• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Compact input-reflectionless balanced bandpass filter with flexible bandwidth using three-line coupled structure*

    2023-03-04 15:04:04YahuiZHUJingCAIWeiQINWenwenYANGJianxinCHEN

    Yahui ZHU ,Jing CAI ,Wei QIN ,Wenwen YANG ,Jianxin CHEN??

    1School of Information Science and Technology,Nantong University,Nantong 226019,China

    2Research Center for Intelligent Information Technology,Nantong University,Nantong 226019,China

    Abstract: A compact input-reflectionless balanced bandpass filter (BPF) with flexible bandwidth (BW) using a three-line coupled structure (TLCS) is presented in this paper.For the differential mode (DM),the TLCS is applied to achieve the bandpass response;meanwhile,the input coupled-feed line of the TLCS is reused in the input absorption network.This design shows a good fusion of the absorptive and BPF sections,effectively reducing the circuit size,and the BWs of the two sections that can be controlled separately result in a flexibly controllable DM response BW of the proposed input-reflectionless balanced BPF.Detailed analyses of the ratio of the two-part BWs have been given for the first time,which is vital for the passband flatness and reflectionless feature.In the codesign of this work,the input-reflectionless DM bandpass response can be optimized easily,while wideband common mode (CM) noise absorption is achieved by the input absorption network.To verify the design method,a prototype with a compact layout (0.52λ×0.36λ) is designed and measured in the 0-7.0 GHz range.The DM center frequency(f0) is 2.45 GHz with a measured 3 dB fractional bandwidth of 31.4%.The simulation and measurement results with good agreement are presented,showing good performance,e.g.,low insertion loss (0.43 dB),wide upper stopband for the DM bandpass response (over 20 dB rejection level up to 2.72f0),and wideband DM reflectionless and CM noise absorption (fractional absorption bandwidth of 285.7%).

    Key words: Input-reflectionless filter;Balanced bandpass filter (BPF);Differential mode (DM);Common mode (CM);Three-line coupled structure (TLCS)

    1 Introduction

    Balanced devices have attracted immense attention due to the urgent requirement of immunity to environmental noise,electromagnetic interference,and crosstalk (Zhou and Chen,2017).On this basis,with the development of chip technology,many balanced circuits have been conceived,such as couplers (Feng et al.,2019;Li HY et al.,2019;Zhang ZQ et al.,2021),power dividers (Shi et al.,2016;Xu et al.,2019;Yu et al.,2022),diplexers (Li YC et al.,2020;Song et al.,2020),and antennas (Cao et al.,2020;Kou et al.,2022;Wang et al.,2022).As an important frequency selection component in radio frequency(RF)/microwave circuits and systems,the balanced implementation of the bandpass filter (BPF) is also very important (Chen JX et al.,2016;Bi et al.,2020;Feng et al.,2021;Wu DS et al.,2022).For these works,desirable common mode (CM) rejection,sharp differential mode (DM) roll-off skirt,and compact layout are competitive indicators,and they have been widely considered.However,the stability of the operating system would inevitably be deteriorated by the unwanted DM signals and CM noise returning to the source.This issue has attracted ever-increasing attention.

    Although the traditional adoption of isolators or attenuators alleviates the interference due to undesired reflected signals,it also leads to an inevitable increase in size and insertion loss (IL) (Lee B et al.,2022).Accordingly,the reflectionless technique has been explored recently;it can dissipate the reflected interference energy inside instead of returning it to the source (Morgan and Boyd,2015;Han et al.,2022).Consequently,a large number of single-ended reflectionless filters have been reported (Morgan and Boyd,2015;Gómez-García et al.,2019;Guilabert et al.,2019;Morgan et al.,2019;Wu XH et al.,2020;Fan et al.,2021a,2021b;Lee J et al.,2021;Xu et al.,2022;Zhu YH et al.,2022).Based on this,balanced BPFs with different types have been developed in recent years (Zhang WW et al.,2017;Gómez-García et al.,2018;Lin et al.,2019;Lin and Wu,2020;Yang et al.,2020;Zhu Y et al.,2020;Chen X et al.,2021;Zhang YF et al.,2022) because balanced topology has become popular in modern circuits and systems (Chen JX et al.,2016;Shi et al.,2016;Zhou and Chen,2017;Feng et al.,2019,2021;Li HY et al.,2019;Xu et al.,2019;Bi et al.,2020;Cao et al.,2020;Li YC et al.,2020;Song et al.,2020;Zhang ZQ et al.,2021;Kou et al.,2022;Wang et al.,2022;Wu DS et al.,2022;Yu et al.,2022).

    As a common method in the implementation of single-ended reflectionless behavior,the topology of complementary diplexer based behavior (Gómez-García et al.,2019;Wu XH et al.,2020;Fan et al.,2021a,2021b;Xu et al.,2022;Zhu YH et al.,2022)is used in balanced planar BPFs with symmetrical DM quasi-reflectionless characteristics (Gómez-García,et al.,2018).The multilayered vertical transition structure is adopted (Yang et al.,2020) to realize the wideband input-reflectionless response of the DM BPF,and its out-of-band DM signals are dissipated by resistively terminated microstrip branches.In addition,for CM absorption,symmetrically loaded resistors are used (Zhang WW et al.,2017;Lin et al.,2019;Lin and Wu,2020;Zhu Y et al.,2020).The developed balanced BPFs with the characteristic of wideband CM noise absorption are introduced (Lin and Wu,2020;Zhu Y et al.,2020).Although some efforts have been made to absorb DM signals or CM noise,the absorption of unwanted DM and CM signals is rarely considered at the same time.Recently,balanced BPFs(Chen X et al.,2021;Zhang YF et al.,2022) with both DM reflectionless and CM absorption have been reported.However,the large size is a problematic issue.For example,multiple absorption networks in parallel with multiple bandpass sections shown in Fig.1a result in a large size,although the filtering performance is improved (Chen X et al.,2021).However,the limitation of the DM absorptive bandwidth (BW)still exists because of the mismatch in the out-of-band operating ranges.Obviously,it is still a challenge to achieve a balanced BPF that can absorb both DM reflected signals and CM noise with large absorption BW and miniaturized size simultaneously.

    To solve the above-mentioned problems,we present an input-reflectionless balanced BPF using the synthesis method.It has the advantages of compact layout and high performance by taking the absorptive section (ABSS) and the BPF section into account simultaneously in a codesign procedure,as shown in Fig.1b.The shared transmission line (STL) acts not only as a key part of the ABSS but also as a coupledfeed line (CFL) of the BPF section based on the threeline coupled structure (TLCS).The relationship between the passband BW of the input-reflectionless balanced BPF and the BWs of the ABSS and BPF section is discussed.This has not been mentioned in detail before,in either diplexer-based single-end or balanced design(Zhang WW et al.,2017;Gómez-García et al.,2018,2019;Lin et al.,2019;Lin and Wu,2020;Wu XH et al.,2020;Yang et al.,2020;Zhu Y et al.,2020;Chen X et al.,2021;Fan et al.,2021a,2021b;Xu et al.,2022;Zhang YF et al.,2022;Zhu YH et al.,2022).Meanwhile,the BW design procedure of the proposed input-reflectionless balanced BPF is given.In addition,the ratio of the two-part BWs and its vital effect on the reflectionless performance and DM passband flatness are analyzed in detail,which has important implications for the diplexer-based reflectionless BPF designs.Accordingly,the seamless integration of ABSS and TLCS-based BPF section provides a compact layout while maintaining good DM filtering performance (such as low IL and a wide upper stopband) and wideband reflectionless for both DM and CM.

    Fig.1 Conceptual operation mechanism of the inputreflectionless bandpass filter: (a) traditional cascaded system;(b) fusion design method

    2 Theoretical analysis and design

    The schematic layout of the proposed inputreflectionless balanced BPF is shown in Fig.2.The whole circuit is symmetrical with respect to planeAA′.It consists of a pair of symmetrical TLCS-based BPFs and absorption networks,in which a pair of STLs are reused,with the electrical lengths of all coupled lines and transmission lines being equal to π/2 (quarter waveguide wavelength:λ/4),i.e.,θa=θb=θc=θd=π/2 at the center frequency (f0=2.45 GHz).Figs.3a and 3b show the DM and CM bisected equivalent circuits of the proposed input-reflectionless balanced BPF,respectively.Detailed theoretical analysis and working mechanism are illustrated as follows.

    Fig.2 Schematic of the proposed input-reflectionless balanced bandpass filter

    2.1 Differential mode analysis

    The DM bisected equivalent circuit of the proposed input-reflectionless balanced BPF is shown in Fig.3a.It can be divided into two parts for analysis,i.e.,ABSS and BPF section.

    Fig.3 Equivalent circuits: (a) differential mode;(b) common mode

    2.1.1 Absorptive section

    For the absorption network,ABSS with double lossy stubs is given in Fig.4,consisting of aλ/4 STL with characteristic impedanceZcand twoλ/4 lossy stubs with characteristic impedancesZaandZb.Theλ/4 lossy stubs can be regarded as transparent atf0;hence,the stopband atf0is provided by the STL.In contrast,the out-of-band energy can be absorbed by the lossy resistors (RaandRb).For the ABSS in Fig.4,the input impedanceZin1and the reflection coefficient |S11| can be given as

    Fig.4 Schematic of the proposed absorptive section with double lossy stubs

    whereZ0is the port reference impedance.

    Fig.5 shows the curves of the proposed ABSS with various parameters.As illustrated in Figs.5a-5f,the values ofZa,Zb,andZcaffect the BW of the reflected signals (whenZin1=0,the reflection coefficient|S11|=0 dB).Figs.5e and 5f show thatZcis the primary influencing factor to determine the reflection BW of the ABSS (BWABSS,i.e.,|S11|>-10 dB) in Fig.4,and a higherZccan develop a smaller reflection BW.AsZcincreases,the variation trend of reflection BW tends to be flat,but the mismatch (i.e.,the difference between the value ofZin1and 50 Ω) nearf0rises sharply.In addition,the matching performance is affected byZaandRb.A lower mismatch nearf0can be obtained by a smaller value ofZa.In addition,as plotted in Figs.5g and 5h,the matching performances nearf0and at the second harmonic (2f0) are highly dependent onRb,and they increase simultaneously asRbincreases.The absorption resistorRaassembled at the input port 1 is equal toZ0to achieve wideband CM reflectionless performance,which will be discussed in Section 2.2.

    Fig.5 Calculated Re(Zin1) and Im(Zin1) of the proposed absorptive section: (a-b) with various Za (Zb=80 Ω, Zc=120 Ω,Rb=150 Ω, Ra=50 Ω);(c-d) with various Zb (Za=40 Ω, Zc=120 Ω,Rb=150 Ω,Ra=50 Ω);(e-f) with various Zc (Za=40 Ω, Zb=80 Ω,Rb=150 Ω,Ra=50 Ω);(g-h) with various Rb (Za=40 Ω, Zb=80 Ω,Zc=120 Ω,Ra=50 Ω)

    2.1.2 Bandpass filter section

    For the BPF section,a compact and easy-tointegrate TLCS is used.The configuration of the TLCSbased BPF is shown in Fig.6a.The widths of the CFLs and the centerλ/4 resonator arewcandw0,respectively.The gap between them iss.For simplicity,the three coupled lines are regarded as having equal widths(w0=wc).The impedance matrix (Z-matrix) of this sixport network is given by (Yamamoto et al.,1966)

    According to Chen CP et al.(2013),the transmission response of the symmetric structure can be precisely described by mode impedancesZoe,Zoo,andkcc.Here,kccrepresents the ratio of the coupling coefficient of nonadjacent lines (k13) to that of adjacent ones (k12):

    wherek12andk13can be obtained by the parasitic coupling level (Cin dB) (Chen JX et al.,2015) between two adjacent lines and two nonadjacent lines,respectively.

    The modal equations for the configuration of BPF section using TLCS shown in Fig.6a can be derived as

    whereVandIare the voltages and currents at ports,respectively.By substituting these conditions into Eqs.(3)and (4),theS-parameter matrix (S-matrix) of this twoport BPF can be directly extracted from the six-portZ-matrix as follows:

    According to Eqs.(3)-(9),the calculated frequency response of the TLCS-based BPF is plotted in Fig.6b.There are two transmission zeros (TZs)close to the passband due to the cross-couplingk13of two nonadjacent CFLs (kcc≠0).Meanwhile,three transmission poles (TPs) are generated by the compact TLCS (Feng and Che,2012),which expands the BW and improves the flatness of the passband,avoiding the requirement of multiple resonators.Furthermore,as shown in Fig.7,the BW can be flexibly adjusted bywcands,and it becomes larger aswcandsdecrease.To further improve the roll-off skirt of the passband on the premise of ensuring passband flatness,an additional short stub loaded on the output port CFL,as shown in Fig.8,is proposed.Fig.9 invalidates that the roll-off skirt becomes steeper by this short stub(Zd,θd).It can also enhance the flexibility to adjust the BW of the proposed BPF (BWBPF,i.e.,|S21|>-3 dB) in Fig.8.

    Fig.6 Bandpass filter section using TLCS: (a) configuration;(b) calculated frequency response

    Fig.7 TLCS-based bandpass filter design under different s and wc with varied fTPs (a) and 3-dB FBWBPF (b)

    Fig.8 Configuration of the TLCS-based bandpass filter with stub (Zd,θd)

    Fig.9 Variation of frequency responses with/without stub(Zd,θd) of the TLCS-based bandpass filter (Zoe=175.2 Ω, Zoo=63.3 Ω,kcc=0.53)

    2.1.3 Input-reflectionless differential-mode filter design

    According to the above analysis,the STL is a key factor for determining the BWABSSand BWBPFin this codesign.WhenZcin Fig.4 increases,BWABSSdecreases;in contrast,whenwcin Fig.6a decreases (corresponding to the increase inZc),BWBPFincreases.To obtain good complementarity of ABSS and BPF section,BWBPFcan be tuned bysandZd,while BWABSScan be tuned byZaandZb.As a result,the proposed fusion design method shown in Fig.3a can be easily realized to obtain miniaturization and good performance simultaneously.

    For the DM bisected equivalent circuits of the proposed input-reflectionless balanced BPF shown in Fig.3a,theABCDmatrix of the DM bisected equivalent circuit can be obtained:

    whereM1is theABCDmatrix of the lossy stub (Za,θa,Ra),andM2is theABCDmatrix of the remaining part of the DM half circuits without a lossy stub (Za,θa,Ra).They can be expressed as follows (Pozar,2012):

    whereM2can be obtained by substituting the conditions into Eqs.(3) and (4),and the conditions can be obtained as

    According to Eqs.(10)-(13),theS-matrix of the DM bisected equivalent circuit can be obtained as follows:

    Based on this,the calculated DM frequency response can be achieved.

    Fig.10 shows the good reflectionless performance when BWABSSis approximately equal to BWBPF.Fusing these two parts by reusing the STL,the BW of the overall circuit (BWDM,i.e.,|Sdd21|>-3 dB) in Fig.3a is smaller than BWBPFand BWABSS.It is interesting to determine BWDMby BWBPFand BWABSS,which will be discussed below.At the same time,other performances,such as passband IL and absorption of both DM and CM,are evaluated.To facilitate the description of the resultant DM BPF,the BW ratioα=BWABSS/BWBPFis defined.The calculated DM frequency responses under different fractional BWABSS(FBWABSS=BWABSS/f0) and FBWBPF(FBWBPF=BWBPF/f0) in Table 1,whereα=1 is fixed,are plotted in Fig.11.They show good reflectionless performances,as expected,which can be easily controlled byZaandZbof ABSS andZdands(characterized byZoeandZoo) of the BPF section.From this,it can be concluded that BWDMcan be flexibly controlled by different BWABSSand BWBPF.In conclusion,BWDMis always less than BWBPFor BWABSS,and as BWABSSand BWBPFincrease,BWDMincreases.As shown in Fig.11,both DM passband flatness and reflectionless level are varied,which must be studied to optimize the overall performance of the DM filter.

    Fig.10 Comparison between the calculated differential mode frequency response of the proposed input-reflectionless balanced BPF and the frequency responses of its ABSS and BPF section (Za=26 Ω,Zb=60 Ω,Zc=120 Ω,Zd=120 Ω,Ra=50 Ω,Rb=150 Ω,Zoe=151.7 Ω,Zoo=80.5 Ω,kcc=0.58)

    To evaluate the effect ofα, case 2 in Fig.11 is chosen for study.Fig.12 shows the calculated DM frequency responses of different cases in Table 2.When FBWBPFis fixed at 40%,different values ofαcan be obtained by changingZaandZbof ABSS,and the other parameters are the same as those in case 2 in Table 1.The variableRmaxmarked in Fig.12a is defined as the maximum reflection in the whole band.In addition,the variable PL in Table 2 is defined to quantitatively evaluate the passband flatness (i.e.,distortion at the edges of the passband).The larger the PL,the worse the flatness.PL can be given as follows:

    Fig.11 Calculated differential mode frequency responses of different cases in Table 1 (α=1 is fixed) (References to color refer to the online version of this figure)

    Table 1 Parameters of the input-reflectionless balanced BPFs (α=1)

    Table 2 Parameters of the input-reflectionless balanced BPFs with different α

    where 3-dB BWDM(i.e.,BWDM) and 1-dB BWDM(i.e.,|Sdd21|>-1 dB) can be obtained from Fig.12b.Thus,the reflectionless performance and passband performance of the proposed input-reflectionless balanced BPF can be represented byRmaxand PL,respectively.The curves ofRmaxand PL under differentαvalues are plotted in Fig.13.It shows that the balance between reflectionless performance and passband performance can be adjusted byα.According to the above analysis,the following can be concluded:

    1.BWDMis flexibly controlled by BWBPFand BWABSS.Regardless of the value ofα,BWDMis smaller than BWBPFand BWABSS.

    2.Whenα=1 (e.g.,case 2),input-reflectionless balanced BPF shows a good reflectionless performance (Rmax=-16.90 dB,which is the optimal value in the interval 0.5-2 ofα),and PL=1.59.

    3.Whenα<1,asαdecreases from 1 to 0.5 in case 2a,Rmaxincreases to -11.74 dB,which manifests a degradation of the reflectionless performance.Moreover,as shown in Fig.12b,the passband produces severe distortion,which is characterized by PL=2.11.

    Fig.12 Calculated differential mode frequency responses of different cases in Table 2: (a) transfer coefficient (|Sdd21|) and reflection coefficient (|Sdd11|);(b) |Sdd21| (BWBPF is fixed as 40% with some parameters being the same as in case 2: Zoe=151.7 Ω,Zoo=80.5 Ω,Zd=120 Ω,kcc=0.58,Zc=120 Ω,Ra=50 Ω,Rb=150 Ω) (References to color refer to the online version of this figure)

    4.Whenα>1,the reflectionless performance around the passband is affected.Whenα=1.5 in case 2d,there is a slight effect on the reflectionless performance (Rmax=-13.07 dB),but the passband performance (PL=1.38) is improved.However,whenα=2 in case 2f,the reflectionless performance deteriorates sharply (Rmax=-9.45 dB),although its passband performance is enhanced (PL=1.29).

    5.In summary,whenαincreases from 0.5 to 1,Rmaxdecreases from -11.74 dB to -16.90 dB,while whenαincreases from 1 to 2,Rmaxincreases from-16.90 dB to -9.45 dB.In addition,PL decreases asαincreases,which means that the largerαis,the flatter the passband is.According to Fig.13,to obtain a good compromise between reflectionless performance(Rmax<-10 dB) and passband performance (PL<1.5),the optimal interval forαis 1.2-1.9.

    Fig.13 Performance of the proposed input-reflectionless balanced BPF with varied α in Table 2 (Rmax and PL)

    In addition,the BWDMandαare determined by the parametersZa,Zb,Zc,Zd,Zoe,Zoo,andkcc.Rbin Fig.3a can also be used to further optimize the reflectionless performance of the proposed filter.According to Fig.14,although the matching performance of the ABSS nearf0and at the second harmonic (2f0) is improved by increasingRb,as in Figs.5g and 5h,with the variedRb,passband and reflectionless performances have opposite variation trends,and thus a trade-off is needed.Specifically,asRbincreases from 50 Ω to 300 Ω,the reflectionless performance increases (Rmaxdecreases from -5.86 dB to -16.72 dB),but PL increases from 1.19 to 1.56.Accordingly,considering a good compromise between reflectionless performance and passband performance,the range ofRbis 50-150 Ω.

    Fig.14 Calculated differential mode frequency responses of case 2d with varied Rb (References to color refer to the online version of this figure)

    Through the above analysis,the BWABSSand BWBPFof the proposed input-reflectionless balanced BPF can be easily adjusted to achieve flexible BWDM,and the BW ratioαis a significant indicator to achieve both wideband DM absorption and good passband performance.In addition,the performance can be easily optimized by the codesign method.

    2.2 Common mode analysis

    When the CM excitation is applied to the proposed input-reflectionless balanced BPF in Fig.2,the symmetrical planeAA′ is equivalent to a magnetic wall.Thus,the CM bisected equivalent circuit can be obtained,as shown in Fig.3b.To obtain wideband CM absorption performance,the absorption behavior at both DC and 2f0is a key indicator.At DC and 2f0,theλ/4 open stubs (ZbandZd) and the absorption resistorRbloaded in the terminal of CFLs can be regarded as transparent,so that most CM noise can be absorbed by the absorption resistorRa.Thus,whenRa=Z0,the ideal absorption behavior at both DC and 2f0can be obtained.Meanwhile,Rbin Fig.3b can be used to optimize CM absorption and suppression levels.The calculated CM frequency responses with the same parameters as in case 2d with variedRbare plotted in Fig.15.AsRbincreases,the CM absorption level increases,but the suppression level atf0worsens.Considering a good balance between the CM suppression level and CM absorption performance,and combined with the requirement of DM reflectionless performance,the final optimization range ofRbis 100-150 Ω.

    Fig.15 Calculated common mode frequency responses of case 2d with varied Rb (References to color refer to the online version of this figure)

    To summarize the above DM and CM analysis,the main design procedure of the proposed inputreflectionless balanced BPF is as follows:

    1.Determine the center frequencyf0and BWDM.According to Fig.10,the relationship between BWDMand BWBPFis BWBPF>BWDM.On this basis,the approximate BWBPFcan be determined from different cases in Table 1,and it can be easily achieved by adjustingsandZdof the BPF section.

    2.Considering the balance between the DM reflectionless performance and passband performance,αcan be determined according to the curves ofRmaxand PL versusαshown in Fig.13.

    3.Once BWDM,BWBPF,andαare determined,BWABSScan be determined.This can be easily achieved by adjusting theZaandZbof the ABSS.

    4.AdjustRbto obtain a wideband DM and CM reflectionless behavior,minimize DM passband distortion,and improve the CM suppression level.Then,the optimal range ofRb(100-150 Ω) can be obtained.

    5.After the initial impedance parameters are obtained by the above design procedure,the proposed input-reflectionless balanced BPF can be constructed and further optimized by the full-wave High-Frequency Structure Simulator (HFSS) once the physical dimensions are converted by Line Calc calculation in the Advanced Design System (ADS).

    3 Implementation and discussion

    For demonstration,the proposed TLCS-based input-reflectionless balanced BPF is fabricated on a Rogers RO4003 substrate with a relative dielectric constantεr=3.55,dielectric loss tanδ=2.7×10-3,dielectric thicknessh=0.813 mm,and metallization thicknesst=0.035 mm.The center frequencyf0is set at 2.45 GHz.The design specification of the ripple FBWDM=32%is prescribed for the proposed input-reflectionless balanced BPF.With the selected BW ratioα=1.5 and FBWBPF=40%,FBWABSSis 60%.Based on this,the optimized parameters (Za=36 Ω,Zb=80 Ω,Zc=115 Ω,Zd=125 Ω,Ra=50 Ω,Rb=130 Ω) can be easily obtained according to the design procedure in Section 2.2.

    Then,the physical model can be built on HFSS,and the layout can be optimized.The photograph and layout of the proposed filter are shown in Fig.16.The simulation is performed with HFSS,and the measurement is conducted by the Agilent N5230A network analyzer,which is a four-port network analyzer that can be used to measure the balanced circuits directly.The measuredS-parameters are plotted in Fig.17 along with the simulation results for comparison.Although the differences between the simulation and measurement results,such as |Sdd11| and |Scc11|,can be observed at approximately 6 GHz,the fractional absorption BWs of both DM and CM in the simulation and measurement are almost the same.The largest deviation comes from the simulated and measured |Sdd11|,which would be caused by the manufacturing tolerances (e.g.,dielectric constant of the employed substrate and implementation of the demonstration board).Overall,the differences between the results in Fig.17 are acceptable.For the DM shown in Fig.17a,the measured FBWDMis approximately 31.4%.Meanwhile,the DM absorptive BW is 285.7%,and the minimum in-band IL (ILmin)is 0.43 dB.The improved roll-off skirt is obtained by four TZs,which are located at 0,1.28,3.28,and 4.72 GHz.Moreover,the rejection levels of over 20 dB at the upper stopband extend to 6.65 GHz (2.72f0).For the CM shown in Fig.17b,it is noted that the absorptive BW is also in a wide range (DC to 7 GHz,285.7%),and over 18.4 dB CM suppression (|Scc21|) is achieved from DC to 4.9 GHz (2f0).

    Fig.16 Implementation of the proposed input-reflectionless balanced bandpass filter: (a) photograph;(b) layout (l=18 mm,l0=19.25 mm, la=19.85 mm,lb=19.29 mm,ld=20.3 mm,w=1.78 mm, w0=0.2 mm, wa=2.9 mm,wb=0.74 mm,wc=0.28 mm, wd=0.2 mm,s=0.44 mm)

    Fig.17 Simulation (dashed lines) and measurement (solid lines) results of the proposed input-reflectionless balanced BPF: (a) differential mode;(b) common mode (References to color refer to the online version of this figure)

    Comparisons with previous reflectionless differential BPFs are summarized in Table 3.Gómez-García et al.(2018) and Yang et al.(2020) did not consider the absorption of the reflected CM noise,which is a key factor for stabilizing the RF system.Moreover,due to the cascaded topology in Gómez-García et al.(2018) and the multi-layered vertical transition structure in Yang et al.(2020),the circuit sizes are large.Some efforts have been made to consider the absorption of unwanted DM and CM signals (Chen X et al.,2021;Zhang YF et al.,2022).DM absorptive BW is approximately 275%,and the CM absorptive BW reaches 200% (Zhang YF et al.,2022).However,its DM upper stopband BW is limited due to the use of theλ/2 coupled ring resonator.In contrast,the proposed filter with a wider upper stopband for DM is due to the adoption of the TLCS.To extend the absorptive BW for the DM and CM,the cascading design is used,resulting in an enlarged circuit size and high IL(Chen X et al.,2021).As seen from Table 3,the proposed input-reflectionless balanced BPF has a more compact circuit layout due to the syncretic working mechanism and the adoption of TLCS.Meanwhile,the proposed filter exhibits larger DM and CM absorptive BWs and lower ILmindue to the design guidelines derived from the detailed analysis.In conclusion,the proposed differential filter exhibits remarkable DM and CM reflectionless performance and filtering performance under the premise of a compact layout.

    Table 3 Comparisons with previous reflectionless differential bandpass filters

    4 Conclusions

    In this paper,a compact input-reflectionless balanced bandpass filter with a flexible bandwidth is presented.It features an innovative conception of the fusion design,especially reusing the shared transmission lines of the absorptive section and bandpass filter section,resulting in a miniaturized circuit and low insertion loss.Meanwhile,the three-line coupled structure introduces the miniaturization of the bandpass filter section with three controllable transmission poles,so that BWBPFcan be easily controlled.In addition,BWABSSand BWBPFcan be adjusted independently,which is helpful for obtaining flexible BWDM,so that the specifications of the differential mode reflectionless filter can be realized in practical applications.In conclusion,the proposed input-reflectionless balanced bandpass filter caters to the development trend of miniaturization and high performance of wireless communication equipment,while eliminating the common mode and differential mode reflected interference signals that are common in the traditional balanced bandpass filter,and is an attractive choice for the radio frequency front end of the wireless communication system.

    Contributors

    Yahui ZHU designed the research,processed the data,and drafted the paper.Jing CAI,Wei QIN,Wenwen YANG,and Jianxin CHEN helped organize the paper.Yahui ZHU and Jianxin CHEN revised and finalized the paper.

    Compliance with ethics guidelines

    Yahui ZHU,Jing CAI,Wei QIN,Wenwen YANG,and Jianxin CHEN declare that they have no conflict of interest.

    Data availability

    The data that support the findings of this study are available from the corresponding author upon reasonable request.

    日本午夜av视频| 老鸭窝网址在线观看| 国产欧美日韩精品亚洲av| www.999成人在线观看| 老汉色av国产亚洲站长工具| 波野结衣二区三区在线| 天堂中文最新版在线下载| 久久久国产精品麻豆| 国产精品av久久久久免费| 最近最新中文字幕大全免费视频 | 午夜久久久在线观看| 国产人伦9x9x在线观看| 久久ye,这里只有精品| 久久综合国产亚洲精品| 搡老乐熟女国产| 久久国产精品人妻蜜桃| 天天躁日日躁夜夜躁夜夜| 免费日韩欧美在线观看| 一级a爱视频在线免费观看| 亚洲自偷自拍图片 自拍| 超碰成人久久| 久久青草综合色| 丰满少妇做爰视频| 97人妻天天添夜夜摸| 蜜桃国产av成人99| 久久毛片免费看一区二区三区| 国产精品九九99| 一级片免费观看大全| 日韩大码丰满熟妇| 真人做人爱边吃奶动态| 美女视频免费永久观看网站| 亚洲国产精品国产精品| 男女无遮挡免费网站观看| 亚洲国产毛片av蜜桃av| 免费少妇av软件| 日韩电影二区| av在线老鸭窝| 日韩欧美一区视频在线观看| 日本黄色日本黄色录像| 亚洲国产精品一区二区三区在线| 成年人黄色毛片网站| 一本—道久久a久久精品蜜桃钙片| 亚洲成人手机| 伊人久久大香线蕉亚洲五| 成年人免费黄色播放视频| 欧美成狂野欧美在线观看| 中国国产av一级| 久热爱精品视频在线9| 午夜免费观看性视频| 天天操日日干夜夜撸| 成人国语在线视频| 亚洲一区中文字幕在线| 成年动漫av网址| 久久精品国产亚洲av高清一级| 国产成人欧美在线观看 | 国产熟女欧美一区二区| 各种免费的搞黄视频| 美国免费a级毛片| 午夜免费成人在线视频| 成年美女黄网站色视频大全免费| 一边亲一边摸免费视频| 97精品久久久久久久久久精品| 欧美黑人精品巨大| 久久九九热精品免费| 亚洲国产精品一区三区| 18禁观看日本| 肉色欧美久久久久久久蜜桃| 91麻豆av在线| 午夜两性在线视频| 亚洲第一青青草原| 国产极品粉嫩免费观看在线| 91九色精品人成在线观看| 新久久久久国产一级毛片| 国产精品一区二区在线观看99| 99精国产麻豆久久婷婷| 最新的欧美精品一区二区| 国产欧美日韩综合在线一区二区| 精品久久蜜臀av无| 久久精品久久精品一区二区三区| 女性被躁到高潮视频| 久久久久久人人人人人| 亚洲久久久国产精品| 国产精品一国产av| 午夜日韩欧美国产| 男女无遮挡免费网站观看| 亚洲av欧美aⅴ国产| 免费av中文字幕在线| 亚洲精品第二区| kizo精华| 国产极品粉嫩免费观看在线| 国产精品久久久久成人av| 美女午夜性视频免费| 亚洲黑人精品在线| 亚洲av电影在线观看一区二区三区| 侵犯人妻中文字幕一二三四区| 久久天堂一区二区三区四区| 亚洲人成电影免费在线| 亚洲欧美清纯卡通| 午夜免费男女啪啪视频观看| 国产极品粉嫩免费观看在线| 高清欧美精品videossex| 国产一区有黄有色的免费视频| 国产成人精品久久二区二区91| 亚洲国产中文字幕在线视频| 妹子高潮喷水视频| 成人亚洲欧美一区二区av| 桃花免费在线播放| 97精品久久久久久久久久精品| 亚洲av美国av| 午夜老司机福利片| 热99国产精品久久久久久7| 亚洲国产看品久久| 亚洲av国产av综合av卡| xxxhd国产人妻xxx| 涩涩av久久男人的天堂| 日韩av在线免费看完整版不卡| 在线观看国产h片| 超碰97精品在线观看| 大香蕉久久网| 国产成人免费观看mmmm| 真人做人爱边吃奶动态| 亚洲国产欧美日韩在线播放| 午夜福利一区二区在线看| 性色av乱码一区二区三区2| 日本wwww免费看| 高清不卡的av网站| 天堂俺去俺来也www色官网| 国产高清视频在线播放一区 | 久久久久久久精品精品| 亚洲国产最新在线播放| 少妇粗大呻吟视频| 亚洲国产欧美日韩在线播放| 国产男人的电影天堂91| 一边摸一边抽搐一进一出视频| 涩涩av久久男人的天堂| 成年美女黄网站色视频大全免费| 亚洲国产欧美在线一区| 成年人午夜在线观看视频| 在线观看人妻少妇| 久久女婷五月综合色啪小说| 日本一区二区免费在线视频| 日日夜夜操网爽| 国产无遮挡羞羞视频在线观看| 欧美变态另类bdsm刘玥| 一级片免费观看大全| 高清av免费在线| 亚洲国产欧美网| 亚洲av成人不卡在线观看播放网 | 乱人伦中国视频| 亚洲中文av在线| 欧美日韩福利视频一区二区| 真人做人爱边吃奶动态| 自线自在国产av| 美女高潮到喷水免费观看| 欧美成狂野欧美在线观看| 国产精品 欧美亚洲| 天天躁日日躁夜夜躁夜夜| 国产成人欧美| 久久毛片免费看一区二区三区| 国产男女超爽视频在线观看| 国产黄色免费在线视频| 免费在线观看黄色视频的| 两人在一起打扑克的视频| 亚洲精品乱久久久久久| 久久国产精品人妻蜜桃| 欧美性长视频在线观看| 亚洲国产精品国产精品| 免费在线观看完整版高清| 免费女性裸体啪啪无遮挡网站| 亚洲国产欧美在线一区| 一区二区三区激情视频| 亚洲国产日韩一区二区| 久久久久视频综合| 亚洲熟女毛片儿| 亚洲成av片中文字幕在线观看| 美女主播在线视频| 在现免费观看毛片| 久久久久精品人妻al黑| 国产男人的电影天堂91| 另类精品久久| 国产精品一区二区在线观看99| 少妇的丰满在线观看| 亚洲欧美一区二区三区国产| 欧美激情极品国产一区二区三区| 日韩大片免费观看网站| 丰满饥渴人妻一区二区三| 黄色视频不卡| 欧美日韩亚洲国产一区二区在线观看 | 爱豆传媒免费全集在线观看| 国产亚洲av高清不卡| 亚洲精品美女久久久久99蜜臀 | 好男人电影高清在线观看| 免费观看人在逋| 亚洲国产中文字幕在线视频| 亚洲专区中文字幕在线| 99国产精品一区二区蜜桃av | 国产精品久久久久久精品古装| av有码第一页| 国产亚洲午夜精品一区二区久久| 免费看av在线观看网站| 男女之事视频高清在线观看 | 亚洲国产成人一精品久久久| 欧美日韩亚洲综合一区二区三区_| 精品欧美一区二区三区在线| 欧美日韩亚洲高清精品| 最近最新中文字幕大全免费视频 | 亚洲,欧美精品.| 国产精品成人在线| svipshipincom国产片| 国产精品熟女久久久久浪| 老司机在亚洲福利影院| av在线老鸭窝| 亚洲人成77777在线视频| 中文字幕人妻熟女乱码| 欧美久久黑人一区二区| 国产精品99久久99久久久不卡| 国产成人系列免费观看| 丝袜美腿诱惑在线| av片东京热男人的天堂| 欧美日韩国产mv在线观看视频| 午夜免费成人在线视频| 90打野战视频偷拍视频| 一区二区三区精品91| 搡老乐熟女国产| 国产日韩欧美视频二区| 久久久欧美国产精品| 一级毛片黄色毛片免费观看视频| 国产麻豆69| av国产久精品久网站免费入址| 精品人妻一区二区三区麻豆| 国产有黄有色有爽视频| xxx大片免费视频| 精品福利观看| 欧美黄色片欧美黄色片| 人人妻人人澡人人看| 咕卡用的链子| 91成人精品电影| cao死你这个sao货| 亚洲综合色网址| www日本在线高清视频| 亚洲第一av免费看| 久久久久久久久久久久大奶| 久久综合国产亚洲精品| 欧美黑人精品巨大| 精品久久久久久电影网| 老司机靠b影院| 欧美精品一区二区大全| 一本综合久久免费| 大香蕉久久网| 精品少妇久久久久久888优播| 青春草视频在线免费观看| 亚洲欧美成人综合另类久久久| 一边摸一边做爽爽视频免费| 亚洲国产欧美一区二区综合| 国语对白做爰xxxⅹ性视频网站| 亚洲,欧美精品.| 自拍欧美九色日韩亚洲蝌蚪91| 欧美 日韩 精品 国产| 国产精品 国内视频| 亚洲国产最新在线播放| 成人亚洲精品一区在线观看| 国产av国产精品国产| 国产av一区二区精品久久| 99久久精品国产亚洲精品| 久久精品久久久久久久性| 亚洲国产精品一区二区三区在线| 亚洲精品国产av成人精品| 欧美日本中文国产一区发布| 欧美日韩视频高清一区二区三区二| 日韩 欧美 亚洲 中文字幕| 久久久精品国产亚洲av高清涩受| 99热全是精品| 亚洲一码二码三码区别大吗| 日韩免费高清中文字幕av| 在线天堂中文资源库| 亚洲欧洲精品一区二区精品久久久| 人人澡人人妻人| 国产精品麻豆人妻色哟哟久久| 日韩伦理黄色片| 一区二区三区激情视频| 最新的欧美精品一区二区| 老司机亚洲免费影院| 一区二区三区四区激情视频| 80岁老熟妇乱子伦牲交| 国产男女内射视频| 搡老岳熟女国产| 人人妻人人澡人人看| 热re99久久精品国产66热6| 老鸭窝网址在线观看| 一本大道久久a久久精品| 日韩熟女老妇一区二区性免费视频| 久久久久国产一级毛片高清牌| 国产精品国产三级国产专区5o| 看十八女毛片水多多多| 桃花免费在线播放| 最近手机中文字幕大全| 亚洲国产毛片av蜜桃av| 久久99一区二区三区| 亚洲精品国产一区二区精华液| 亚洲成人免费电影在线观看 | 久久综合国产亚洲精品| 欧美+亚洲+日韩+国产| 久久久久久久久久久久大奶| 啦啦啦在线免费观看视频4| 久久久欧美国产精品| av网站在线播放免费| 丁香六月天网| 日韩大片免费观看网站| 日本91视频免费播放| 国产极品粉嫩免费观看在线| 国产精品久久久久久精品古装| 免费观看人在逋| 亚洲精品久久午夜乱码| 国产在线观看jvid| 婷婷色麻豆天堂久久| 99久久综合免费| 亚洲国产看品久久| 91国产中文字幕| 国产成人精品久久二区二区免费| 亚洲国产看品久久| 国产精品一国产av| 夜夜骑夜夜射夜夜干| 欧美激情 高清一区二区三区| 七月丁香在线播放| 国产日韩欧美亚洲二区| 欧美黄色淫秽网站| 波多野结衣av一区二区av| 国产麻豆69| 男人舔女人的私密视频| 黄色片一级片一级黄色片| 欧美 日韩 精品 国产| 久久精品亚洲av国产电影网| 久久久精品区二区三区| 国产色视频综合| 午夜两性在线视频| 久久精品亚洲av国产电影网| 亚洲av综合色区一区| 久久99精品国语久久久| 亚洲三区欧美一区| 成人手机av| 亚洲五月色婷婷综合| cao死你这个sao货| 亚洲欧美一区二区三区国产| 婷婷色麻豆天堂久久| 九色亚洲精品在线播放| 色精品久久人妻99蜜桃| 一边摸一边做爽爽视频免费| 亚洲精品自拍成人| 日韩一区二区三区影片| 日韩av在线免费看完整版不卡| 黄色视频在线播放观看不卡| 伊人亚洲综合成人网| 五月天丁香电影| 精品免费久久久久久久清纯 | 欧美亚洲 丝袜 人妻 在线| 97人妻天天添夜夜摸| 人成视频在线观看免费观看| 9热在线视频观看99| 纵有疾风起免费观看全集完整版| 老司机在亚洲福利影院| 丝袜人妻中文字幕| 免费看av在线观看网站| 最黄视频免费看| 在线亚洲精品国产二区图片欧美| 视频区图区小说| 国产爽快片一区二区三区| bbb黄色大片| 男人舔女人的私密视频| 亚洲伊人久久精品综合| 91成人精品电影| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美色中文字幕在线| 爱豆传媒免费全集在线观看| 男女无遮挡免费网站观看| 日韩av免费高清视频| 在线观看免费视频网站a站| www.精华液| av视频免费观看在线观看| 免费av中文字幕在线| 久久毛片免费看一区二区三区| 丰满人妻熟妇乱又伦精品不卡| 赤兔流量卡办理| 搡老乐熟女国产| 免费在线观看完整版高清| 人人澡人人妻人| 国产欧美日韩精品亚洲av| 久久99热这里只频精品6学生| 日韩,欧美,国产一区二区三区| 亚洲精品av麻豆狂野| 性高湖久久久久久久久免费观看| 欧美乱码精品一区二区三区| 高清黄色对白视频在线免费看| 亚洲欧美中文字幕日韩二区| 久久精品成人免费网站| 欧美日韩黄片免| 亚洲天堂av无毛| 久久久久久久大尺度免费视频| 国产极品粉嫩免费观看在线| 国产野战对白在线观看| 中文精品一卡2卡3卡4更新| 巨乳人妻的诱惑在线观看| 大片电影免费在线观看免费| 另类亚洲欧美激情| 黑人欧美特级aaaaaa片| 女人久久www免费人成看片| 精品少妇内射三级| 国产伦人伦偷精品视频| 黄色视频在线播放观看不卡| 亚洲五月婷婷丁香| 18禁观看日本| 亚洲欧美成人综合另类久久久| 国产无遮挡羞羞视频在线观看| 欧美精品人与动牲交sv欧美| 又黄又粗又硬又大视频| 尾随美女入室| 成人三级做爰电影| 国产在线一区二区三区精| 久久九九热精品免费| 国产精品99久久99久久久不卡| 免费观看人在逋| 在线观看免费高清a一片| kizo精华| 啦啦啦在线观看免费高清www| 韩国精品一区二区三区| 麻豆av在线久日| 在现免费观看毛片| 老司机影院毛片| 亚洲 欧美一区二区三区| 久久毛片免费看一区二区三区| 可以免费在线观看a视频的电影网站| 国产欧美日韩一区二区三区在线| 久久九九热精品免费| 少妇 在线观看| 中文字幕另类日韩欧美亚洲嫩草| xxxhd国产人妻xxx| 免费看不卡的av| 又粗又硬又长又爽又黄的视频| 亚洲图色成人| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品一二三| 一级毛片女人18水好多 | 欧美精品一区二区大全| 黄色a级毛片大全视频| 考比视频在线观看| 国产精品人妻久久久影院| 国产亚洲精品第一综合不卡| 国产熟女午夜一区二区三区| 国产亚洲av高清不卡| 久久久久久久久久久久大奶| 国产精品久久久久成人av| 一区二区三区精品91| 一边摸一边抽搐一进一出视频| 国产av精品麻豆| 丁香六月欧美| 国产欧美亚洲国产| 校园人妻丝袜中文字幕| 久久久精品免费免费高清| 啦啦啦在线观看免费高清www| 在线观看人妻少妇| 久久久久久亚洲精品国产蜜桃av| 伊人久久大香线蕉亚洲五| 欧美精品一区二区免费开放| 午夜激情av网站| 男女下面插进去视频免费观看| 国语对白做爰xxxⅹ性视频网站| av有码第一页| 亚洲,一卡二卡三卡| 国产精品二区激情视频| 伦理电影免费视频| 精品视频人人做人人爽| 成人影院久久| 女人久久www免费人成看片| 免费在线观看视频国产中文字幕亚洲 | 国产伦理片在线播放av一区| 一级毛片电影观看| 国产不卡av网站在线观看| 在线观看国产h片| 免费看不卡的av| 久久久久精品国产欧美久久久 | 国产一级毛片在线| 中文欧美无线码| 99热全是精品| 国产黄色免费在线视频| 欧美精品亚洲一区二区| 大型av网站在线播放| 亚洲国产精品成人久久小说| 久久精品国产亚洲av高清一级| 看免费av毛片| 亚洲自偷自拍图片 自拍| 美女高潮到喷水免费观看| 中文字幕av电影在线播放| 捣出白浆h1v1| 人人澡人人妻人| 欧美人与善性xxx| 91老司机精品| 高清视频免费观看一区二区| 一级毛片女人18水好多 | 色婷婷av一区二区三区视频| 亚洲图色成人| 日韩制服骚丝袜av| 久久精品国产a三级三级三级| 操出白浆在线播放| 18禁观看日本| 少妇人妻 视频| 乱人伦中国视频| 99热网站在线观看| 午夜福利视频在线观看免费| 久久久久久亚洲精品国产蜜桃av| 国产亚洲精品第一综合不卡| 精品一区二区三区四区五区乱码 | 中文字幕人妻丝袜制服| 亚洲av片天天在线观看| 精品久久久久久久毛片微露脸 | 成人影院久久| 亚洲第一青青草原| 亚洲情色 制服丝袜| 国产成人一区二区在线| 国产一区二区 视频在线| 欧美人与善性xxx| 久久99热这里只频精品6学生| 成年人免费黄色播放视频| 啦啦啦在线免费观看视频4| 国产亚洲欧美在线一区二区| 精品少妇内射三级| 大陆偷拍与自拍| 婷婷色综合www| 51午夜福利影视在线观看| 在线 av 中文字幕| 国产女主播在线喷水免费视频网站| 老司机亚洲免费影院| 电影成人av| 99热全是精品| 成年人黄色毛片网站| 国产成人欧美| 国产国语露脸激情在线看| 精品人妻1区二区| 亚洲av男天堂| 日本91视频免费播放| 大码成人一级视频| av欧美777| 久久ye,这里只有精品| 亚洲第一青青草原| 黄色怎么调成土黄色| 美女高潮到喷水免费观看| 亚洲国产欧美网| 男女之事视频高清在线观看 | 搡老岳熟女国产| 又粗又硬又长又爽又黄的视频| 一区二区日韩欧美中文字幕| 欧美精品av麻豆av| 欧美黄色片欧美黄色片| 日日爽夜夜爽网站| 久久国产精品大桥未久av| 夜夜骑夜夜射夜夜干| cao死你这个sao货| 丝袜脚勾引网站| 天天躁夜夜躁狠狠久久av| 国产日韩欧美视频二区| 国产一区二区三区av在线| 三上悠亚av全集在线观看| 精品一区二区三区四区五区乱码 | 亚洲国产精品一区二区三区在线| 中文字幕亚洲精品专区| 免费久久久久久久精品成人欧美视频| 看十八女毛片水多多多| 国产视频一区二区在线看| 成人国产av品久久久| 精品第一国产精品| 久久天堂一区二区三区四区| 91老司机精品| 亚洲av电影在线进入| 亚洲国产最新在线播放| 久久精品国产亚洲av高清一级| 国产黄色视频一区二区在线观看| 欧美日韩成人在线一区二区| 欧美日韩亚洲高清精品| 精品久久久久久电影网| 国产精品久久久av美女十八| 免费av中文字幕在线| 99re6热这里在线精品视频| 丁香六月欧美| 久久人妻熟女aⅴ| 侵犯人妻中文字幕一二三四区| 欧美人与性动交α欧美精品济南到| 成年av动漫网址| 国产成人免费观看mmmm| 国产精品香港三级国产av潘金莲 | 宅男免费午夜| 啦啦啦在线免费观看视频4| 一级毛片黄色毛片免费观看视频| 老司机在亚洲福利影院| 亚洲激情五月婷婷啪啪| 国产无遮挡羞羞视频在线观看| 亚洲欧洲国产日韩| 无遮挡黄片免费观看| 欧美国产精品一级二级三级| 一二三四社区在线视频社区8| 精品卡一卡二卡四卡免费| 亚洲国产精品一区二区三区在线| 亚洲五月色婷婷综合| 观看av在线不卡| 丁香六月天网| www.熟女人妻精品国产| 国产欧美日韩精品亚洲av| 9191精品国产免费久久| av网站免费在线观看视频| 妹子高潮喷水视频| 99久久精品国产亚洲精品| 一区福利在线观看| 亚洲欧美日韩高清在线视频 | 婷婷成人精品国产| 日韩大片免费观看网站| av视频免费观看在线观看| av在线播放精品| 狠狠婷婷综合久久久久久88av|