatk zs,Q zsare bounded.Further,by using the fact thatare bounded,the boundness of α1is ensured.Sincee1=τ1? α1ande1is bounded,τ1is also bounded.Furthermore,based onz2=x2?τ1and the boundness ofz2,it is obvious thatx2is bounded.By continuing this reasoning process,the boundness of αi,τi(i=1,2,3) anduis proved.Therefore,all signals in the closed-loop system are bounded.

    IV.SIMULATION RESULTS

    This paper adopts the controllable drogue-based AAR system[25] as the simulation object,in which the tanker,hose and drogue are regarded as the main aircraft,tether and tethered aircraft,respectively.The physical parameters are selected as Table I based on [25] and [32].The acceleration ofthe main aircraft is chosen as[0.3cos(t),0.4cos(t),0.01cos(t)]Tdenoted ino IxIyIzIto show the unstable flight of the main aircraft.The design parameters are selected as

    TABLE I PHYSICAL PARAMETERS

    To verify the effectiveness of the proposed control method under different initial conditions,the following two cases are simulated,where the design parameters under the two cases are the same.

    Case 1:Output constraints are violated at the beginning.The initialvalue of the tracking error isz1(0)=[0.0394,0.0013,0.0014]T.

    Case 2:Initial outputs satisfy the constraints.The initial value of the tracking error isz1(0)=[0.01,0.0005,0.0008]T.

    Fig.2 shows the composite airflow disturbances including the turbulence,gust and wake,in which the turbulence applies the Dryden turbulence model [25],the gust uses the cosine gust model,and the wake induced by the main aircraft adopts the Hallock-Burnham model [33].The figure proves that the airflow environment around TAS is complex and changeable,and that a gust is an extreme airflow disturbance,whose amplitude is much larger than that of the turbulence and wake within 6–12 s.The airflow disturbances bring great challenges to the accurate control of the tethered aircraft with deferred output constraints.

    Fig.2.Composite airflow disturbances including the turbulence,gust and wake.(a) v a,x;(b) v a,y ;(c) v a,z.

    Fig.3.Tracking trajectories.(a) lh ;(b) ξh ;(c) ?h.

    Fig.4.Tracking errors.(a) el ;(b) eξ ;(c) e?.

    Figs.3 and 4 represent the tracking trajectories and tracking errors with the proposed control method in the presence of the unstable flight of the main aircraft,airflow disturbances and deferred output constraints under Cases 1 and 2,respectively.It is clearly observed that the tracking trajectories and tracking errors can meet the constraints after the pre-specified finite timeTc,whether the initial conditions violate or satisfy output constraints.Furthermore,in the face of complex and changeable airflow disturbances described in Fig.2,the tethered aircraft under the proposed control method can still accurately track the desired trajectory,except that the fluctuation ofelis slightly larger at 6–12 s in Fig.4(a) due to an extreme gust.

    Fig.5 shows that the time response of the projection of the tether on thex-axis andy-axis in the presence of the unstable flight of the main aircraft at 15–30 s,where A0 denotes the barycenter of the tethered aircraft and A21 represents the jointn+1.It is obviously seen that the tethered aircraft is still stable in the case with unstable flight of the main aircraft.Fig.6 exhibits the time response ofls,which denotes the total length of the released tether.From Figs.5 and 6,we can draw the conclusion that the negative impact of the unstable flight of the main aircraft on the tethered aircraft can be eliminated by retracting and releasing the tether.

    As depicted in Figs.7 and 8,the real values and estimations ofC′s,2andC′s,4with the proposed control method under Case 1 are exhibited,respectively,confirming good estimation performance of the SFESO.In addition,the peaking issue of the observer is completely circumvented because the initial values of the real values and estimations are equal to zero vectors by introducing (15).Further,it is clearly observed from Fig.8 thatC′s,4,xis not plotted because it is equal to zero during the whole process.Finally,the boundedness of the attitude angles and control inputs is also verified in Figs.9 and 10.

    Fig.5.Time response of the projection of the tether on the x-axis and y-axis under Case 1.

    Fig.6.Total length of the released tether under Case 1.

    Fig.7.Time response of under Case 1.(a) ;(b) ;(c)

    Fig.8.Time response of under Case 1.(a) ;(b)

    Fig.9.Time response of ψ,?, γ .(a) ψ ;(b) ?;(c) γ.

    Fig.10.Control inputs.(a) tn ;(b) uz ;(c) uy.

    V.CONCLUSIONS

    This paper addresses the anti-disturbance control issue of TAS under the conditions of strong coupling nonlinearity,deferred output constraints,unmeasurable tether tension and tension torque,airflow disturbances,and unstable flight of the main aircraft.To deal with nonlinearity,the modified coordinate transformation is constructed.Then,the shifting function is introduced into the BLF-based DSC scheme to solve the deferred output constraint problem of TAS,even when the initial outputs violate constraints.Moreover,the lumped disturbances caused by unmeasurable tether tension and tension torque,airflow disturbances,and unstable flight of the main aircraft are estimated by the proposed SFESO,which also features the ability of completely removing the peaking phenomenon.Finally,the simulation results of the AAR system illustrate the effectiveness of the proposed control method for TAS.In the future,we will study the anti-disturbance control of TAS with deferred output constraints and input saturations,focusing on the trade off when they occur at the same time.

    APPENDIX

    久久99精品国语久久久| 夫妻性生交免费视频一级片| 国产爽快片一区二区三区| 99热6这里只有精品| 黄色视频在线播放观看不卡| 人妻少妇偷人精品九色| 99久久综合免费| 丰满乱子伦码专区| 青春草亚洲视频在线观看| 国产黄片视频在线免费观看| av电影中文网址| 亚洲精品色激情综合| 久久人人爽人人片av| 最新的欧美精品一区二区| 高清午夜精品一区二区三区| 欧美激情极品国产一区二区三区 | 男人添女人高潮全过程视频| 亚洲精品一区蜜桃| 久久久久久久久久久丰满| 亚洲av成人精品一区久久| 久久久国产欧美日韩av| 在线观看免费视频网站a站| 成年人免费黄色播放视频| 亚洲欧美一区二区三区黑人 | 日韩在线高清观看一区二区三区| 亚洲人成77777在线视频| 性高湖久久久久久久久免费观看| 蜜桃在线观看..| 中文字幕人妻熟人妻熟丝袜美| 高清不卡的av网站| 精品国产国语对白av| 午夜久久久在线观看| 国模一区二区三区四区视频| 青春草国产在线视频| 亚洲欧美色中文字幕在线| 大香蕉久久网| 午夜福利网站1000一区二区三区| 国产一区二区在线观看日韩| 国产日韩一区二区三区精品不卡 | 日韩欧美精品免费久久| 丝袜美足系列| 在线观看免费高清a一片| 18禁在线无遮挡免费观看视频| 欧美少妇被猛烈插入视频| 搡老乐熟女国产| 精品久久久久久电影网| 在线观看免费高清a一片| www.av在线官网国产| 国产成人一区二区在线| 欧美日本中文国产一区发布| 久久毛片免费看一区二区三区| 国产黄色视频一区二区在线观看| 国产乱来视频区| 高清毛片免费看| 亚洲国产欧美日韩在线播放| 草草在线视频免费看| 十分钟在线观看高清视频www| 99久久中文字幕三级久久日本| 一边亲一边摸免费视频| 精品一区在线观看国产| 视频中文字幕在线观看| 国产成人av激情在线播放 | 嫩草影院入口| 亚洲综合精品二区| 一本大道久久a久久精品| 一边摸一边做爽爽视频免费| 精品久久久精品久久久| 人成视频在线观看免费观看| 国产在线免费精品| 尾随美女入室| 男女啪啪激烈高潮av片| 午夜激情久久久久久久| 午夜老司机福利剧场| 欧美 日韩 精品 国产| 午夜免费男女啪啪视频观看| 亚洲欧美一区二区三区黑人 | 妹子高潮喷水视频| 国产精品久久久久久精品电影小说| 色婷婷久久久亚洲欧美| 精品久久久精品久久久| 亚洲婷婷狠狠爱综合网| 欧美日韩国产mv在线观看视频| 曰老女人黄片| 晚上一个人看的免费电影| 我的老师免费观看完整版| 日韩成人伦理影院| 日本黄色日本黄色录像| 久久国产亚洲av麻豆专区| 国产综合精华液| 高清不卡的av网站| 国产片特级美女逼逼视频| 丝袜在线中文字幕| 欧美3d第一页| 亚洲无线观看免费| 成人毛片60女人毛片免费| 女人精品久久久久毛片| 人人澡人人妻人| 成人无遮挡网站| 韩国高清视频一区二区三区| 亚洲国产毛片av蜜桃av| 看免费成人av毛片| 国产免费福利视频在线观看| 精品国产乱码久久久久久小说| 少妇的逼好多水| 9色porny在线观看| 精品久久国产蜜桃| 秋霞伦理黄片| 自线自在国产av| av一本久久久久| 中文字幕精品免费在线观看视频 | 丰满迷人的少妇在线观看| 国产日韩一区二区三区精品不卡 | 亚洲美女搞黄在线观看| 亚洲国产毛片av蜜桃av| 欧美人与善性xxx| 免费高清在线观看日韩| 日产精品乱码卡一卡2卡三| 亚洲av福利一区| 观看美女的网站| 最近2019中文字幕mv第一页| 男人爽女人下面视频在线观看| 亚洲欧洲国产日韩| 天堂中文最新版在线下载| 日本av免费视频播放| 亚洲av中文av极速乱| 午夜久久久在线观看| 热99国产精品久久久久久7| 在线观看一区二区三区激情| 日本-黄色视频高清免费观看| 极品人妻少妇av视频| 亚洲成人手机| 国产欧美日韩一区二区三区在线 | 人人妻人人澡人人看| 久久精品久久精品一区二区三区| 国产黄色视频一区二区在线观看| 91精品国产九色| 一级毛片aaaaaa免费看小| 免费av不卡在线播放| 麻豆成人av视频| 妹子高潮喷水视频| 18禁动态无遮挡网站| 在线观看免费视频网站a站| 夫妻性生交免费视频一级片| 最新的欧美精品一区二区| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产最新在线播放| 亚洲精品中文字幕在线视频| 青春草视频在线免费观看| 国产在线视频一区二区| 亚洲欧美一区二区三区黑人 | 婷婷成人精品国产| 成人午夜精彩视频在线观看| 精品国产一区二区三区久久久樱花| 亚洲精品久久久久久婷婷小说| a级毛片免费高清观看在线播放| 99热6这里只有精品| 亚洲人成网站在线观看播放| 国产男女超爽视频在线观看| 这个男人来自地球电影免费观看 | 免费观看无遮挡的男女| 日本av手机在线免费观看| 亚洲精品国产av成人精品| 欧美 日韩 精品 国产| 免费人成在线观看视频色| 五月开心婷婷网| 边亲边吃奶的免费视频| 久久精品国产自在天天线| 久久精品久久久久久噜噜老黄| 亚洲精华国产精华液的使用体验| 亚洲人成77777在线视频| 日本vs欧美在线观看视频| 91精品国产国语对白视频| 国产黄色视频一区二区在线观看| 久久精品国产鲁丝片午夜精品| 久久av网站| 久久精品国产亚洲av涩爱| 国产成人精品无人区| 久久久久久久久大av| av卡一久久| 亚洲五月色婷婷综合| 新久久久久国产一级毛片| 精品少妇黑人巨大在线播放| 日韩人妻高清精品专区| 日韩伦理黄色片| 精品亚洲乱码少妇综合久久| 亚洲精品乱码久久久v下载方式| 久久亚洲国产成人精品v| 黄色毛片三级朝国网站| 少妇人妻精品综合一区二区| 欧美老熟妇乱子伦牲交| 日韩一本色道免费dvd| 女人精品久久久久毛片| 天美传媒精品一区二区| 最近的中文字幕免费完整| 自线自在国产av| 麻豆成人av视频| 欧美精品一区二区免费开放| 日韩成人av中文字幕在线观看| 黄色视频在线播放观看不卡| 青春草国产在线视频| av在线观看视频网站免费| 精品国产乱码久久久久久小说| 欧美精品国产亚洲| 精品国产国语对白av| 99热这里只有精品一区| 亚洲在久久综合| 午夜av观看不卡| 极品人妻少妇av视频| 日韩强制内射视频| 少妇猛男粗大的猛烈进出视频| 精品国产国语对白av| 另类精品久久| 欧美激情 高清一区二区三区| 国产精品一国产av| 在线观看美女被高潮喷水网站| 一区二区av电影网| 少妇被粗大猛烈的视频| 国产片内射在线| 好男人视频免费观看在线| 日韩电影二区| 哪个播放器可以免费观看大片| 热re99久久国产66热| 在线观看一区二区三区激情| 男女边摸边吃奶| 99九九线精品视频在线观看视频| 人妻少妇偷人精品九色| 少妇精品久久久久久久| 成年美女黄网站色视频大全免费 | 日韩一区二区三区影片| 一个人看视频在线观看www免费| 亚洲激情五月婷婷啪啪| 九色成人免费人妻av| 夜夜骑夜夜射夜夜干| 美女视频免费永久观看网站| 亚洲性久久影院| 国产精品国产三级专区第一集| 中文精品一卡2卡3卡4更新| 两个人的视频大全免费| 免费大片黄手机在线观看| 午夜av观看不卡| 人人澡人人妻人| 久久人人爽人人片av| 精品99又大又爽又粗少妇毛片| 高清欧美精品videossex| 丝瓜视频免费看黄片| 精品酒店卫生间| 亚洲熟女精品中文字幕| 嫩草影院入口| 99热这里只有精品一区| 久久精品熟女亚洲av麻豆精品| 国产无遮挡羞羞视频在线观看| 国产色爽女视频免费观看| 黄色配什么色好看| 日韩精品有码人妻一区| 久久久久久久精品精品| 欧美亚洲日本最大视频资源| 成年人免费黄色播放视频| 日韩av不卡免费在线播放| 美女xxoo啪啪120秒动态图| 最近的中文字幕免费完整| 蜜桃在线观看..| av网站免费在线观看视频| 久久久国产一区二区| 久久99热6这里只有精品| 人妻一区二区av| 亚洲av中文av极速乱| 99九九线精品视频在线观看视频| 日日啪夜夜爽| 精品熟女少妇av免费看| 高清av免费在线| 精品人妻熟女av久视频| 久久99热6这里只有精品| 亚洲高清免费不卡视频| 欧美日韩亚洲高清精品| 国产精品.久久久| 亚洲国产av新网站| 精品国产国语对白av| av线在线观看网站| 精品国产露脸久久av麻豆| 一级毛片 在线播放| 国语对白做爰xxxⅹ性视频网站| 国产爽快片一区二区三区| 亚洲国产日韩一区二区| 搡女人真爽免费视频火全软件| 国产成人av激情在线播放 | 在线观看免费高清a一片| 一边亲一边摸免费视频| 免费日韩欧美在线观看| 久久久精品免费免费高清| 日本黄大片高清| 国产男人的电影天堂91| 精品一区二区三区视频在线| 免费看不卡的av| 中文欧美无线码| 国产高清有码在线观看视频| 亚洲不卡免费看| 人人妻人人澡人人爽人人夜夜| 免费播放大片免费观看视频在线观看| 久久影院123| av国产久精品久网站免费入址| 精品99又大又爽又粗少妇毛片| 国产毛片在线视频| 看非洲黑人一级黄片| 一区二区三区四区激情视频| 亚洲精品日韩在线中文字幕| 亚州av有码| 久久久久国产精品人妻一区二区| 热99久久久久精品小说推荐| 国产精品久久久久久av不卡| 91精品国产九色| 久久精品人人爽人人爽视色| 搡女人真爽免费视频火全软件| 在线 av 中文字幕| 久久毛片免费看一区二区三区| 亚洲av欧美aⅴ国产| xxx大片免费视频| 丰满少妇做爰视频| 一级爰片在线观看| 亚洲精品日韩在线中文字幕| 校园人妻丝袜中文字幕| 亚洲怡红院男人天堂| 黄色毛片三级朝国网站| 国产极品天堂在线| av天堂久久9| 免费黄网站久久成人精品| 看十八女毛片水多多多| 搡女人真爽免费视频火全软件| av女优亚洲男人天堂| 久久久久国产网址| 大码成人一级视频| 亚洲五月色婷婷综合| 亚洲中文av在线| 99久久中文字幕三级久久日本| 在线观看免费日韩欧美大片 | 亚洲欧洲精品一区二区精品久久久 | 久久亚洲国产成人精品v| av网站免费在线观看视频| 美女xxoo啪啪120秒动态图| 国产精品嫩草影院av在线观看| 亚洲国产毛片av蜜桃av| 日韩一本色道免费dvd| a级毛片免费高清观看在线播放| 日韩 亚洲 欧美在线| 夫妻午夜视频| 黄色怎么调成土黄色| 国产日韩欧美亚洲二区| 人成视频在线观看免费观看| 久久午夜综合久久蜜桃| 亚洲精品国产av蜜桃| 美女脱内裤让男人舔精品视频| 五月玫瑰六月丁香| 国产老妇伦熟女老妇高清| 久久毛片免费看一区二区三区| 99热国产这里只有精品6| 精品国产国语对白av| 亚洲少妇的诱惑av| 人成视频在线观看免费观看| 黑人猛操日本美女一级片| 午夜免费鲁丝| 国产无遮挡羞羞视频在线观看| 久久av网站| 国产精品国产三级专区第一集| 卡戴珊不雅视频在线播放| 国产色婷婷99| 亚洲熟女精品中文字幕| 2021少妇久久久久久久久久久| 黄色欧美视频在线观看| 韩国高清视频一区二区三区| 亚洲av二区三区四区| 一级片'在线观看视频| 久久精品久久久久久久性| 制服丝袜香蕉在线| 一级二级三级毛片免费看| 美女中出高潮动态图| 一本—道久久a久久精品蜜桃钙片| 啦啦啦啦在线视频资源| 亚洲精品aⅴ在线观看| 午夜福利视频精品| 国产成人一区二区在线| 自拍欧美九色日韩亚洲蝌蚪91| 99热6这里只有精品| 成人亚洲精品一区在线观看| 国产成人av激情在线播放 | 午夜免费男女啪啪视频观看| 精品一区二区免费观看| 曰老女人黄片| 看免费成人av毛片| √禁漫天堂资源中文www| 18禁观看日本| 亚洲av国产av综合av卡| 国产精品久久久久久av不卡| 亚洲精品久久成人aⅴ小说 | 亚洲av国产av综合av卡| 亚洲欧洲精品一区二区精品久久久 | 国产精品一区二区三区四区免费观看| 欧美人与善性xxx| 色吧在线观看| 97精品久久久久久久久久精品| 国产探花极品一区二区| 最黄视频免费看| 久久人人爽人人片av| 亚洲欧美精品自产自拍| 国产黄片视频在线免费观看| 午夜精品国产一区二区电影| 免费av不卡在线播放| 美女xxoo啪啪120秒动态图| 人妻 亚洲 视频| 亚洲伊人久久精品综合| 久久精品夜色国产| 国产成人精品久久久久久| 中文字幕av电影在线播放| 亚洲无线观看免费| 国产成人精品婷婷| 高清在线视频一区二区三区| 日韩av不卡免费在线播放| 在线 av 中文字幕| 欧美三级亚洲精品| 人妻人人澡人人爽人人| 九草在线视频观看| 国国产精品蜜臀av免费| 国产欧美日韩一区二区三区在线 | 9色porny在线观看| 精品人妻一区二区三区麻豆| 久久99蜜桃精品久久| 91精品伊人久久大香线蕉| 精品亚洲成a人片在线观看| 91aial.com中文字幕在线观看| 国产成人aa在线观看| 制服丝袜香蕉在线| 午夜老司机福利剧场| 久久久久国产网址| 人人澡人人妻人| 久久毛片免费看一区二区三区| 欧美精品国产亚洲| 久久久a久久爽久久v久久| 久久久久久久久久久久大奶| 春色校园在线视频观看| 九草在线视频观看| 大码成人一级视频| a级毛片在线看网站| 五月伊人婷婷丁香| 欧美精品亚洲一区二区| 肉色欧美久久久久久久蜜桃| 最新的欧美精品一区二区| 成人国产av品久久久| 肉色欧美久久久久久久蜜桃| 成人漫画全彩无遮挡| 成年女人在线观看亚洲视频| 国产成人91sexporn| 国产精品久久久久久精品古装| 日韩一本色道免费dvd| 国产精品嫩草影院av在线观看| 岛国毛片在线播放| 黄色怎么调成土黄色| 久久av网站| av天堂久久9| 秋霞伦理黄片| 国产精品一区二区在线观看99| 2018国产大陆天天弄谢| 91成人精品电影| 一本色道久久久久久精品综合| av黄色大香蕉| 久久久久久久久大av| 丁香六月天网| 人人妻人人澡人人看| 久久精品国产鲁丝片午夜精品| 日本vs欧美在线观看视频| 内地一区二区视频在线| 欧美人与性动交α欧美精品济南到 | 久久 成人 亚洲| 精品人妻熟女毛片av久久网站| 欧美少妇被猛烈插入视频| 亚洲人成网站在线观看播放| 制服人妻中文乱码| 99re6热这里在线精品视频| 一二三四中文在线观看免费高清| 女人久久www免费人成看片| 成人18禁高潮啪啪吃奶动态图 | 成人国产麻豆网| 久久久久久久国产电影| 国产国语露脸激情在线看| 丝袜在线中文字幕| 男女啪啪激烈高潮av片| 狂野欧美激情性bbbbbb| 亚洲精品美女久久av网站| 永久免费av网站大全| 精品卡一卡二卡四卡免费| 岛国毛片在线播放| 综合色丁香网| 久久久精品免费免费高清| 亚洲国产欧美在线一区| 久久精品国产鲁丝片午夜精品| av福利片在线| 免费看av在线观看网站| 黄片无遮挡物在线观看| 国产乱来视频区| 视频在线观看一区二区三区| a级毛片黄视频| 99国产综合亚洲精品| 午夜福利影视在线免费观看| 99精国产麻豆久久婷婷| 一本久久精品| 全区人妻精品视频| 一级毛片我不卡| 久久久国产精品麻豆| 嫩草影院入口| 欧美最新免费一区二区三区| 男男h啪啪无遮挡| 成人亚洲精品一区在线观看| 一级毛片我不卡| 一级毛片黄色毛片免费观看视频| 亚洲欧美清纯卡通| 国产精品久久久久久久电影| 中文字幕精品免费在线观看视频 | 日本黄色日本黄色录像| 国产高清有码在线观看视频| 亚洲国产日韩一区二区| 久久97久久精品| 大香蕉久久网| 美女内射精品一级片tv| 国产高清不卡午夜福利| 午夜福利影视在线免费观看| 亚洲国产精品一区二区三区在线| 简卡轻食公司| 一级,二级,三级黄色视频| 亚洲av综合色区一区| 99久久中文字幕三级久久日本| 日韩在线高清观看一区二区三区| 精品久久久精品久久久| 在线观看免费日韩欧美大片 | 多毛熟女@视频| 性高湖久久久久久久久免费观看| 黄色视频在线播放观看不卡| 亚洲欧美成人综合另类久久久| 久热这里只有精品99| 卡戴珊不雅视频在线播放| av网站免费在线观看视频| 中文字幕免费在线视频6| 少妇的逼好多水| 女人久久www免费人成看片| 午夜激情av网站| 草草在线视频免费看| 少妇的逼水好多| 好男人视频免费观看在线| 久久久午夜欧美精品| 免费黄网站久久成人精品| 丰满乱子伦码专区| 99国产综合亚洲精品| 久久久精品区二区三区| 大码成人一级视频| 岛国毛片在线播放| 亚洲欧美一区二区三区国产| 国产伦精品一区二区三区视频9| 80岁老熟妇乱子伦牲交| 国模一区二区三区四区视频| 亚洲精品,欧美精品| 亚洲国产毛片av蜜桃av| 久久精品久久精品一区二区三区| 中文天堂在线官网| 99久久人妻综合| 国产精品一区二区在线不卡| 人体艺术视频欧美日本| 国产精品久久久久久精品古装| 国产成人精品婷婷| 久久久国产精品麻豆| 少妇熟女欧美另类| 免费不卡的大黄色大毛片视频在线观看| 99国产精品免费福利视频| 国产片特级美女逼逼视频| 国产一区二区在线观看日韩| 久热这里只有精品99| 成人无遮挡网站| 免费人妻精品一区二区三区视频| 国产亚洲av片在线观看秒播厂| 欧美日韩视频高清一区二区三区二| 久久99一区二区三区| 欧美成人午夜免费资源| 国产精品一区二区在线不卡| 午夜福利在线观看免费完整高清在| 嘟嘟电影网在线观看| 夫妻午夜视频| 国产av码专区亚洲av| 亚洲精品中文字幕在线视频| 一级a做视频免费观看| 色网站视频免费| 亚洲成人一二三区av| 国产精品免费大片| 黑丝袜美女国产一区| 婷婷色av中文字幕| 一级a做视频免费观看| 国产av精品麻豆| 妹子高潮喷水视频| 九色成人免费人妻av| 国产成人精品在线电影| 丰满饥渴人妻一区二区三| 国产男人的电影天堂91| 亚洲经典国产精华液单| 国产69精品久久久久777片| 国产男人的电影天堂91| 人人妻人人澡人人爽人人夜夜| 国产视频内射| 久久人人爽人人爽人人片va| 国产白丝娇喘喷水9色精品| 国产视频内射| 一边亲一边摸免费视频| 99精国产麻豆久久婷婷| 久热久热在线精品观看| 国产片内射在线| 寂寞人妻少妇视频99o| av线在线观看网站| 色视频在线一区二区三区| 日韩人妻高清精品专区| 国产亚洲av片在线观看秒播厂| 国精品久久久久久国模美| 欧美亚洲 丝袜 人妻 在线|