• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Unified construction of two n-order circuit networks with diodes

    2023-03-04 15:04:00XiaoyanLINZhizhongTAN

    Xiaoyan LIN,Zhizhong TAN

    Department of Physics,Nantong University,Nantong 226019,China

    Abstract: In this paper,two different n-order topological circuit networks are connected by diodes to establish a unified network model,which is a previously unexplored problem.The network model includes not only five resistive elements but also diode devices,so the network contains many different network types.This problem can be solved through three main steps: First,the network is simplified into two different equivalent circuit models.Second,the nonlinear difference equation model is established by applying Kirchhoff’s law.Finally,the two equations with similar structures are processed uniformly,and the general solutions of the nonlinear difference equations are obtained by using the transformation technique.As an example,several interesting specific results are deduced.Our study on the network model has significant value,as it can be applied to relevant interdisciplinary research.

    Key words: Complex networks;Equivalent transform;Nonlinear difference equation;Equivalent resistance

    1 Introduction

    In 1845,Kirchhoff established the node current law and loop voltage law as the first thorough math‐ematical description of electrical circuits,and laid the theoretical basis for research on large-scale circuits(Kirchhoff,1847).Since then,more and more scholars have studied the resistor network and investigated its various forms,such as square,triangular,honeycomb,and hypercube (Aitchison,1964;Venezian,1994;Atkinson and van Steenwijk,1999;Cserti,2000).Cur‐rently,the research on resistor network models is no longer limited to the field of circuits,but has been extended to many other areas.The calculation of resis‐tance in electric circuit theory can be used to solve many abstract and complex scientific and engineering problems,such as random walks (Doyle and Snell,1984),first-passage processes (Redner,2001),graphene properties (Kimouche et al.,2015),electronic plants(Stavrinidou et al.,2015),metagratings (Xu et al.,2021),reflectarray antennas (Hum and Du,2017),and topological properties (Albert et al.,2015).Therefore,the construction and application of resis‐tor network models have gradually become the basic solution methods for a series of scientific prob‐lems,playing an important role in the natural and engineering fields.

    In the past 170 years,much progress has been made in the study of resistor network models,provid‐ing solutions for a series of resistor network problems(Brayton and Moser,1964a,1964b;Desoer and Wu,1974;Bianco et al.,2000;Bianco and Giordano,2003).Some circuits including diodes have also been dis‐cussed;for example,electrical characterization of ran‐dom networks and mixtures was investigated (Bianco et al., 2000;Bianco and Giordano,2003).General small-scale circuit problems can be summarized into solving difference equations governed by Ohm’s and Kirchhoff’s laws.However,when the circuit becomes a complex large-scale network structure,it is not enough to use Kirchhoff’s law alone.Therefore,re‐searchers have proposed several new methods.Cserti(2000) proposed the Green function technique,which opened the door to the study of infinite resistor net‐works.He calculated the equivalent resistance be‐tween any two points of several infinite lattice resis‐tance structures using this method (Cserti et al.,2002).He also applied this method to the problem of a per‐turbed lattice,in which one of the bonds is missing(Cserti et al.,2011).Asad used this method in several networks and found it to be a useful tool for study‐ing capacitor networks (Asad et al.,2013;Asad,2013a,2013b).Hijjawi et al.(2008) discussed the Green function of anisotropic diamond lattice,and the ana‐lytical properties of the Green function in all dimen‐sions were investigated by Guttmann (2010).Gior‐dano (2007) applied Green function technique to the study of two-dimensional anisotropic random lattices(a class of anisotropic infinite networks),which is a new research progress.Green function technique has been widely applied in research on infinite net‐works.As is well known,an infinite network is a kind of ideal model,yet the finite network is a prob‐lem occurring in real life.Therefore,Green function technique is not suitable for studying finite resistor networks.Wu (2004) developed a theory called the Laplace matrix method,which can calculate the re‐sistance between arbitrary nodes for a finite lattice of resistors.Since then,this method has been further de‐veloped and applied to impedance networks (Tzeng and Wu,2006;Izmailian et al.,2014;Essam et al.,2014,2015).For example,corner-to-corner resistance and its asymptotic expansion for free boundary condi‐tions were obtained by Essam and Wu (2009).Izmail‐ian and Huang (2010) also calculated the resistance for other boundary conditions.However,the Laplace matrix method has some limitations on the finite net‐works with complex boundary conditions;therefore,Tan ZZ (2011,2015a,2015b,2015c,2015d,2017) set up a new method called the recursion-transform (RT)method,and the original theory has been further im‐proved (Tan ZZ and Tan,2020a,2020b,2020c).This approach is based on recursive techniques and vari‐able transformation techniques.He has applied this method to solve the resistor network problems of vari‐ous resistor network models,such as various basic and applied research of this theory in the literature(Tan ZZ and Zhang,2015;Tan ZZ,2015a,2015b,2016;Zhou et al.,2017;Tan Z and Tan,2018;Tan Z et al.,2018a,2018b).Nowadays,the RT method is still applied to studyn-order networks in different sit‐uations,and a large number of complex networks have been solved.For example,Tan ZZ et al.(2017)studied the multi-purposen-order resistor network model and a series of other complexn-order circuit network models (Chen et al.,2019,2020;Chen and Tan,2020;Chen and Yang,2020;Fang and Tan,2022;Tan ZZ,2022).The above-mentioned studies indicate that the RT method can be applied to many different types of resistor network models,and a series of inter‐esting conclusions have been drawn.

    Although many breakthroughs and much prog‐ress have been made in resistor network research,there are still several complicated resistor network models that have not been solved.In this work,two differentn-order topological circuit networks (Fig.1) are con‐sidered.On one hand,the resistor network model can be used to simulate the properties of some mate‐rials to carry out theoretical innovation research.On the other hand,the two different resistor networks above can be unified into a single network model due to the unidirectional conductivity of diodes.Al‐though the electrical properties of the two resistor networks are different,they can be described in a unified form,which is an interesting and novel as‐pect of the relevant research.Even the analysis and derivation of these unified networks can be applied to LC networks.The unified network model con‐structed in this paper contains not only five different resistor elements but also diode devices (Fig.2).Our study belongs to theoretical research;therefore,its main purpose is to provide a theoretical basis for fu‐ture related research in different fields,such as phy?sics,mathematics,biology,and engineering.

    Fig.1 Two circuit network models with different topologies

    The RT method is used to study the new net‐work model.It can be divided into four steps: step 1 is to build an equivalent circuit model,step 2 is to create a nonlinear difference equation model using Kirchhoff’s laws,step 3 is to construct the method of equivalent transformation to obtain the general solution of the nonlinear difference equation,and step 4 is to discuss special situations.

    Fig.1 presents two circuit network models with two different topologies and different resistance ele‐ments distributed on the branches.The two circuits may look very similar,but they have different inter‐nal structures.In this paper,the two models in Fig.1 are unified into the model depicted in Fig.2.

    Fig.2 A multi-functional n-order resistor network with X circuits and diodes,which contains five different resistor elements (including R0) and ideal diodes in the upper boundary

    Fig.2 presents a type ofn-order resistor net‐work model with ideal diodes and X circuits.The characteristics of such a network are as follows: the number of network elements isn,the upper bound‐ary element is an ideal diode,the element of lower boundary resistance isr,the element of resistance in the direction of vertical section isr0,the resistors on the X-type cross line arer1andr2,and the load resistor on the right end isR0.The network is com‐posed of five different resistance elements and a diode,which means that it is a multi-functional net‐work.This paper focuses on the analytical expres‐sion of the resistance betweenAnandBnin the net‐work in Fig.1.Two equivalent resistance values are given,as well as their derivation and proof processes.

    2 Total equivalent resistance formulae

    In Fig.1,letAkbe thektharbitrary node betweenA0andAnof the upper axis (counted from the right end,the first node on the right end isA0).Bkis thektharbitrary node betweenB0andBnof the lower axis.The ideal diode D (meaning its absolute unidirectional conductivity) is connected to the upper boundary and X circuits in the network,and all parameters are shown in Fig.2.The two main results are as follows:

    Result 1When the currentIis input fromAnand output fromBnas shown in Fig.2,the equivalent re‐sistance can be written as

    Result 2When the currentIis input fromBnand output fromAnas shown in Fig.2,the equivalent re‐sistance can be written as

    Eqs.(1) and (5) are the first of their kind,and show an innovation in theory and methodology.These two conclusions are derived from the RT theory,which involves building equivalent models and recursive equations.

    3 Equivalent models and recursive equations

    According to the structural features of Fig.2,as‐suming that the equivalent resistance between the two nodes ofAnandBnat the left end of the network isRn,the equivalent resistance between the two nodes at the left end ofn-1 network will beRn-1.Since the ideal diode D has zero forward resistance (short cir‐cuit) and infinite reverse resistance (open circuit),when the current is input fromAnand output fromBn,we can simplify Fig.2 into a simple model shown in Fig.3.

    Fig.3 Equivalent model of a two-terminal circuit network with triangular structure

    Next,we establish the relationship betweenRnandRn-1using Kirchhoff’s law.We suppose that the constant currentIis input at nodeAnand output at nodeBn.Meanwhile,other branch currents are de‐fined in Fig.3.

    From Fig.3,according to Kirchhoff’s law,the circuit current equations can be written as

    The node current equations can be written as

    Then,we substitute Eq.(10) into Eq.(9),eliminateI3,I4,I5,and simplify the equations as

    By solving Eq.(11),a current relationship is obtained:

    Then,Eq.(12) is simplified,and can be written as

    wherea1andb1are given by Eq.(4).SinceRn=U/I=I0r0/I,using Eq.(13),one can obtain

    Eq.(14) is a simple recurrence formula that we are looking for.

    The second condition is assuming that the cur‐rent is input at nodeBnand output at nodeAn;in this case,the diode D has zero resistance (short circuit).Similar to the analysis above,we establish an equiva‐lent model in Fig.4,where other branch currents are defined.The relationship betweenRnandRn-1is es‐tablished using Kirchhoff’s law.

    Fig.4 Equivalent model of a two-terminal circuit network with Y circuits

    From Fig.4,according to Kirchhoff’s law,the circuit current equations can be written as

    From Fig.4,the node current equations can be writ‐ten as

    We substitute Eq.(16) into Eq.(15) and eliminateI3,I4,I5,to simplify the equations as

    By solving Eq.(17),a current relationship can be obtained:

    wherea2andb2are given by Eq.(8).AsRn=U/I=I0r0/I,substituting Eq.(19) into this equation yields

    In this way,we have deduced Eq.(20),a simple recurrence formula that is classed as a nonlinear difference equation.It is interesting to note that Eq.(14) is similar to Eq.(20) in structure,so we can deal with them together.The work that follows is to seek the general and special solution to Eqs.(14)and (20).

    4 Transformation and derivation

    According to the structural similarity between Eqs.(14) and (20),we rewrite the two recursive equa‐tions as

    In this way,we need only to study the solution to Eq.(21) to prove Eqs.(1) and (5).Here,we use the variable substitution method described in Tan ZZ(2011);that is,supposing that there is a sequence {xn},we use the following transformation relationship:

    The initial term can be specified asx0=1.On using Eq.(22),one has

    By substituting Eq.(22) and its recurrence formulaRn-1into Eq.(21) and simplifying it,we can obtain

    Assuming thatαandβare two roots of the characteristic equation of Eq.(24),and solving the eigenvalue of Eq.(24),we can obtain the values of Eqs.(3) and (7).Therefore,from Eq.(24),we can obtain

    According to the method offered in Tan ZZ (2011)to solve Eq.(25),we can deduce

    Substituting the initial term Eq.(23) into Eq.(26)yields

    To further simplify Eq.(27),from Eqs.(24) and (25),we can obtain

    By substituting Eq.(28) into Eq.(27),we can obtain

    Substituting Eq.(29) and its recurrencexninto Eq.(22)gives

    By further simplifying it with functionFn=(αn-βn)/(α-β),we can obtain

    Eq.(31) is a general equivalent resistance for‐mula,containing two different conclusions to be proved.For example,whena=a1,b=b1,andλ=λ1,Eq.(1) can be obtained from Eq.(31);whena=a2,b=b2,andλ=λ2,Eq.(5) can be obtained from Eq.(31).

    Obviously,the above unified derivation is a the‐oretical and methodological innovation;it is mean‐ingful because it has solved a profound equivalent re‐sistance problem.Since all calculation processes are precise and rigorous,and all calculation equations are self-consistent,the conclusions drawn are necessarily correct.

    5 Special cases

    The network model in Fig.2 contains five dif‐ferent resistor elements andnideal diodes.Since the resistor elements are arbitrary (the resistor value can be zero or infinite),this multi-parameter network has many special cases.Several of these special cases are given below.

    Case 1: In the network of Fig.2,whenr1=∞,from Eqs.(2) and (4),we can obtain

    Then,using Eq.(1),the equivalent resistance is obtained:

    Whenr1=∞,from Eqs.(6) and (8),we can obtain

    Then,the equivalent resistance Eq.(5) is simlified to

    Have no regrets. The elderly usually don t have regrets for what we did, but rather for things we did not do. The only people who fear death are those with regrets.

    Case 2: In the network of Fig.2,whenr1=0,from Eqs.(2) and (4),we can obtain

    Substituting them into Eq.(3) yields

    This is an interesting result: the equivalent resistance is independent ofn,which is completely consistent with the actual situation,since the circuit network in this case is as shown in Fig.5.

    Fig.5 An n-order resistor network with diodes,which contains three different resistor elements and an ideal diode at the upper boundary

    Whenr1=0,from Eqs.(6) and (8),we can obtain

    Substituting them into Eq.(7) yields

    Becauseα2=β2,if taking the limit,we can obtain

    Substituting Eq.(44) into Eq.(5) gives

    Then,simplifying Eq.(45) yields

    whereα2=r0r2/(r2+2r0) is given by Eq.(43).Eq.(46) is an interesting concise result,in full agree‐ment with the actual situation,since the circuit net‐work in this case is as shown in Fig.5.

    Case 3: Whenn=0,one can verify the correctness of Eqs.(1) and (5) in this simple case;for example,

    Eqs.(49) and (50) show that the general results,i.e.,Eqs.(1) and (5),are applicable to the case ofn=0,and the actual circuit shows thatR0(A0,B0)=R0.

    Case 4: Whenn=1,one can verify the correct‐ness of Eqs.(1) and (5) in this simple case;for example,

    wherea1andb1are given by Eq.(4),anda2andb2are given by Eq.(8).

    It is found that,ifn=1 is substituted into Eqs.(14) and (20),Eqs.(54) and (55) can also be derived.Obviously,Eqs.(54) and (55) are completely consistent with the results obtained by the actual cir‐cuit calculation,which proves that the conclusion is correct whenn=1.

    6 Discussion and summary

    In this paper,ann-order resistor network model with X circuits and diodes (Fig.2) is proposed which has not been studied previously.The recursiontransform (RT) method is used to evaluate the equiv‐alent resistance of this new resistor network.The equivalent models given by Eqs.(14) and (20) are es‐tablished for the forward and reverse resistance of the circuit network (due to the unidirectional con‐ductivity of the diode),respectively.Then,a unified difference model given by Eq.(21) is established by the similarity of the structure.The general solution of the unified difference equation is given by establishing a variable substitution method given by Eq.(31).The general formula of equivalent resistance is expressed as a functionFn=(αn-βn)/(α-β),and a highly con‐cise result is obtained.Since the general equivalent resistance is given in this paper,based on its formula,a series of special equivalent resistance conclusions are derived.If the variable substitutionri=a+jbis used for resistance elements,it can be seen that the re‐search methods and conclusions of this paper are also applicable to the study of complex impedance net‐works in Fig.1.

    The innovative research in this paper has ob‐tained two new equivalent resistance formulae,which establish a new theoretical tool for future research on the resistor network model.The research methods and innovative ideas in this paper have theoretical and practical significance for future research-based teach‐ing and scientific exploration.

    Contributors

    Xiaoyan LIN designed the research.Xiaoyan LIN and Zhizhong TAN processed the data.Xiaoyan LIN drafted the paper.Zhizhong TAN helped organize the paper.Xiaoyan LIN and Zhizhong TAN revised and finalized the paper.

    Compliance with ethics guidelines

    Xiaoyan LIN and Zhizhong TAN declare that they have no conflict of interest.

    Data availability

    The data that support the findings of this study are available from the corresponding author upon reasonable request.

    午夜福利,免费看| 人成视频在线观看免费观看| 国产色视频综合| 在线天堂中文资源库| 国产精品香港三级国产av潘金莲| 午夜影院日韩av| 97碰自拍视频| 悠悠久久av| 在线观看免费视频日本深夜| 日韩中文字幕欧美一区二区| 欧美日韩精品网址| 亚洲一区二区三区不卡视频| 国产免费男女视频| 看黄色毛片网站| 久久人人爽av亚洲精品天堂| 老司机在亚洲福利影院| 亚洲人成电影观看| 久久国产精品男人的天堂亚洲| 999久久久国产精品视频| 亚洲精品中文字幕在线视频| 久久国产精品影院| 免费日韩欧美在线观看| 一二三四在线观看免费中文在| 男男h啪啪无遮挡| 人人妻人人添人人爽欧美一区卜| 人妻丰满熟妇av一区二区三区| 男人的好看免费观看在线视频 | 国产午夜精品久久久久久| 国产xxxxx性猛交| 亚洲精品国产区一区二| 在线天堂中文资源库| 成人黄色视频免费在线看| 久久精品国产99精品国产亚洲性色 | 一个人观看的视频www高清免费观看 | 久99久视频精品免费| 国内毛片毛片毛片毛片毛片| 后天国语完整版免费观看| 国产精品 欧美亚洲| 亚洲一区中文字幕在线| 国产一区在线观看成人免费| 电影成人av| 高清av免费在线| 欧美乱色亚洲激情| 一a级毛片在线观看| 亚洲精品中文字幕一二三四区| 性欧美人与动物交配| 久久久久久久久中文| 日本免费一区二区三区高清不卡 | 国产精华一区二区三区| 看免费av毛片| 91字幕亚洲| 日韩三级视频一区二区三区| 午夜老司机福利片| 国产成人精品久久二区二区免费| 久久久国产欧美日韩av| av网站免费在线观看视频| 国产亚洲欧美精品永久| 黑人巨大精品欧美一区二区mp4| 午夜a级毛片| 欧美在线一区亚洲| 最近最新中文字幕大全电影3 | 国产在线精品亚洲第一网站| 成人国产一区最新在线观看| 国内毛片毛片毛片毛片毛片| 国产激情久久老熟女| 女性被躁到高潮视频| 在线观看一区二区三区激情| 夜夜爽天天搞| 黑人猛操日本美女一级片| 777久久人妻少妇嫩草av网站| 男女下面进入的视频免费午夜 | 80岁老熟妇乱子伦牲交| 国产精华一区二区三区| 国产亚洲精品综合一区在线观看 | 亚洲欧洲精品一区二区精品久久久| 水蜜桃什么品种好| 国产主播在线观看一区二区| 高清毛片免费观看视频网站 | 国产精品香港三级国产av潘金莲| 久久久久九九精品影院| 欧美最黄视频在线播放免费 | 大香蕉久久成人网| 免费一级毛片在线播放高清视频 | 久久人妻福利社区极品人妻图片| 欧美一级毛片孕妇| 国产精品亚洲一级av第二区| 在线天堂中文资源库| bbb黄色大片| 久久精品国产综合久久久| 国产亚洲精品第一综合不卡| 99国产精品一区二区蜜桃av| 制服人妻中文乱码| 韩国精品一区二区三区| 亚洲av熟女| 欧美中文综合在线视频| 欧美亚洲日本最大视频资源| 黄色视频,在线免费观看| 久久精品国产99精品国产亚洲性色 | 久久青草综合色| 看黄色毛片网站| 91老司机精品| 久久伊人香网站| 日日爽夜夜爽网站| 欧美性长视频在线观看| 亚洲人成网站在线播放欧美日韩| 丝袜在线中文字幕| 国产精品久久久av美女十八| 18美女黄网站色大片免费观看| 国产精品一区二区免费欧美| 久久人人97超碰香蕉20202| 久久久久久大精品| 婷婷丁香在线五月| 亚洲 欧美 日韩 在线 免费| 国产精品爽爽va在线观看网站 | 久久精品国产亚洲av高清一级| 亚洲国产中文字幕在线视频| 999精品在线视频| 国产一区二区激情短视频| 日韩一卡2卡3卡4卡2021年| 中文字幕精品免费在线观看视频| 久久精品国产亚洲av香蕉五月| 日韩高清综合在线| 国产亚洲精品综合一区在线观看 | 怎么达到女性高潮| 波多野结衣高清无吗| 99国产综合亚洲精品| 久久草成人影院| 亚洲色图av天堂| 亚洲激情在线av| 欧美日韩视频精品一区| av电影中文网址| 啦啦啦免费观看视频1| a级毛片在线看网站| 久久午夜综合久久蜜桃| 12—13女人毛片做爰片一| 91成年电影在线观看| 首页视频小说图片口味搜索| 中文亚洲av片在线观看爽| 91精品三级在线观看| 极品人妻少妇av视频| 在线十欧美十亚洲十日本专区| av视频免费观看在线观看| 成人手机av| 91精品国产国语对白视频| 久久国产乱子伦精品免费另类| 电影成人av| 淫妇啪啪啪对白视频| 亚洲全国av大片| 国产有黄有色有爽视频| 精品久久久久久久久久免费视频 | 大香蕉久久成人网| 中文字幕精品免费在线观看视频| 国产一卡二卡三卡精品| 色婷婷av一区二区三区视频| 侵犯人妻中文字幕一二三四区| 老汉色av国产亚洲站长工具| 99久久综合精品五月天人人| 欧美亚洲日本最大视频资源| 长腿黑丝高跟| x7x7x7水蜜桃| 国产亚洲av高清不卡| 国产亚洲欧美在线一区二区| 国产av一区在线观看免费| 少妇粗大呻吟视频| 母亲3免费完整高清在线观看| 黑人欧美特级aaaaaa片| 丁香欧美五月| 久久久国产成人免费| 国产熟女xx| 久久精品aⅴ一区二区三区四区| 真人一进一出gif抽搐免费| 99国产精品99久久久久| 婷婷六月久久综合丁香| 日韩一卡2卡3卡4卡2021年| 国产乱人伦免费视频| 十八禁网站免费在线| 亚洲成a人片在线一区二区| 亚洲色图av天堂| 国产黄a三级三级三级人| 久久久久久亚洲精品国产蜜桃av| 亚洲一区二区三区色噜噜 | 窝窝影院91人妻| 无遮挡黄片免费观看| 亚洲国产欧美一区二区综合| 韩国av一区二区三区四区| 在线观看免费视频网站a站| 欧美成狂野欧美在线观看| 一本综合久久免费| 亚洲视频免费观看视频| 首页视频小说图片口味搜索| 欧美日韩亚洲高清精品| 一级片免费观看大全| 国产激情欧美一区二区| 男女做爰动态图高潮gif福利片 | 级片在线观看| 精品久久久久久,| 国产黄色免费在线视频| 欧美人与性动交α欧美软件| 天堂√8在线中文| 久久久国产成人精品二区 | 操美女的视频在线观看| 午夜两性在线视频| 交换朋友夫妻互换小说| 美国免费a级毛片| 亚洲第一青青草原| 欧美成人免费av一区二区三区| 麻豆久久精品国产亚洲av | 亚洲精品国产区一区二| 久久天躁狠狠躁夜夜2o2o| 国产成人免费无遮挡视频| 男人舔女人下体高潮全视频| 国产区一区二久久| ponron亚洲| 夜夜爽天天搞| 老司机深夜福利视频在线观看| 午夜福利,免费看| 在线av久久热| 日本免费一区二区三区高清不卡 | 久久久久精品国产欧美久久久| 老熟妇仑乱视频hdxx| 亚洲av熟女| 久久 成人 亚洲| 久久精品aⅴ一区二区三区四区| 99久久国产精品久久久| 午夜激情av网站| 亚洲精品粉嫩美女一区| 天堂影院成人在线观看| 亚洲第一av免费看| 精品一区二区三区四区五区乱码| 悠悠久久av| 交换朋友夫妻互换小说| 又黄又粗又硬又大视频| 长腿黑丝高跟| 精品第一国产精品| 男女下面进入的视频免费午夜 | 极品教师在线免费播放| 免费在线观看日本一区| 亚洲视频免费观看视频| 精品久久久久久成人av| 99久久人妻综合| 一区二区三区精品91| 免费在线观看视频国产中文字幕亚洲| 午夜福利在线免费观看网站| 亚洲 欧美一区二区三区| 国产av一区二区精品久久| 色婷婷av一区二区三区视频| 大型黄色视频在线免费观看| 国产精品偷伦视频观看了| 两性午夜刺激爽爽歪歪视频在线观看 | www.精华液| 18禁观看日本| 后天国语完整版免费观看| 激情在线观看视频在线高清| 国产伦人伦偷精品视频| 99国产精品99久久久久| 亚洲精品粉嫩美女一区| 91老司机精品| 日韩欧美三级三区| 成人影院久久| 日韩欧美一区视频在线观看| 99久久综合精品五月天人人| 亚洲成人精品中文字幕电影 | 亚洲欧美日韩另类电影网站| cao死你这个sao货| 欧美精品啪啪一区二区三区| 欧美日韩乱码在线| netflix在线观看网站| 美女高潮喷水抽搐中文字幕| e午夜精品久久久久久久| 亚洲精品在线美女| 国产精品久久视频播放| 又黄又爽又免费观看的视频| 男女之事视频高清在线观看| 美国免费a级毛片| 国产午夜精品久久久久久| 搡老乐熟女国产| 成人三级黄色视频| 成人国语在线视频| 人人妻,人人澡人人爽秒播| 成人手机av| 国产乱人伦免费视频| 免费观看人在逋| 可以在线观看毛片的网站| 1024香蕉在线观看| 久久伊人香网站| 美女大奶头视频| 久99久视频精品免费| 日韩中文字幕欧美一区二区| www.www免费av| 亚洲va日本ⅴa欧美va伊人久久| 视频区欧美日本亚洲| 最新美女视频免费是黄的| 亚洲国产看品久久| 精品久久蜜臀av无| 村上凉子中文字幕在线| 99久久精品国产亚洲精品| 欧美日韩黄片免| 视频在线观看一区二区三区| 精品福利观看| 69av精品久久久久久| 在线观看舔阴道视频| 久久精品影院6| 国产aⅴ精品一区二区三区波| 精品一区二区三卡| 中文字幕色久视频| 亚洲成人免费av在线播放| bbb黄色大片| 老汉色∧v一级毛片| 一级,二级,三级黄色视频| 免费在线观看视频国产中文字幕亚洲| 少妇裸体淫交视频免费看高清 | 91精品三级在线观看| 中文字幕最新亚洲高清| 91麻豆精品激情在线观看国产 | 亚洲,欧美精品.| 校园春色视频在线观看| 亚洲七黄色美女视频| 丝袜美足系列| 19禁男女啪啪无遮挡网站| 人人澡人人妻人| 男女做爰动态图高潮gif福利片 | 99精品在免费线老司机午夜| 在线天堂中文资源库| 精品一区二区三区av网在线观看| 黄片小视频在线播放| 国产激情久久老熟女| 天天影视国产精品| 精品久久蜜臀av无| 精品一区二区三卡| 亚洲国产中文字幕在线视频| 国产精品久久久av美女十八| 成人三级做爰电影| 午夜a级毛片| 成人三级做爰电影| 一区福利在线观看| 亚洲第一欧美日韩一区二区三区| 黄网站色视频无遮挡免费观看| 亚洲av成人av| 超色免费av| 国产成人免费无遮挡视频| 丁香欧美五月| 香蕉国产在线看| 亚洲av成人一区二区三| 午夜a级毛片| 亚洲人成电影免费在线| 欧美激情久久久久久爽电影 | 国产免费现黄频在线看| 人妻久久中文字幕网| 女同久久另类99精品国产91| 日韩视频一区二区在线观看| 亚洲欧洲精品一区二区精品久久久| 91字幕亚洲| 日韩人妻精品一区2区三区| 中文字幕高清在线视频| 日本 av在线| bbb黄色大片| 一边摸一边抽搐一进一出视频| 美女高潮喷水抽搐中文字幕| 大码成人一级视频| 欧美亚洲日本最大视频资源| 欧美精品一区二区免费开放| 不卡一级毛片| 亚洲一卡2卡3卡4卡5卡精品中文| 丝袜在线中文字幕| 99久久国产精品久久久| 午夜精品国产一区二区电影| 久久久精品国产亚洲av高清涩受| 亚洲少妇的诱惑av| 免费在线观看亚洲国产| 国产亚洲av高清不卡| 一a级毛片在线观看| 国产精品永久免费网站| 成人永久免费在线观看视频| 国产精品二区激情视频| 狂野欧美激情性xxxx| 亚洲五月色婷婷综合| 在线天堂中文资源库| 高清av免费在线| 手机成人av网站| 丰满饥渴人妻一区二区三| 一级a爱视频在线免费观看| 天堂动漫精品| 久久久精品国产亚洲av高清涩受| 一级a爱视频在线免费观看| 久久精品国产清高在天天线| 久久香蕉激情| 一边摸一边抽搐一进一出视频| 黄色视频不卡| 精品欧美一区二区三区在线| 成人国产一区最新在线观看| 精品久久久久久久毛片微露脸| 桃红色精品国产亚洲av| 日韩国内少妇激情av| 一a级毛片在线观看| cao死你这个sao货| 99久久99久久久精品蜜桃| 日韩欧美三级三区| 欧美一级毛片孕妇| 91字幕亚洲| 91国产中文字幕| 久久精品亚洲熟妇少妇任你| 亚洲中文av在线| 成人影院久久| 午夜福利欧美成人| 两人在一起打扑克的视频| 亚洲成人免费av在线播放| 精品欧美一区二区三区在线| 在线永久观看黄色视频| 50天的宝宝边吃奶边哭怎么回事| 亚洲精品国产精品久久久不卡| 免费一级毛片在线播放高清视频 | 琪琪午夜伦伦电影理论片6080| 一级毛片高清免费大全| 久久中文字幕人妻熟女| 国产在线精品亚洲第一网站| 国产黄a三级三级三级人| 久久 成人 亚洲| 黑丝袜美女国产一区| 中文字幕精品免费在线观看视频| 亚洲国产欧美一区二区综合| 一级黄色大片毛片| 国产欧美日韩一区二区精品| 日本五十路高清| 可以免费在线观看a视频的电影网站| 成人三级黄色视频| 伦理电影免费视频| 十八禁网站免费在线| 91老司机精品| 午夜福利免费观看在线| 免费在线观看视频国产中文字幕亚洲| 中亚洲国语对白在线视频| 亚洲五月色婷婷综合| 久久性视频一级片| 乱人伦中国视频| 老司机午夜福利在线观看视频| 国产不卡一卡二| svipshipincom国产片| 美女高潮喷水抽搐中文字幕| 久久久久久久久中文| 黄频高清免费视频| 欧美精品亚洲一区二区| 欧美成狂野欧美在线观看| 老熟妇仑乱视频hdxx| 日本wwww免费看| 乱人伦中国视频| 婷婷丁香在线五月| 99国产精品一区二区三区| 老汉色av国产亚洲站长工具| 久久国产亚洲av麻豆专区| 国内毛片毛片毛片毛片毛片| 丝袜美足系列| 女生性感内裤真人,穿戴方法视频| 亚洲精华国产精华精| av片东京热男人的天堂| 亚洲色图av天堂| 国产精品av久久久久免费| 怎么达到女性高潮| 成人三级黄色视频| 欧美日韩视频精品一区| 淫妇啪啪啪对白视频| 国产亚洲精品综合一区在线观看 | 久久国产乱子伦精品免费另类| 制服诱惑二区| 九色亚洲精品在线播放| 亚洲狠狠婷婷综合久久图片| 亚洲在线自拍视频| 久久久久久亚洲精品国产蜜桃av| 免费在线观看影片大全网站| 又大又爽又粗| 亚洲欧美精品综合一区二区三区| 国产成人精品无人区| 久久精品亚洲熟妇少妇任你| 中文字幕另类日韩欧美亚洲嫩草| 亚洲专区字幕在线| 亚洲av成人不卡在线观看播放网| 色精品久久人妻99蜜桃| 又黄又粗又硬又大视频| 国产精品自产拍在线观看55亚洲| 真人做人爱边吃奶动态| 男人舔女人下体高潮全视频| 涩涩av久久男人的天堂| 美女高潮到喷水免费观看| 一区在线观看完整版| 777久久人妻少妇嫩草av网站| 高清欧美精品videossex| 午夜a级毛片| 女警被强在线播放| 一级黄色大片毛片| 精品福利永久在线观看| 国产精品野战在线观看 | 日本撒尿小便嘘嘘汇集6| 韩国精品一区二区三区| 久99久视频精品免费| 女人被躁到高潮嗷嗷叫费观| 99在线视频只有这里精品首页| 不卡一级毛片| 如日韩欧美国产精品一区二区三区| 国产视频一区二区在线看| 免费看十八禁软件| 一级a爱视频在线免费观看| 亚洲国产欧美一区二区综合| 精品福利观看| 中亚洲国语对白在线视频| 黄色成人免费大全| 免费看十八禁软件| 亚洲人成网站在线播放欧美日韩| 丝袜人妻中文字幕| 侵犯人妻中文字幕一二三四区| 亚洲一区二区三区欧美精品| 美女国产高潮福利片在线看| 99riav亚洲国产免费| 亚洲 国产 在线| 美女扒开内裤让男人捅视频| 啦啦啦 在线观看视频| 欧美性长视频在线观看| 制服诱惑二区| 国产在线观看jvid| 人人妻人人添人人爽欧美一区卜| 欧美日韩乱码在线| 亚洲精品在线美女| 少妇的丰满在线观看| 国产野战对白在线观看| 99久久精品国产亚洲精品| 日韩欧美在线二视频| 色播在线永久视频| 色在线成人网| 国产成人一区二区三区免费视频网站| 午夜精品国产一区二区电影| 桃色一区二区三区在线观看| 日韩 欧美 亚洲 中文字幕| www.熟女人妻精品国产| 免费av毛片视频| svipshipincom国产片| 久久精品国产亚洲av香蕉五月| 久久久精品欧美日韩精品| 欧美日韩一级在线毛片| 在线观看免费视频日本深夜| 狠狠狠狠99中文字幕| 搡老熟女国产l中国老女人| 亚洲精品美女久久久久99蜜臀| 欧美日韩一级在线毛片| 很黄的视频免费| 免费在线观看影片大全网站| 日韩高清综合在线| 精品福利观看| 香蕉丝袜av| 色综合婷婷激情| 亚洲性夜色夜夜综合| 国产免费男女视频| 一夜夜www| 欧美精品啪啪一区二区三区| 一个人观看的视频www高清免费观看 | 午夜影院日韩av| 成人三级做爰电影| 国产精品久久久人人做人人爽| 成人18禁高潮啪啪吃奶动态图| 亚洲熟妇中文字幕五十中出 | 久久久久久久午夜电影 | 成在线人永久免费视频| 国产免费男女视频| av超薄肉色丝袜交足视频| 九色亚洲精品在线播放| 如日韩欧美国产精品一区二区三区| 波多野结衣av一区二区av| 欧美久久黑人一区二区| 欧美成人性av电影在线观看| 日本免费一区二区三区高清不卡 | 日韩中文字幕欧美一区二区| 久久草成人影院| 19禁男女啪啪无遮挡网站| 亚洲欧美精品综合一区二区三区| 操美女的视频在线观看| 亚洲久久久国产精品| 国产精品国产高清国产av| 成人黄色视频免费在线看| avwww免费| 精品高清国产在线一区| 黄片大片在线免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 窝窝影院91人妻| 视频在线观看一区二区三区| 波多野结衣av一区二区av| 99精品在免费线老司机午夜| 麻豆av在线久日| 新久久久久国产一级毛片| 国产成人av激情在线播放| 日日干狠狠操夜夜爽| 国产欧美日韩一区二区三区在线| 多毛熟女@视频| 国产有黄有色有爽视频| 少妇粗大呻吟视频| 黄色丝袜av网址大全| 免费观看人在逋| 午夜精品国产一区二区电影| 天堂影院成人在线观看| 亚洲av第一区精品v没综合| 18禁观看日本| 国产aⅴ精品一区二区三区波| 久久精品国产亚洲av高清一级| 自线自在国产av| 黑人欧美特级aaaaaa片| 交换朋友夫妻互换小说| 新久久久久国产一级毛片| av国产精品久久久久影院| 亚洲五月天丁香| 欧美av亚洲av综合av国产av| 国产成人免费无遮挡视频| 桃红色精品国产亚洲av| 一a级毛片在线观看| 在线观看舔阴道视频| 久久香蕉激情| 午夜免费观看网址| 色婷婷久久久亚洲欧美| 国产麻豆69| 天堂√8在线中文|