• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Adaptive Uniform Performance Control of Strict-Feedback Nonlinear Systems With Time-Varying Control Gain

    2023-03-09 01:03:38KaiZhaoChangyunWenYongduanSongandFrankLewisLife
    IEEE/CAA Journal of Automatica Sinica 2023年2期

    Kai Zhao,,Changyun Wen,,Yongduan Song,,and Frank L.Lewis, Life

    Abstract—In this paper,we present a novel adaptive performance control approach for strict-feedback nonparametric systems with unknown time-varying control coefficients,which mainly includes the following steps.Firstly,by introducing several key transformation functions and selecting the initial value of the time-varying scaling function,the symmetric prescribed performance with global and semi-global properties can be handled uniformly,without the need for control re-design.Secondly,to handle the problem of unknown time-varying control coefficient with an unknown sign,we propose an enhanced Nussbaum function (ENF) bearing some unique properties and characteristics,with which the complex stability analysis based on specific Nussbaum functions as commonly used is no longer required.Thirdly,by utilizing the core-function information technique,the nonparametric uncertainties in the system are gracefully handled so that no approximator is required.Furthermore,simulation results verify the effectiveness and benefits of the approach.

    I.INTRODUCTION

    IN practice,it is not difficult to design a proper control scheme such that all signals in the closed-loop systems are bounded in the presence of parametric/nonparametric uncertainties [1]?[4].However,the control problem becomes rather challenging if the sign of control coefficient is unknown.The first result was proposed in [5],where an adaptive control law using the so-called Nussbaum-type gain was designed.Motivated by such a technique,remarkable progresses were achieved by designing various adaptive control schemes so that the problem of unknown control direction with constant coefficient is solved ([6]?[8],to just name a few).

    To deal with the case of unknown sign of control coefficient with time-varying yet unknown magnitude,a developed Nussbaum-based lemma was presented in [9].Its fundamental idea is to establish a Nussbaum function-based inequality such that the Lyapunov-like function is upper bounded by a Nussbaum function based manner.Due to the great success of such an approach,many results have been developed for handling unknown control directions with time-varying control coefficients [10]?[12].However,the stability proofs given in the above papers critically rely on some specific form of Nussbaum functions,which dramatically increases the complexity of stability analysis.To address such kind of issues,the work in [13] presented a general Nussbaum-gain-based lemma by developing some additional properties of Nussbaum functions and revealing its fundamental characteristics.This allows more types of Nussbaum functions to be employed to handle the problem of unknown control directions [14]?[17] and thus reduce the complexity of involved.Even so,it is still difficult to use such a lemma for strict-feedback nonlinear systems in the presence of unknown control directions.To our best know ledge,the main challenge is that there is no constructive guidance for us to design an adaptive law for Nussbaum functions so that it satisfies the precondition of the lemma in [13].Therefore,motivated by the above discussion,how to design an adaptive law for Nussbaum functions and then use this lemma to solve the control direction problem of strict-feedback nonlinear systems denotes an interesting issue.

    Furthermore,tracking a known reference with pre-specified performance is of great importance in the practical applications [18].Up to now,some effective control methods on improving tracking performance have been proposed,see for example,prescribed performance bound (PPB)-based control[19] and funnel control (FC) [20].By introducing an error transformation,the PPB controls ensure that the error/system state converges to a pre-given set within a pre-specified convergence rate.However,the corresponding results are essentially semi-global since they require that the bound information on the initial condition of the system must be available for control design,otherwise it is impossible to ensure the desired performance specifications [11],[12],[21],[22].Fortunately,by constructing a class of performance funnels,the funnel control proposed in [20] was able to relax the limit on initial conditions of PPB control.Inspired by such an idea,there are some results developed for various kinds of nonlinear systems [23],[24].Recently,by constructing a global performance function,an adaptive back stepping control developed in [25] was able to ensure the asymptotic tracking with transient performance.However,it is difficult to extend the method in [25] to non-parametric systems with time-varying control coefficients.The main difficulties/challenges come from the following three aspects.The first is that the tuning function-based adaptive back stepping control cannot handle the problem of non-parametric uncertainty;The second challenge is the original lemma in [25] is invalid if the control gain is time-varying and unknown;The last but not the least is that the proposed method in [25] cannot unify the global and semi-global results without changing the control framework(see the detailed discussion in Remark 4).Thus,it is meaningful to develop new techniques to tackle the issue of uniform prescribed performance for non-parametric nonlinear systems with time-varying control coefficients.

    In this paper,based on the parameter estimation technique,we aim to solve the uniform prescribed performance tracking problem for strict-feedback nonlinear systems with nonparametric uncertainties and unknown sign of control gain having time-varying magnitude.The main contributions of this article can be summarized as:

    1) Different from the PPB-based controls [11],[12],[19],[21],[22],by constructing a unified function and a unique scaling function,the proposed control is flexible to handle the global or symmetric semi-global performance cases uniformly just by selecting the initial value of the time-varying scaling function properly,making the controller re-design and stability re-analysis not required;

    2) Different from the specific form of Nussbaum functions in the existing literature [9]?[12],in this paper,by defining an enhanced Nussbaum function (ENF) and imposing a condition on the update law of Nussbaum argument,the developed control relaxes the complicated calculation and proof in the existing results;and

    3) By extracting the core function information from the nonparametric uncertainty,no approximator (such as neural networks and fuzzy logic systems) is required,despite unknown control directions.

    The remainder of the paper is organized as follows.Section II is the problem formulation.Some important functions for converting the required performance and the corresponding system trans formations are introduced in Sections III-A and III-B,respectively.Section III-D presents the control design as well as the stability analysis.Simulation studies are shown in Section IV to verify the theoretical result.The paper is concluded in Section V.

    II.PROBLEM FORMULATION

    In this paper,we consider the following nonparametric strict-feedback nonlinear system with arbitrarily given relative degreen:

    wherexi∈R,i=1,...,n,is the system state withis the system output,and is a controly∈Ru∈R signal,represents an unknown parameter vector,denotes a smooth function,which contains the nonparametric uncertainty,gi(t)=biωi(t) is a time-varying control gain/coefficient,wherebi=1 or ?1 represents the control directi on and ωi(t)>0:[0,∞)→R denotes the magnitude,both of which are unavailable for control design1R denotes the set of real numbers,R+is the set of positive real numbers,and R n represents the set of n?dimensional real vectors.Let |?| be the absolute value of a real number ?..

    Lete(t)=y(t)?yd(t)yd(t) be the tracking error with denoting the desired signal.The control objective of this paper is to develop an adaptive control algorithmfor (1) so that:

    O1.All the closed-loop signals are bounded;and

    O2.The uniform prescribed performance of tracking error can be ensured fort≥0.

    Assumption 1:The desired signal and its derivatives up tonth are bounded,known,and piecewise continuous.

    III.MAIN RESULTS

    A.Performance Transformation

    With respect to the second goal on prescribed tracking performance,we introduce the concept of unified function.

    ? Unified Function (UF).

    Definition 1:A real composite function F(?)∈R with ? ∈[?1,1]is called a unified function if it satisfies:

    1)F(1)=∞,F (0)=0,and F (?1)=?∞;

    2)F(?)+F(??)=0;

    3) F(?):(?1,1)→(?∞,∞)is continuously differentiable with respect to (w.r.t.)?;and

    To ensure that the tracking error is within the pre-given region for ?t≥0,we impose a unique time-varying scaling functionφto replace?in UF F,which has the following features:

    ●φ(k),k=0,1,...,is bounded,known,and piecewise continuous;and

    ●φ(t) with φ(0)=φ0is strictly monotonically decreasing w.r.t.time and limt→∞φ(t)=φf(shuō)with 0<φf(shuō)<φ0≤1 being some constants,na mely,φ (t):[0,∞)→(φf(shuō),φ0][?1,1].

    According to the definition of F and the properties ofφ,it is easy to get the conclusion that:

    By utilizing the time-varying scaling functionφand the properties of UF F in Definition 1,the problem of prescribed tracking performance is stated mathematically equivalent to

    with the initial valuee(0)=e0satisfying F(?φ0)=?b0

    Remark 1:It is worth mentioning that selecting different initial values of time-varying scaling functionφ,φ0,may lead to different results:

    Case 1:If φ0=1,with the property of F in Definition 1,it follows that F(1)=b0=∞,which implies that the constraint on the initial error is vacuous,then the result is global;

    Case 2:If φ0<1,it is seen that F(φ0)=b0<∞ withb0being a positive yet bounded constant,then the initial value has to satisfy |e(0)|

    Therefore,the developed control without changing controller structure gives a unified framework to achieve the global and semi-global prescribed tracking performance uniformly by only choosing different value of φ0.

    ? Normalized Function (NF).

    Actually,by noting that the form of (2) belongs to the error constraint problem,it is difficult and challenging to handle such an issue directly by utilizing the adaptive algorithm.In the following,we give a normalized functionηw.r.t.the tracking erroreto simplify the design difficulty of maintaining error constraint,i.e.,

    which is equivalent to

    It must be emphasized that,according to the properties of UF,it shows that:

    Therefore,it follows from (4) that the performance given in(2) can be rewritten as:

    Since F(·) is monotonic,the problem of unified prescribed performance in (2) (or (5)) can be further converted into

    ? Auxiliary Function (AF).

    Let

    be the so-called auxiliary function.As φ >0,(6) becomes

    and the problem of prescribed performance in (2) (or (5) or(6)) is further converted into guaranteeing (8).

    Let ζ0and η0be the initial values ofζandηatt=0,respectively.To achieve the prescribed tracking performance,the initial values ofeandηmust satisfy ?b00.Furthermore,it is seen from (8) that this inequality actually belongs to the problem of constant yet symmetric constraint.Motivated by output/state/error-constrained control schemes [27],[28],if we are able to find a new variable such that the stabilization of the new variable is the sufficient condition of ensuring (8),then the constant and symmetric constraint is naturally achieved.Therefore,to this end,we give a definition of barrier function (BF) in what follows.

    ? Barrier Function (BF).

    Definition 2:A real composite functions(?) is a barrier function if it satisfies:

    1) The initial value of ? is within the interval (?1,1);

    2)s(?):(?1,1)→(?∞,∞)is continuously differentiable w.r.t.?;

    3)s=±∞?? →±1;

    4)s=0??=0;

    5)s∈L∞?|?|<1;and

    6) There exists a constant ρ>0 such thatover the interval ?={? ∈R||?|<1} and ρ →±∞ if and only i ? →±1.

    From the above discussion it is seen that the initial value ofζis within (?1,1).According to Definition 2,if we are able to utilize the composite functionsw.r.t.ζ(i.e.,s(ζ)) and to develop an advanced control method such thats(ζ)∈L∞for?t≥0,together with the analysis in (2)–(8),the unified pref scribed tracking performance can be guaranteed.Thus we will focus on handling the stabilization problem of BFsin the remaining part of this paper.

    B.System Transformation

    Upon using the expression ofζas shown in (7),with the definitions ofηandφ,it is seen that

    Therefore,it is obviously seen that if an adaptive control lawis designed such that the barrier functionsis bounded over [0,∞),then the objective O2on tracking performance is achieved.

    C.Enhanced Nussbaum Function

    For a smooth functionN(χ):R →R,denote its positive and negative truncated functions byN+(χ) andN?(χ),respectively,i.e.,

    Obviously,the truncated functions satisfy the following properties:N+(χ)≥0 ,N?(χ)≥0 andN(χ)=N+(χ)?N?(χ).If a continuously differentiable functionN(χ) satisfies

    then it is called a Nussbaum function,which has been widely employed for coping with the problem of unknown control directions.In this paper,to handle the unknown time-varying control coefficient with unknown sign and to reduce the difficulty of stability analysis,the concept ofenhanced Nussbaum function (ENF),inspired by [13],is presented.

    Definition 3:A continuously differentiable functionN(χ) is called an ENF,if,for a constantL>1,it satisfies

    According to the properties of Nussbaum function shown in(13) and (14),it is easy to check that the ENF also belongs to the Nussbaum function.To state the Nussbaum-based lemma later and to simplify the stability proof,we present the following lemma.

    Remark 3:The problem of constant control gain with unknown control directions is solved in the existing works [6],[7],[8],[25],whereas the corresponding Nussbaum lemma is no longer applicable to the case in this work as the control coefficient is time-varying,which may affect the stability analysis.Moreover,although some efforts have been made to handle the problem of time-varying case [10],[11],[12],the stability proofs must critically rely on the explicit calculation for the particularly chosen Nussbaum functions.If other forms of Nussbaum functions are employed,the corresponding complicated stability must be re-proved and re-analyzed.In this paper,as long as the employed Nussbaum function and its argument satisfy Definition 3 and (18),for the case of time varying control coefficient,the onerous calculation process is not required,which reduces the difficulty of stability analysis.

    D.Control Design

    Here we present an ENF-based control for strict-feedback system(1) with unknown sign and magnitude of control coefficients.To this end,we utilize the coordinate transformation in what follows:

    where is the virtual control law.

    Before the control design,let αj?1

    Note thatx2=z2+α1,then (27) can be arranged as

    Since the nonlinear functionfidoes not satisfy the parametric composition condition,then the tuning-function based adaptive back stepping control [1] is no longer available.To solve this issue,we impose Assumption 3 in this paper for the nonparametric uncertainty so that we can obtain the deeprooted information,making the approximator not required.Therefore,we have

    Hence,Ξ1can also be upper bounded by the following form:

    where θ1is an unknown virtual constant as defined in (24),and

    is an available function.

    To handle the unknown sign of control gain with time-varying yet unknown magnitude,we employ the ENF to design the virtual control law α1,

    By utilizing the characteristics of ENF,the following Nussbaum-gain technique based virtual control lawis given as:

    Substituting the virtual control and adaptive law as defined in (52)–(54) into (55),we have

    Solving the above inequality yields

    where Πi=Vi(0)+θiδ.

    Step n:The derivative ofznis

    According to the developed control algorithm,we state the following theorem.

    Theorem1:For the strict-feedback nonlinear system(1)with the time-varying control coefficients of an unknown sign.Under Assumptions 1?3,if the control law (60)?(62) is applied,the control objectives O1?O2are ensured.

    Proof:Define the Lyapunov function candidate as

    Substituting the true control law (60) and adaptive laws (61)and (62) into (64),it is deduced that

    Fig.1.The designed procedure diagram.

    Remark 4:The differences between our previous result [25]and this work are mainly exhibited in the system model and the control goal: 1) the non-parametric uncertainty (rather than the parametric uncertainty) in the system model;2) the time varying (rather than constant) control coefficient with unknown control direction;and 3) the uniform prescribed performance (rather than global performance).It is quite difficult and challenging for solving the above issues as the approach in [25] is invalid,for example,for the non-parametric uncertainty,the parameter decomposition condition in [25] does not hold so that the tuning-function-based control cannot be adopted;For the time-varying control coefficient,the Nussbaum lemma in [25] is still ineffective.To solve the above problems,different yet more advanced technical development must be adopted in this paper,we utilize the “core information”technique in Assumption 3 to handle the non-parametric uncertainty,reveal some additional properties of Nussbaum functions in Definition 3 and Lemma 2 to cope with the time varying control gain,and construct a unified function F(φ) in Definition 1 to solve the problem of uniform prescribed performance.Therefore,it is seen that,compared with [25],the proposed scheme has great contributions in control design.

    Remark 5:To achieve the given objectives in this paper,two major difficulties are encountered,as discussed below.

    1) The first is how to ensure the uniform performance for strict-feedback non-parametric systems,which cannot be solved with existing approaches.For example,the PPB control schemes [19],[22] for guaranteeing prescribed performance cannot be applied,because they always require a constraint on the initial error.In this paper,we construct a unified function F and a unique time-varying scaling function φ(t),by selecting different initial values of φ(t),the uniform prescribed performances can be handled.Furthermore,by employing the deep-rooted information,the nonparametric uncertainty in the system can be greatly handled without involving any approximator;and

    2) The second is how to reduce the complex stability analysis caused by the problem of time-varying control gains with unknown control directions.For most of existing Nussbaumgain results [11],[12],[14],only a special Nussbaum function can be proved to be effective based on the explicit calculation on the particular function used.However,the associated stability proof of closed-loop systems is quite complex.In this paper,an ENF is proposed.By establishing some important properties (i.e.,(15) and (16)) and imposing some extra condition on the argument of Nussbaum function (i.e.,(18)),the developed Nussbaum-gain-based Lemma 2 does not rely on the explicit calculation for the particularly chosen Nussbaum functions.This facilitates the stability analysis with great convenience and flexibility.

    IV.SIMULATION STUDIES

    A.Validity Verification of the Proposed Control

    To illustrate the effectiveness of the developed control algorithm,the following strict-feedback nonlinear system is considered:

    Fig.2.The trajectories of tracking error with prescribed boundary under different initial values.

    Fig.3.The trajectories of control input under different initial values.

    Fig.4.The trajectories of parameters χ1 and χ2 under initial condition x(0)=[?1,0]T.

    Fig.5.The trajectories of parameter estimates and under initial condition x(0)=[?1,0]T.

    B.Comparison With the Existing Works

    To verify the merits of the developed algorithmin Section III-D,we mainly give a comparison between the proposed control and the funnel control in [29].To make a fair comparison,we use the following one-link robotic system in[30] for simulation:

    Now we give the detailed formulations of the funnel control in [29] and the proposed control in this paper.

    Funnel control:

    Proposed control:

    where the design parameters and positive function are given asc1=3,c2=6, γ2=0.01,and ε(t)=exp(?0.4t).The initial values of parameter estimates are chosen as=0 and χ2(0)=?0.9.Under the funnel control (71) and the proposed control (72),the simulation results are shown in Figs.6 and 7.It is easily seen that the proposed control has better transient performances than these in the funnel control.

    Fig.6.The trajectories of tracking error under the proposed control and the funnel control.

    Fig.7.The trajectories of control signal under the proposed control and the funnel control.

    V.CONCLUSIONS

    An adaptive uniform prescribed performance control strategy has been developed for strict-feedback nonlinear systems with nonparametric uncertainties and unknown control directions.By utilizing some function transformations and developing some additional features of Nussbaum functions,together with the adaptive back stepping technique,the proposed control exhibits the following features: 1) the boundedness of all signals in the closed-loop systems is ensured;2) the uniform prescribed tracking performance can be ensured without changing the control structure;and 3) the complicated stability proof in the existing Nussbaum-based results is avoided.It is worth emphasizing that although the uniform performance can be ensured by utilizing the developed control,we only achieve the symmetric result,which sacrifices the overshoot of the tracking error in some degree.Moreover,only the single system is considered in this paper.Noting that network systems nowadays have received more and more attention due to its widely applications [31]–[33] (such as microgrids,distributed systems,and mobile robots),therefore,we will study the uniform prescribed performance problem of networked systems in the future work.

    国产精品久久久久久精品电影小说| 国产精品久久久久久av不卡| 一级片'在线观看视频| 69精品国产乱码久久久| freevideosex欧美| 国产精品一区二区在线观看99| 亚洲精品美女久久久久99蜜臀 | 午夜精品国产一区二区电影| 少妇 在线观看| 最后的刺客免费高清国语| 热re99久久国产66热| 久久97久久精品| 伦理电影免费视频| 激情五月婷婷亚洲| 有码 亚洲区| 最近最新中文字幕免费大全7| 日韩伦理黄色片| 精品少妇黑人巨大在线播放| 亚洲欧美中文字幕日韩二区| 亚洲欧美清纯卡通| 9191精品国产免费久久| 午夜91福利影院| 一本大道久久a久久精品| 99久久精品国产国产毛片| 毛片一级片免费看久久久久| 亚洲欧美日韩卡通动漫| 中文字幕av电影在线播放| 成人影院久久| 大片电影免费在线观看免费| 夫妻午夜视频| 97在线视频观看| 多毛熟女@视频| 黑人猛操日本美女一级片| 日韩av免费高清视频| 九色成人免费人妻av| 桃花免费在线播放| 成人国产av品久久久| 午夜福利网站1000一区二区三区| 久久国产精品大桥未久av| 欧美日本中文国产一区发布| 伦精品一区二区三区| 亚洲性久久影院| 精品酒店卫生间| 看十八女毛片水多多多| 亚洲成色77777| 成人亚洲欧美一区二区av| 女性生殖器流出的白浆| 伦理电影大哥的女人| 五月开心婷婷网| 亚洲人成77777在线视频| 久久亚洲国产成人精品v| 80岁老熟妇乱子伦牲交| 国产免费又黄又爽又色| 日韩制服丝袜自拍偷拍| 精品亚洲乱码少妇综合久久| 少妇人妻精品综合一区二区| 一级黄片播放器| 国产精品蜜桃在线观看| 欧美成人精品欧美一级黄| 丝袜在线中文字幕| 在线观看www视频免费| 99热全是精品| 免费看av在线观看网站| 亚洲精品456在线播放app| 国产亚洲一区二区精品| 妹子高潮喷水视频| 热re99久久精品国产66热6| 国产精品一区www在线观看| 美女福利国产在线| 午夜福利视频精品| 久久韩国三级中文字幕| 国产精品久久久久久av不卡| av卡一久久| 最近手机中文字幕大全| av电影中文网址| 精品国产国语对白av| 丝袜美足系列| 国产1区2区3区精品| 午夜免费鲁丝| 亚洲精品av麻豆狂野| 黄色毛片三级朝国网站| 国精品久久久久久国模美| 黄色怎么调成土黄色| 亚洲精品久久午夜乱码| 人人澡人人妻人| 日本爱情动作片www.在线观看| 综合色丁香网| 黄片播放在线免费| 国产免费视频播放在线视频| 午夜91福利影院| www日本在线高清视频| 曰老女人黄片| 老司机亚洲免费影院| 亚洲国产精品成人久久小说| 下体分泌物呈黄色| 激情视频va一区二区三区| 在线亚洲精品国产二区图片欧美| 欧美成人午夜免费资源| 赤兔流量卡办理| 国产在线免费精品| 国产熟女欧美一区二区| 亚洲欧美一区二区三区黑人 | 中文字幕另类日韩欧美亚洲嫩草| 日本-黄色视频高清免费观看| 中文欧美无线码| 亚洲国产精品专区欧美| 精品午夜福利在线看| 亚洲国产精品一区三区| 久久综合国产亚洲精品| 人妻人人澡人人爽人人| 少妇人妻精品综合一区二区| 国产一级毛片在线| videos熟女内射| 热99久久久久精品小说推荐| 美女大奶头黄色视频| 日本黄色日本黄色录像| 波野结衣二区三区在线| 国产精品.久久久| 熟女电影av网| 亚洲精品乱码久久久久久按摩| 汤姆久久久久久久影院中文字幕| 国产一区二区三区av在线| 国产一区二区在线观看日韩| 在线观看三级黄色| 国产亚洲最大av| 亚洲,一卡二卡三卡| 18禁在线无遮挡免费观看视频| 少妇猛男粗大的猛烈进出视频| 毛片一级片免费看久久久久| 水蜜桃什么品种好| 晚上一个人看的免费电影| 乱码一卡2卡4卡精品| 午夜免费男女啪啪视频观看| 成人免费观看视频高清| 一级毛片黄色毛片免费观看视频| 天天操日日干夜夜撸| 丝袜人妻中文字幕| 久久这里只有精品19| 欧美精品国产亚洲| 久久99热这里只频精品6学生| av电影中文网址| 亚洲精品第二区| 欧美成人精品欧美一级黄| 国产日韩欧美在线精品| 亚洲久久久国产精品| 亚洲第一区二区三区不卡| 91aial.com中文字幕在线观看| 精品久久蜜臀av无| 精品少妇久久久久久888优播| 咕卡用的链子| 免费黄色在线免费观看| 亚洲美女搞黄在线观看| 国产免费又黄又爽又色| 久久久欧美国产精品| 高清视频免费观看一区二区| 性高湖久久久久久久久免费观看| 亚洲av日韩在线播放| 久久99精品国语久久久| 又大又黄又爽视频免费| 色吧在线观看| 欧美性感艳星| 高清欧美精品videossex| 熟女人妻精品中文字幕| 啦啦啦啦在线视频资源| 一级爰片在线观看| 久久久精品免费免费高清| www.av在线官网国产| 欧美精品一区二区大全| 成人黄色视频免费在线看| 女人精品久久久久毛片| 狂野欧美激情性xxxx在线观看| 国精品久久久久久国模美| 成年人午夜在线观看视频| 欧美日韩av久久| 男人舔女人的私密视频| 在线观看免费视频网站a站| 国产成人精品福利久久| 成人毛片60女人毛片免费| 久久99精品国语久久久| 精品一区二区三区四区五区乱码 | 婷婷色综合www| 久久午夜福利片| 秋霞在线观看毛片| 精品亚洲乱码少妇综合久久| 宅男免费午夜| 五月开心婷婷网| 满18在线观看网站| av免费观看日本| 97在线视频观看| 亚洲综合精品二区| 啦啦啦啦在线视频资源| 男女无遮挡免费网站观看| 国产一区二区三区综合在线观看 | 精品国产国语对白av| 麻豆乱淫一区二区| 精品人妻一区二区三区麻豆| 99国产精品免费福利视频| 中文字幕另类日韩欧美亚洲嫩草| 大香蕉久久成人网| 精品国产一区二区久久| 色哟哟·www| 18禁在线无遮挡免费观看视频| 亚洲精品成人av观看孕妇| 久久久久久久国产电影| 亚洲人成网站在线观看播放| 国产有黄有色有爽视频| 只有这里有精品99| 亚洲国产欧美在线一区| 色视频在线一区二区三区| a级毛片黄视频| 亚洲av在线观看美女高潮| 国产又色又爽无遮挡免| 大陆偷拍与自拍| 超色免费av| 亚洲综合色网址| 校园人妻丝袜中文字幕| 亚洲四区av| 欧美成人午夜免费资源| 国产成人午夜福利电影在线观看| 高清黄色对白视频在线免费看| 69精品国产乱码久久久| 日本wwww免费看| 欧美性感艳星| 国产精品熟女久久久久浪| 内地一区二区视频在线| 另类亚洲欧美激情| 亚洲人成77777在线视频| 亚洲激情五月婷婷啪啪| 免费不卡的大黄色大毛片视频在线观看| 天美传媒精品一区二区| 人妻系列 视频| 久久久国产欧美日韩av| 亚洲,欧美精品.| 国产免费福利视频在线观看| 如日韩欧美国产精品一区二区三区| 亚洲精品色激情综合| 精品卡一卡二卡四卡免费| 国产亚洲一区二区精品| 天天影视国产精品| 午夜福利网站1000一区二区三区| 亚洲综合色惰| 在线观看免费高清a一片| 久久久久精品性色| 精品99又大又爽又粗少妇毛片| 国产成人午夜福利电影在线观看| 插逼视频在线观看| av播播在线观看一区| 国产成人精品婷婷| 毛片一级片免费看久久久久| 99久国产av精品国产电影| 香蕉精品网在线| 80岁老熟妇乱子伦牲交| 插逼视频在线观看| 午夜精品在线福利| 欧美另类亚洲清纯唯美| 美女福利国产在线| 一区二区三区激情视频| 巨乳人妻的诱惑在线观看| 国产三级黄色录像| 黄片大片在线免费观看| 亚洲成国产人片在线观看| 久久国产亚洲av麻豆专区| 成年人午夜在线观看视频| 精品人妻1区二区| 女性生殖器流出的白浆| 欧美另类亚洲清纯唯美| 国产精品久久久久久精品古装| 91成年电影在线观看| 99久久综合精品五月天人人| 精品国产亚洲在线| 色94色欧美一区二区| 18禁黄网站禁片午夜丰满| 丰满人妻熟妇乱又伦精品不卡| 欧美精品啪啪一区二区三区| videos熟女内射| 极品教师在线免费播放| 国产亚洲欧美98| 精品高清国产在线一区| 村上凉子中文字幕在线| 亚洲av熟女| 亚洲成国产人片在线观看| 精品高清国产在线一区| 精品国产亚洲在线| 欧美黑人精品巨大| 俄罗斯特黄特色一大片| 超色免费av| 高清av免费在线| 色综合婷婷激情| 999久久久精品免费观看国产| av视频免费观看在线观看| 黄频高清免费视频| 很黄的视频免费| 日日爽夜夜爽网站| 久久久久久免费高清国产稀缺| 日韩 欧美 亚洲 中文字幕| 老司机影院毛片| 国产熟女午夜一区二区三区| 成人18禁在线播放| 亚洲一区二区三区不卡视频| 国产欧美日韩一区二区三区在线| 国产不卡av网站在线观看| 男女免费视频国产| x7x7x7水蜜桃| 国产精品一区二区免费欧美| 777久久人妻少妇嫩草av网站| 村上凉子中文字幕在线| 美女高潮到喷水免费观看| 在线观看午夜福利视频| 777米奇影视久久| av电影中文网址| 91字幕亚洲| 亚洲av美国av| 久久天躁狠狠躁夜夜2o2o| 欧美日韩亚洲国产一区二区在线观看 | 国产亚洲欧美在线一区二区| 亚洲一区二区三区欧美精品| 少妇的丰满在线观看| 中文字幕高清在线视频| 亚洲三区欧美一区| 国产精品久久久人人做人人爽| 亚洲av第一区精品v没综合| 国产麻豆69| 免费观看精品视频网站| 欧美亚洲日本最大视频资源| 91麻豆精品激情在线观看国产 | 欧美日韩亚洲综合一区二区三区_| 69精品国产乱码久久久| 91大片在线观看| 精品少妇一区二区三区视频日本电影| 国产真人三级小视频在线观看| 欧美日韩乱码在线| 最新在线观看一区二区三区| 国产成人精品久久二区二区免费| 超碰97精品在线观看| 中文字幕人妻丝袜一区二区| 视频在线观看一区二区三区| 欧美成人免费av一区二区三区 | 国产高清视频在线播放一区| 亚洲男人天堂网一区| 亚洲自偷自拍图片 自拍| 建设人人有责人人尽责人人享有的| 黄色女人牲交| 男女下面插进去视频免费观看| 另类亚洲欧美激情| 交换朋友夫妻互换小说| 成熟少妇高潮喷水视频| 国产精品一区二区在线观看99| 国产精品偷伦视频观看了| 国产高清videossex| 国产精品1区2区在线观看. | 成年人免费黄色播放视频| 在线看a的网站| 一级片'在线观看视频| 久久精品亚洲熟妇少妇任你| 国产一区有黄有色的免费视频| 国产有黄有色有爽视频| 99热网站在线观看| 91九色精品人成在线观看| 日韩欧美国产一区二区入口| 国产一区二区激情短视频| 久9热在线精品视频| 99精品在免费线老司机午夜| 午夜视频精品福利| 亚洲精品粉嫩美女一区| 别揉我奶头~嗯~啊~动态视频| 窝窝影院91人妻| 91字幕亚洲| 国产一区二区三区在线臀色熟女 | 国产精华一区二区三区| 两个人看的免费小视频| 亚洲中文字幕日韩| www.999成人在线观看| 一区在线观看完整版| 国产成人免费无遮挡视频| av线在线观看网站| 少妇裸体淫交视频免费看高清 | 欧美精品啪啪一区二区三区| 午夜福利欧美成人| 精品福利永久在线观看| 国产片内射在线| 国产亚洲一区二区精品| 久久久久精品人妻al黑| 日韩有码中文字幕| 王馨瑶露胸无遮挡在线观看| 精品亚洲成国产av| 亚洲aⅴ乱码一区二区在线播放 | 国产蜜桃级精品一区二区三区 | 免费日韩欧美在线观看| 国产xxxxx性猛交| 99riav亚洲国产免费| xxx96com| 国产高清视频在线播放一区| 午夜福利免费观看在线| 亚洲一区高清亚洲精品| 曰老女人黄片| 91麻豆精品激情在线观看国产 | 满18在线观看网站| www.熟女人妻精品国产| 妹子高潮喷水视频| 国产精品久久久人人做人人爽| 亚洲一码二码三码区别大吗| 亚洲一区高清亚洲精品| 久久精品亚洲精品国产色婷小说| 日韩 欧美 亚洲 中文字幕| 午夜福利在线观看吧| 淫妇啪啪啪对白视频| 亚洲全国av大片| 香蕉丝袜av| 在线av久久热| 777久久人妻少妇嫩草av网站| 日韩欧美一区二区三区在线观看 | 91麻豆av在线| 少妇 在线观看| 精品人妻熟女毛片av久久网站| x7x7x7水蜜桃| 色婷婷久久久亚洲欧美| 热99久久久久精品小说推荐| 久久久国产成人免费| netflix在线观看网站| 国产真人三级小视频在线观看| 亚洲精品自拍成人| 中文字幕av电影在线播放| 波多野结衣av一区二区av| 欧美在线一区亚洲| www.熟女人妻精品国产| 欧美 日韩 精品 国产| 国产精品av久久久久免费| 高清av免费在线| 在线观看www视频免费| 一个人免费在线观看的高清视频| 老司机午夜福利在线观看视频| 国产精品98久久久久久宅男小说| 免费在线观看完整版高清| 亚洲人成电影观看| 大片电影免费在线观看免费| 黄网站色视频无遮挡免费观看| 亚洲精品粉嫩美女一区| 日本撒尿小便嘘嘘汇集6| 成年版毛片免费区| 天堂√8在线中文| 久久久国产成人精品二区 | 搡老熟女国产l中国老女人| 久久精品熟女亚洲av麻豆精品| 色婷婷av一区二区三区视频| 亚洲精品国产区一区二| 国产一区二区激情短视频| 精品午夜福利视频在线观看一区| 12—13女人毛片做爰片一| 亚洲五月天丁香| 精品久久久精品久久久| 亚洲久久久国产精品| 中出人妻视频一区二区| 亚洲精品中文字幕在线视频| 久久中文字幕人妻熟女| 久久影院123| 村上凉子中文字幕在线| 最新的欧美精品一区二区| 99久久99久久久精品蜜桃| 国产不卡av网站在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲av熟女| 精品国产乱子伦一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 99香蕉大伊视频| 不卡av一区二区三区| 国产三级黄色录像| 久久ye,这里只有精品| 日本五十路高清| 久久久久国内视频| 国产在视频线精品| 老汉色av国产亚洲站长工具| 国产国语露脸激情在线看| 黄网站色视频无遮挡免费观看| 久久人妻福利社区极品人妻图片| 亚洲国产中文字幕在线视频| 免费在线观看影片大全网站| 国产av精品麻豆| 人人澡人人妻人| 午夜福利欧美成人| 视频区图区小说| 一级黄色大片毛片| 极品教师在线免费播放| 黄色怎么调成土黄色| 国产主播在线观看一区二区| 日本撒尿小便嘘嘘汇集6| 建设人人有责人人尽责人人享有的| 精品免费久久久久久久清纯 | videos熟女内射| 亚洲七黄色美女视频| 国产成人免费无遮挡视频| 久久精品国产清高在天天线| 成年女人毛片免费观看观看9 | 久久精品aⅴ一区二区三区四区| 亚洲人成电影免费在线| 老司机深夜福利视频在线观看| 一二三四社区在线视频社区8| 一级片'在线观看视频| 极品少妇高潮喷水抽搐| 男人操女人黄网站| 欧美精品亚洲一区二区| 丝袜美腿诱惑在线| 怎么达到女性高潮| 80岁老熟妇乱子伦牲交| 亚洲免费av在线视频| 999久久久国产精品视频| a在线观看视频网站| 热99国产精品久久久久久7| 国产精品一区二区在线观看99| 最新美女视频免费是黄的| 成年动漫av网址| 亚洲成国产人片在线观看| 身体一侧抽搐| 最新的欧美精品一区二区| 色老头精品视频在线观看| 亚洲性夜色夜夜综合| 丝袜美足系列| 一二三四社区在线视频社区8| 色综合欧美亚洲国产小说| 日本五十路高清| 久99久视频精品免费| 欧美成人午夜精品| 久久99一区二区三区| 欧美乱色亚洲激情| 老汉色av国产亚洲站长工具| 夫妻午夜视频| 欧美av亚洲av综合av国产av| av福利片在线| 中文亚洲av片在线观看爽 | 淫妇啪啪啪对白视频| 人妻 亚洲 视频| 久久草成人影院| 婷婷精品国产亚洲av在线 | 亚洲一区中文字幕在线| 免费高清在线观看日韩| xxxhd国产人妻xxx| 午夜福利乱码中文字幕| 亚洲精品乱久久久久久| 日韩制服丝袜自拍偷拍| 午夜精品在线福利| 亚洲成人免费电影在线观看| 国产成人精品久久二区二区91| 黑人操中国人逼视频| 精品人妻熟女毛片av久久网站| 黄色丝袜av网址大全| 欧美在线黄色| 精品国产一区二区久久| 一边摸一边做爽爽视频免费| 狠狠婷婷综合久久久久久88av| 精品久久久精品久久久| 老司机影院毛片| 国精品久久久久久国模美| 人人妻人人爽人人添夜夜欢视频| 夫妻午夜视频| 国产主播在线观看一区二区| 亚洲人成伊人成综合网2020| 欧美日韩亚洲高清精品| 久9热在线精品视频| 亚洲精品中文字幕在线视频| 桃红色精品国产亚洲av| 国产精品亚洲一级av第二区| 国产成人精品久久二区二区91| av电影中文网址| 精品久久久久久久毛片微露脸| 久久久久久久久免费视频了| 国产蜜桃级精品一区二区三区 | 天天躁夜夜躁狠狠躁躁| 国产精品偷伦视频观看了| 久热爱精品视频在线9| 最近最新免费中文字幕在线| 手机成人av网站| 国产成人精品无人区| 中文字幕精品免费在线观看视频| 99精国产麻豆久久婷婷| 黄色毛片三级朝国网站| www.999成人在线观看| 国产成人av激情在线播放| 国产91精品成人一区二区三区| 亚洲成a人片在线一区二区| 黑人操中国人逼视频| 美女高潮到喷水免费观看| 精品少妇久久久久久888优播| 亚洲av美国av| xxx96com| 久热这里只有精品99| 日本vs欧美在线观看视频| 少妇粗大呻吟视频| 男人的好看免费观看在线视频 | 在线观看午夜福利视频| 窝窝影院91人妻| 国产午夜精品久久久久久| 亚洲精品av麻豆狂野| 一二三四社区在线视频社区8| 国产激情欧美一区二区| 露出奶头的视频| 午夜日韩欧美国产| 欧美激情高清一区二区三区| 亚洲成人手机| 老司机影院毛片| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲人成77777在线视频| 免费在线观看日本一区| 啦啦啦 在线观看视频| 亚洲精品av麻豆狂野| 久久久久久久午夜电影 | 窝窝影院91人妻| 一个人免费在线观看的高清视频| 欧美乱码精品一区二区三区| 极品教师在线免费播放| 免费在线观看视频国产中文字幕亚洲| 18禁美女被吸乳视频| 亚洲色图av天堂| 又大又爽又粗| 国产精品综合久久久久久久免费 | 在线观看免费视频日本深夜| 一级作爱视频免费观看|