夏 瀟,龔春陽,包 俊,朱國忠,王志新
寬增益高效率LLC諧振變換器拓?fù)?/p>
夏 瀟1,龔春陽2,包 俊3,朱國忠4,王志新1
(1.上海交通大學(xué)電子信息與電氣工程學(xué)院,上海 200240;2.上海電力大學(xué),上海 200090;3.上海禧龍科技股份有限公司,上海 201517;4.上海正泰電源系統(tǒng)有限公司,上海 200210)
針對LLC諧振變換器增益負(fù)載敏感性強(qiáng)、與效率存在強(qiáng)耦合的不足,提出了一種由LLC 諧振變換器和兩開關(guān)buck-boost構(gòu)成的寬增益高效率LLC諧振變換器拓?fù)?。通過采用輸入并聯(lián)與輸出串聯(lián)的方式,分別由LLC諧振變換器傳輸功率、buck-boost調(diào)節(jié)輸出電壓。其中,LLC諧振變換器運(yùn)行于諧振頻率,buck-boost采用PWM調(diào)節(jié)輸出電壓。分析了變換器的運(yùn)行模式,給出了相應(yīng)的參數(shù)設(shè)計方法,并進(jìn)行了仿真驗證。最后,對輸入30 V、輸出200~360 V、360 W樣機(jī)進(jìn)行了實驗,實驗樣機(jī)增益范圍和效率分別為6.67~12、97.4%。仿真與樣機(jī)實驗驗證了所提出的寬增益高效率LLC變換器拓?fù)浼捌湔{(diào)制方法的有效性。
寬增益;高效率;LLC諧振變換器;諧振頻率;兩開關(guān)buck-boost
LLC諧振變換器因具有自然軟開關(guān)和高功率密度等特點受到了學(xué)術(shù)及業(yè)界關(guān)注[1-9],并廣泛應(yīng)用于直流電網(wǎng)、光充儲用智慧建筑直流系統(tǒng)和儲能系統(tǒng)等。通常LLC諧振變換器的運(yùn)行頻率低于諧振頻率,一旦該運(yùn)行頻率遠(yuǎn)小于諧振頻率時,變換器環(huán)流和開關(guān)管應(yīng)力明顯增大,尤其在重載時增益峰值減小,降低了變換器的電壓調(diào)節(jié)能力[10],難以在寬頻率范圍保持高效率[11-12]。LLC諧振變換器運(yùn)行在諧振頻率時效率最高,但是,若將其運(yùn)行頻率固定為諧振頻率,LLC諧振變換器無法滿足輸出電壓調(diào)節(jié)要求。
為了提高變換器的增益范圍和效率,文獻(xiàn)[13-15]在LLC諧振變換器的基礎(chǔ)上通過改變一次側(cè)和二次側(cè)的結(jié)構(gòu)以拓寬增益,但同時使變換器的結(jié)構(gòu)復(fù)雜化,可靠性降低。文獻(xiàn)[16]提出一種LC耦合拓?fù)涮鎿QLLC諧振網(wǎng)絡(luò),獲得了從零可調(diào)的寬增益,在輕載時增益特性良好,但重載時變換器峰值增益明顯降低。文獻(xiàn)[17]提出了兩變壓器拓?fù)洌ㄟ^自適應(yīng)改變勵磁電感和等效匝數(shù)比來拓寬增益,但其控制難度較大。文獻(xiàn)[18]采用兩個LLC諧振網(wǎng)絡(luò)來拓寬增益,但其特性本質(zhì)上與LLC諧振變換器相同。文獻(xiàn)[19]在LLC諧振網(wǎng)絡(luò)中使用輔助開關(guān)加大諧振電感的儲能以提高增益,增益受開關(guān)頻率和元件參數(shù)的影響較大。文獻(xiàn)[20]采用APWM調(diào)制LLC拓?fù)湟酝貙捲鲆妫撜{(diào)制方法使變換器增益特性不單調(diào),加大了控制難度。文獻(xiàn)[21]基于LLC拓?fù)洌ㄟ^改善調(diào)制策略以拓寬增益,但是調(diào)制方法較為復(fù)雜。文獻(xiàn)[22]提出了一種五元件諧振變換器,相較于LLC諧振變換器,其諧振頻率以上增益特性優(yōu)良,但諧振頻率以下增益特性和LLC諧振變換器相似,且諧振元件參數(shù)設(shè)計難度大。文獻(xiàn)[23]在LLC 諧振變換器的諧振回路中串聯(lián)變壓器,其二次側(cè)整流后與buck變換器級聯(lián),輸出為并聯(lián)連接,變換器在保持高效率的同時獲得了一定的電壓調(diào)節(jié)能力,但是結(jié)構(gòu)較復(fù)雜。
對此,本文提出了一種由LLC 諧振變換器和兩開關(guān)buck-boost構(gòu)成的寬增益高效率LLC諧振變換器拓?fù)?,通過采用輸入并聯(lián)與輸出串聯(lián)的方式,分別由LLC諧振變換器傳輸功率、buck-boost調(diào)節(jié)輸出電壓。其中,LLC諧振變換器運(yùn)行于諧振頻率、buck-boost采用PWM調(diào)節(jié)輸出電壓。
變換器拓?fù)淙鐖D1所示。LLC 諧振變換器與兩開關(guān)buck-boost采用輸入并聯(lián)、輸出串聯(lián)方式。其中,LLC 諧振變換器的運(yùn)行頻率固定在諧振頻率,兩開關(guān)buck-boost采用PWM調(diào)節(jié)輸出電壓。
變換器增益為
圖1 變換器拓?fù)?/p>
圖2 變換器增益特性
1.2.1連續(xù)模式
1.2.2斷續(xù)模式
圖5 電流斷續(xù)時波形
圖6 電流斷續(xù)模式模態(tài)
由式(5)、式(6)得到變換器增益為
連續(xù)模式變換器增益特性如圖7所示。
圖7 連續(xù)模式變換器增益特性
Fig. 7 Converter gain characteristics of continuous current operation
連續(xù)模式功率占比如圖8所示,占空比與LLC 諧振變換器輸出功率與變換器總輸出功率的比值有關(guān)。其中,在0~0.8范圍取值時,LLC 諧振變換器輸出功率與變換器總輸出功率的比值變化很小,取10時,功率比值下降20%左右。
buck-boost的輸出電壓為
由式(5)、式(9)得到變換器增益為
圖9為斷續(xù)模式變換器的增益特性,增益隨著占空比d的增加線性增大。
LLC 諧振變換器輸出功率與變換器總輸出功率的比值為
斷續(xù)模式功率占比如圖10所示。占空比對LLC 諧振變換器輸出功率與變換器總輸出功率的比值影響很大,在0~0.8范圍取值時,取10,功率比值下降70%左右??梢?,該運(yùn)行模式下由buck-boost傳輸大部分功率,變換器效率較低。因此,本文不采用該運(yùn)行模式。
變換器技術(shù)指標(biāo)如表1所示,為驗證變換器的高升壓、寬增益的特點,選取較低輸入電壓等級30 V。為了避免開關(guān)管Q5和Q6運(yùn)行于極限占空比狀態(tài),同時確保LLC 諧振變換器傳輸大部分功率,將占空比調(diào)節(jié)范圍限定為[0.1, 0.85]。
圖10 斷續(xù)模式功率占比
表1 變換器技術(shù)指標(biāo)
則變換器的最小、最大增益分別為
為使變換器增益滿足要求,應(yīng)滿足:
LLC諧振變換器不需要調(diào)節(jié)電壓,其增益應(yīng)保持恒定,則有[24]
LLC諧振腔的設(shè)計只有品質(zhì)因數(shù)和電感比兩個自由度[25],實際上
對于buck-boost變換器,只需要設(shè)計電感b的值,根據(jù)以上分析,電流b連續(xù)的條件為
圖12 d = 0.1時的仿真波形
圖13 d = 0.85時的仿真波形
圖14為實驗樣機(jī)照片,樣機(jī)參數(shù)如表2所示。
圖14 實驗樣機(jī)照片
表2 元件參數(shù)
圖15 d = 0.1時的實驗波形
圖17為兩開關(guān)buck-boost輸出電壓2突變的實驗波形,可見其迅速達(dá)到穩(wěn)定值。
圖18為實驗樣機(jī)的測量效率,隨著占空比的增大,樣機(jī)輸出總功率增大,效率微微上升,隨著LLC諧振變換器的傳輸效率占比略微下降,整機(jī)效率開始下降,但仍保持在較高值,樣機(jī)最高效率為97.4%。
圖16 d = 0.85時的實驗波形
圖17 V2突變實驗波形
圖18 實驗樣機(jī)效率
本文提出了一種寬增益高效率LLC諧振變換器,由LLC 諧振變換器和兩開關(guān)buck-boost變換器采用輸入并聯(lián)、輸出串聯(lián)的方式得到,其具有以下特點:
1) 開關(guān)頻率固定于諧振頻率,有利于磁性元件的優(yōu)化設(shè)計;
2) 通過改變兩開關(guān)buck-boost的占空比調(diào)節(jié)輸出電壓,調(diào)制方式簡單;
3) LLC諧振變換器運(yùn)行于諧振頻率,傳輸變換器的大部分功率,變換器獲得了高效率。
[1] SHANG M, WANG H. A LLC type resonant converter based on PWM voltage quadrupler rectifier with wide output voltage[C] // IEEE Applied Power Electronics Conference and Exposition, March 26-30, 2017, Tampa, Florida, USA.
[2] WEI Y, LUO Q, WANG Z, et al. A complete step-by-step optimal design for LLC resonant converter[J]. IEEE Transactions on Power Electronics, 2021, 36(4): 3674-3691.
[3] FOROUZESH M, SIWAKOTI Y P, GORJI S A, et al. Step-up DC-DC converters: a comprehensive review of voltage-boosting techniques topologies and applications[J]. IEEE Transactions on Power Electronics, 2017, 32(12): 9143-9178.
[4] BADAL F R, DAS P, SARKER S K, et al. A survey on control issues in renewable energy integration and microgrid[J]. Protection and Control of Modern Power Systems, 2019, 4(1): 87-113.
[5] 孫立明, 楊博. 蓄電池/超導(dǎo)混合儲能系統(tǒng)非線性魯棒分?jǐn)?shù)階控制[J]. 電力系統(tǒng)保護(hù)與控制, 2020, 48(22): 76-83.
SUN Liming, YANG Bo. Nonlinear robust fractional- order control of battery/SMES hybrid energy storage systems[J]. Power System Protection and Control, 2020, 48(22): 76-83.
[6] 孫元崗, 同向前, 李庚, 等. 一種雙向諧振型高頻直流變壓器通用參數(shù)設(shè)計方法[J]. 電力系統(tǒng)保護(hù)與控制, 2021, 49(5): 29-35.
SUN Yuangang, TONG Xiangqian, LI Geng, et al. A generalized parameter design approach for bidirectional resonant high frequency DC transformers[J]. Power System Protection and Control, 2021, 49(5): 29-35.
[7] 慕昆, 齊紅柱, 何國鋒. 基于 LLC 諧振變換器的直流電源控制系統(tǒng)設(shè)計[J]. 電力系統(tǒng)保護(hù)與控制, 2020, 48(6): 152-157.
MU Kun, QI Hongzhu, HE Guofeng. Design of DC power supply control system based on LLC resonant converter[J]. Power System Protection and Control, 2020, 48(6): 152-157.
[8] 唐忠, 白健, 賴立. 基于IPOS雙LLC諧振變換器的恒壓恒流充電研究[J]. 電力系統(tǒng)保護(hù)與控制, 2021, 49(24): 88-95.
TANG Zhong, BAI Jian, LAI Li. Constant voltage and constant current charging based on an IPOS dual-LLC resonant converter[J]. Power System Protection and Control, 2021, 49(24): 88-95.
[9] 張永明, 林嘉偉, 陳俊堯, 等. 計及DCM的電動汽車充電機(jī)LLC諧振變換器參數(shù)設(shè)計與優(yōu)化[J]. 電力系統(tǒng)保護(hù)與控制, 2020, 48(2): 150-156.
ZHANG Yongming, LIN Jiawei, CHEN Junyao, et al. Parameter design and optimization of LLC resonant converter in electric car charger based on DCM analysis[J]. Power System Protection and Control, 2020, 48(2): 150-156.
[10] SHRIVASTAVA A, SINGH B. LLC series resonant converter based LED lamp driver with ZVS[C] // IEEE Fifth Power India Conference, December 19-22, 2012, Haryana, India.
[11] GUO W, BAI H, SZATMARI-VOICU G, et al. A 10 kW 97%-efficiency LLC resonant DC/DC converter with wide range of output voltage for the battery chargers in plug-in hybrid electric vehicles[C] // IEEE Transportation Electrification Conference and Expo,June 18-20, 2012, Dearborn, MI, USA.
[12] ABBASI M, EMAMALIPOUR R, MASOOD CHEEMA M A, et al. A constant frequency step-up resonant converter with a re-structural feature and a PWM-controlled voltage multiplier[C] // IEEE Applied Power Electronics Conference and Exposition, June 14-17, 2021, Phoenix, AZ, USA.
[13] WEI Y, MANTOOTH A. A flexible LLC topology for wide voltage gain range application[C] // IEEE 12th Energy Conversion Congress & Exposition, May 24-27, 2021, Singapore, Singapore.
[14] WU H, LI Y, XING Y. LLC resonant converter with semiactive variable-structure rectifier (SA-VSR) for wide output voltage range application[J]. IEEE Transactions on Power Electronics, 2016, 31(5): 3389-3394.
[15] ABBASI M, EMAMALIPOUR R, MASOOD CHEEMA M A, et al. An interchangeable soft-switched voltage boosting circuit for a multi-mode LLC step-up converter module in medium voltage applications[C] // IEEE Energy Conversion Congress and Exposition, October 11-15, 2020, Washington DC, USA.
[16] KIM M, JEONG H, HAN B, et al. New parallel loaded resonant converter with wide output voltage range[J]. IEEE Transactions on Power Electronics, 2018, 33(4): 3106-3114.
[17] HU H, FANG X, CHEN F, et al. A modified high- efficiency LLC converter with two transformers for wide input-voltage range applications[J]. IEEE Transactions on Power Electronics, 2013, 28(4): 1946-1960.
[18] SHAHZAD M I, IQBAL S, TAIB S. A wide output range HB-2LLC resonant converter with hybrid rectifier for PEV battery charging[J]. IEEE Transactions on Transportation Electrification, 2017, 3(2): 520-531.
[19] WANG H, CHEN Y, FANG P, et al. An LLC converter family with auxiliary switch for hold-up mode operation[J]. IEEE Transactions on Power Electronics, 2017, 32(6): 4291-4306.
[20] KIMB, PARK K, MOON G. Asymmetric PWM control scheme during hold-up time for LLC resonant converter[J]. IEEE Transactions on Industrial Electronics, 2012, 59(7): 2992-2997.
[21] 繆哲語, 仝昊, 姚文熙, 等. 一種柔性多模態(tài)寬范圍全橋LLC變換器控制方法[J]. 中國電機(jī)工程學(xué)報, 2022, 42(2): 747-761.
MIU Zheyu, TONG Hao, YAO Wenxi, et al. A flexible variable-mode control method for wide-range full-bridge LLC converter[J]. Proceedings of the CSEE, 2022, 42(2): 747-761.
[22] FU D, LEE F C, LIU Y, et al. Novel multi-element resonant converters for front-end DC/DC converters[C] // IEEE Power Electronics Specialists Conference, June 15-19, 2008, Rhodes, Greece.
[23] WU X, CHEN H, QIAN Z. 1-MHz LLC resonant DC transformer with regulating capability[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 2904-2912.
[24] FANG X, HU H, SHEN Z J, et al. Operation mode analysis and peak gain approximation of the LLC resonant converter[J]. IEEE Transactions on Power Electronics, 2012, 27(4): 1985-1995.
[25] LAZAR J F, MARTINELLI R. Steady-state analysis of the LLC series resonant converter[C] // IEEE Applied Power Electronics Conference and Exposition, March 4-8, 2001, Anaheim, CA, USA: 728-735.
[26] 孫欣楠, 陳敏, 李博棟, 等. 基于電感比分析的CLLC諧振變換器效率優(yōu)化[J]. 中國電機(jī)工程學(xué)報, 2021, 41(8): 2825-2834.
SUN Xinnan, CHEN Min, LI Bodong, et al. Efficiency optimization of CLLC resonant converter based on analysis of the ratio of inductances[J]. Proceedings of the CSEE, 2021, 41(8): 2825-2834.
LLC resonant converter topology with wide gain and high efficiency
XIA Xiao1, GONG Chunyang2, BAO Jun3, ZHU Guozhong4, WANG Zhixin1
(1. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;2. Shanghai University of Electric Power, Shanghai 200090, China; 3. Shanghai Xilong Technology Co., Ltd., Shanghai 201517, China; 4. Shanghai Chint Power Co., Ltd., Shanghai 200210, China)
There are shortcomings of an LLC resonant converter with strong gain load sensitivity and strong coupling with efficiency. Thus this paper proposes a wide-gain and high-efficiency LLC resonant converter topology composed of LLC resonant converter and a two-switch buck-boost converter. Using parallel connection and output series, the LLC resonant converter transmits power and the buck-boost adjusts the output voltage. The LLC resonant converter operates at the resonant frequency, and uses PWM for the buck-boost to regulate the output voltage. The operation mode of the proposed converter is analyzed, the corresponding parameter design method is given, and the simulation verification is carried out. Finally, experiments are carried out on prototypes with input 30 V, output 200~360 V, and 360 W, and the gain range and efficiency of the experimental prototype are 6.67~12 and 97.4%, respectively. Simulation and prototype experiments verify the effectiveness of the proposed wide-gain and high-efficiency LLC converter topology and its modulation method.
wide gain; high efficiency; LLC resonant converter; resonant frequency; two-switch buck-boost converter
10.19783/j.cnki.pspc.220478
國家重點研發(fā)計劃項目資助(2018YFB1503000, 2018YFB1503001;上海市科委科技計劃項目資助(21DZ1207300)
This work is supported by the National Key Research and Development Program of China (No. 2018YFB1503000 and No. 2018YFB1503001).
2022-04-06;
2022-06-04
夏 瀟(1998—),男,碩士研究生,主要研究方向為電力電子技術(shù);E-mail: xiaxiao@sjtu.edu.cn
王志新(1964—),男,通信作者,教授,博士生導(dǎo)師,主要研究方向為電力電子技術(shù)。E-mail: wangzxin@ sjtu.edu.cn
(編輯 魏小麗)