• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A field-effect WSe2/Si heterojunction diode

    2023-02-20 13:16:42RuiYu余睿ZheSheng盛喆WennanHu胡文楠YueWang王越JianguoDong董建國HaoranSun孫浩然ZengguangCheng程增光andZengxingZhang張增星
    Chinese Physics B 2023年1期
    關(guān)鍵詞:王越建國

    Rui Yu(余睿), Zhe Sheng(盛喆), Wennan Hu(胡文楠), Yue Wang(王越), Jianguo Dong(董建國),Haoran Sun(孫浩然), Zengguang Cheng(程增光), and Zengxing Zhang(張增星),2,?

    1State Key Laboratory of ASIC and System,School of Microelectronics,Fudan University,Shanghai 200433,China

    2National Integrated Circuit Innovation Center,Shanghai 201203,China

    Keywords: two-dimensional material,ambipolar semiconductor,field-effect transistor,optoelectronic device

    1. Introduction

    In the past decades, silicon-based devices have been extensively developed and applied, which has promoted the development of semiconductor technology. However, with the rapid growth of information technology,especially the internet of things (IoTs), enormous information needs to be acquired and processed, putting forward urgent demand for devices with high performance and high energy efficiency. Therefore,it has become an emergent field to explore new materials and new physical properties, and thus to develop new principle devices and new computing architectures.[1]Recently,two-dimensional(2D)materials have attracted tremendous attention due to their ultrathin structure and excellent physical properties,[2–5]which have been widely proposed for excellent electronic and optoelectronic devices.[6–9]Among these 2D materials,ambipolar 2D semiconductors,[10–12]like WSe2,are receiving especial interest,in which the major charge carriers can be dynamically tuned by controlling the electrical field. Based on such characteristic,various field-effect diodes have been reported,[13–18]in which the electronic and optoelectronic properties can be modulated by a gate voltage.They thus have potentials for logic optoelectronic devices[19,20]or neuromorphic optoelectronic devices[21]for ultrafast image sensors by implementing the artificial neural network(ANN)algorithm[22]to perform the in-sensor computing circuits.

    Although the ambipolar 2D semiconductor based fieldeffect diodes have shown great potential, it is expected that silicon-based devices will still be the mainstream of semiconductor technology in the near future with the advantages of mature technology and low cost. Therefore, it is significant to integrate 2D materials into Si to develop a heterogeneous integration technology so it can make full use of the superiorities of Si and 2D materials. To this end, there have been some reports which tried 2D-materials/Si heterojunction devices that exhibited excellent properties in electronics and optoelectronics,such as graphene/Si,[23,24]MoS2/Si[25,26]and WS2/Si.[27,28]However, so far, few works have been carried out to push forward the field-effect diodes based on heterogeneous 2D ambipolar semiconductor and Si. In addition, the often-used bulk Si in these reported heterogeneous devices is not conductive for device isolation and integration.[29]Here,we demonstrate a field-effect heterojunction diode,where the channel is ambipolar-WSe2/Si heterojunction and the Si is from Si on insulator(SOI)that is conductive for device insolation and large-scale integration. The investigation indicates that the device exhibits a diode behavior with gate-modulated electronic and optoelectronic properties,indicating that it has potential as logic optoelectronic devices and neuromorphic optoelectronic devices for in-sensor computing circuits.

    2. Result and discussion

    Figure 1(a) illustrates the schematic configuration of the field-effect WSe2/Si heterojunction diode, in which the ntype Si and p-type WSe2heterojunction serves as the channel,hexagonal boron nitride (h-BN) and graphene (Gr) as the dielectric and gate electrode, respectively. All of the materials are assembled via van der Waals force interaction. In a typical fabrication process,a SOI wafer was used to obtain the bottom Si sheet. The thickness of the device layer is 100 nm and the resistivity is 0.005 Ω·cm. The Si sheet with a length of 15 μm and a width of 10 μm was firstly defined by e-beam lithography (EBL) and etched by inductively coupled plasma (ICP).And then metal electrodes(30 nm Au)were patterned on the Si sheet and around.After that,WSe2,h-BN and Gr flake were transferred and stacked on the specific positions layer by layer,all of which were mechanically exfoliated from bulk crystals.The details of the fabrication process can be seen in the supplementary material. Figure 1(b)shows an optical microscope image of a typical fabricated field-effect WSe2/Si heterojunction diode. The boundaries of each component are marked by solid lines with different colors and the area of the heterojunction region is around 44 μm2. Atomic force microscopy(AFM)was employed to determine the thickness of the flakes.As demonstrated in Fig. S2, the thicknesses of the Gr, h-BN and WSe2are 7 nm, 16.5 nm and 6 nm, respectively, indicating all of which are few-layer structures. Compared with 2D-material/Si heterojunctions using bulk silicon, our device based on the SOI technology enables the mutual isolation between devices, which should be feasible to realize the largearea on-chip integration in the future.

    Fig.1. (a) Schematic device structure of the field-effect WSe2/Si heterojunction diode. (b)Optical microscope image of a typical fabricated device.

    In our device,the contact between the Au electrodes and the WSe2is formed by transferring the 2D flake to the predeposited metal electrodes. Compared with directly depositing metal to 2D materials, such technique can reduce damages to the surface of the 2D materials and form a Van der Waals contact.[30,31]Figure 2(a)is theId–Vdscurves across the WSe2with various gate voltages(Vg)applied on the electrode E5, in which the drain/source voltage (Vds) is applied on the electrode E1 (drain) and E2 (source), as indicated in Fig. 1.It can be seen that the current (Id) is nearly linearly dependent on theVdsand the linear relationship of theId–Vdscurves is hardly affected by the gate voltagesVg, indicating that the Au/WSe2contact is close to ohmic. The Si/Au contact is studied with the electrode E3 (drain) and E4 (source). As shown in Fig. 2(b), theId–Vdscurve of the Si sheet is obviously linear with a high current at the level of 10-3A at 1 V, indicating that a high quality ohmic contact is formed between the Au and the Si sheet. Figure 2(c) shows theId–Vdscurve across the WSe2/Si heterojunction tested by applying voltages on the electrode E1 (drain) and E4 (source) with the top Gr gate open. The heterojunction exhibits an obvious rectifying behavior of p–n diode. WithVdsof-2 V and 2 V, the currentIdis-2.6×10-6A/cm2and 7.8×10-4A/cm2, respectively, demonstrating a rectifying ratio of~300. As both of the Au/WSe2and the Au/Si are nearly ohmic contacts, such rectification is reasonable to be ascribed to the WSe2/Si interface. From the slope of the curve,it can be extracted that the ideality factor(n)is about 1.37(detailed calculation method is shown in the supplementary material). The ideality factor is described asn=e/kT×dV/d(lnI), whereeis the electron charge,kis the Boltzmann constant,Tis the temperature,Vis the voltage andIrepresents the current.According to the Sah–Noyce–Shockley theory,[32]nis the parameter that reflects the current transport mechanism in p–n diodes. Whennis close to 1,the current is dominated by the diffusion effect. While it is close to 2,it is ascribed to the recombination effect.Thenhere is close to 1,indicating that the transport should be dominated by the diffusion rather than the recombination mechanism.

    Fig.2. (a) The Id–Vds curves across the WSe2 at different Vg. (b) Id–Vds curve across the Si sheet. (c) Id–Vds curve across the WSe2/Si heterojunction,in which the blue is in linear scale and the red is in logarithmic.

    An important application of p-n diodes is for photodetectors. We studied the optoelectronic properties of the WSe2/Si heterojunction diode and the results are shown in Fig. 3. As shown in Fig. 3(a), an obvious photocurrent is generated under the light illumination and it increases with the increase of the light power density (P). Here the photocurrent is defined asIph=Ilight-Idark, whereIlightis the current density under light illumination andIdarkis the current density in dark. For the light power densityP, we used an optical power meter to measure the power(Q)of the incident light;Pwas calculated by dividingQwith the light spot area. For the current densityIlightandIdark,we extracted the currents from theI–Vcurves of the WSe2/Si heterojunction at a certainVdsunder light illumination and dark,respectively;the current densities were calculated by dividing the currents with the junction area(overlapping area of the WSe2and Si,44 μm2). The p–n diodes often work at the reverse bias voltage state when used for photodetectors. To obtain the optimal work voltage of the WSe2/Si heterojunction diode,theIph–VdsandRT–Vdscurves are measured under the light power density of 2.66 mW/cm2, whereRTis defined asIph/Idark.As shown in Fig.3(b),the photocurrent is generated under both positive and negative bias ofVds,andRTreaches the maximum of 103atVds=-1.2 V.Generally,IphandRTshould be as large as possible for photodetectors.Therefore,Vds=-1.2 V should be the optimal work voltage for our device at such situation. In the following,Iphdependent on light power density(P)is studied atVds=-1.2 V unless other stated. As presented in Fig.3(c),theIph–Pcurve is roughly linearly, which is benefit for photodetection. For photodetectors,some specific indicators are often used to characterize their performance, like response time, photo-switch property,stability,responsivity(R),detectivity(D*)and external quantum efficiency(EQE).Rrepresents the ability of photoelectric conversion of photodetectors,which is described asR=Iph/P.D*represents the detection ability of photodetectors and it is described asD*=R/(2eIdark)1/2,whereeis the electron charge. EQE represents the ability of photodetectors to transform the photonic signal into an electrical signal and it is determined by the equation EQE=Rhc/eλ,wherehis the Planck constant,cis the light speed andλis the wavelength of the incident light. Our experimental results reveal that the device has good response time with rise time(tr)of 0.13 ms and fall time(tf)of 5.55 ms,as shown in Fig.3(d),which were obtained via measuring the time with the current rising(falling)from 10%(90%)to 90%(10%). The WSe2/Si heterojunction diode also possesses a pretty good photo-switch property and stability with a test time more than 1000 s(Fig.3(e)). As presented in Fig. S3,RandD*of the heterojunction diode are 0.045 A/W and 4.5×1010Jones, respectively. Meanwhile,the maximum EQE is calculated to be 8.9%. A comparison of our device with other reported photodetectors based on 2Dmaterial/Si heterojunction is shown in Table 1.It demonstrates that our device is competitive in main performances. In addition, we also studied the photoresponse of our device to the light with different wavelengths; all of them were measured with a power density of 2.66 mW/cm2atVds=-1.2 V. As shown in Fig.3(f),the responsivity of the device is dependent on the light wavelength. When the light is of 805 nm, the photoresponse decreases obviously. For the 1045 nm incident light,it is difficult to observe the responsivity.

    Fig.3. (a)The Id–Vds curves across the WSe2/Si heterojunction diode under light illumination with different power densities. (b)The corresponding Iph–Vds and RT–Vds curves of the WSe2/Si heterojunction diode. (c)Scatting points of Iph dependent on the light power density P. (d)Response time(rise: tr, fall: tf) and (e) photo-switch property of the WSe2/Si heterojunction diode. (f) Scatting points of responsivity (R) dependent on the light wavelength. Data from(a)to(e)were all acquired with the light of 638 nm,data from(b)to(f)were all at P=2.66 mW/cm2,and data from(c)to(f)were all at Vds=-1.2 V.

    Table 1. Performance comparison of our device with reported 2D-material/Si heterostructured photodetectors.

    As reported,the optoelectronic properties of the ambipolar 2D semiconductor based devices can be modulated by an electrical field. Such behavior can be used for logic optoelectronic devices and neuromorphic optoelectronic devices for in-sensor computing circuits, which has been attracting great attention recently. Therefore,it is significant to study the gate-modulated properties of the heterojunction diode. Figure 4(a) shows theId–Vdscurves of the WSe2/Si heterojunction diode withVgopen, 5 V and-5 V respectively, and the electrodes E1, E4 and E5 serve as the drain, source and gate,respectively. As shown in the curves, whenVg=5 V is applied on the Gr gate, it can be obtained that the currentIdis-8.35×10-4A/cm2atVds=-2 V and 3.17×10-6A/cm2atVds=2 V,respectively,with a rectifying ratio of~263. Compared with theVgopen, the rectifying direction is reversed.WhenVg=-5 V is applied, the heterojunction is of similar rectifying direction like that ofVgopen. The currentIdis-1.30×10-5A/cm2atVds=-2 V and 1.61×10-3A/cm2atVds=2 V with a rectifying ratio of 124.That is to say,the gate voltage can modulate the heterojunction,including the rectifying ratio and direction. To confirm this modulation,the transfer characteristic curves of the heterojunction atVds=-2 V and 2 V were measured and shown in Fig.4(b). The diagram is divided into two regions (region I and region II) by the intersection of the two curves at the position ofVg= 1 V. The current atVds=2 V is larger than that atVds=-2 V in region I but smaller in region II,further proving that the diode is indeed modulated when the gate voltage varies from-5 V to 5 V,and the modulation is continuous.

    Fig.4. (a) The Id–Vds curves of the field-effect WSe2/Si heterojunction diode with Vg open, 5 V and-5 V respectively. (b)Id–Vg curves of the heterojunction with Vds of -2 V and 2 V, respectively. Id–Vds curves of the heterojunction under light illumination with different power densities at(c)Vg=5 V and(d)Vg=-5 V,respectively.

    Figures 4(c) and 4(d) show the optoelectronic properties of the diode at different gate voltages under 638 nm light illumination. With the similar method as discussed above, we can get that the optimal work voltageVdsof 1 V forVg=5 V,and the maximum values ofR,D*and EQE are 0.122 A/W,1.2×1011Jones and 24.1%, respectively (Fig. S4). ForVg=-5 V,the optimal work voltageVdsis-1 V,and the maximum values ofR,D*and EQE are 0.044 A/W,1.33×1010Jones and 8.7%,respectively(Fig.S5).Compared withVgopen,these indicate that the optoelectronic behavior of the field-effect diode can be modulated by the gate voltage,exhibiting that it can be used for logic optoelectronic device and neuromorphic optoelectronic devices.

    To well understand the field-effect WSe2/Si heterojunction diode,we further studied the gate-modulated mechanism.Figure 5(a)shows the transfer characteristic curve of the WSe2FET,where the drain/source and gate electrode are E1/E2 and E5, respectively. The curve with a valley shape demonstrates that it is a typical ambipolar FET. When the gate voltage is scanned from-5 V to 5 V,the current first decreases and then increases. The neutral point is a little bigger than 0 V,indicating that the WSe2is a little p-doped. We also studied the gateeffect on the Si sheet,where E3/E4 and E5 electrode serve as the source/drain and gate electrode, respectively. The result exhibits that the Si sheet is nearly not affected by the Gr gate probably due to the low resistivity of the Si (Fig. S6). Based on such fact,the band diagrams of the WSe2/Si heterojunction at different gate voltages are shown in Figs.5(b)–5(d). As for the few-layer 2D WSe2,the electron affinity is~4.06 eV and the bandgap is~1.31 eV.[36]The Si has the electron affinity of 4.05 eV and the bandgap of 1.12 eV.When the heterojunction is formed,electrons(holes)in the n-type Si(p-type WSe2)diffuse into the p-type WSe2(n-type Si)due to the difference of charge carrier concentration,bending down(up)the energy band of WSe2(Si)close to the interface,initiating a depletion region and making the heterojunction as a p–n diode with a built-in electrical field(Fig.5(b)). WhileVg=5 V is applied,electrons are highly doped in the WSe2and the Si sheet is not affected, leading to that electrons diffuse from the WSe2to the Si,making the heterojunction as an n+–n diode with a reversed rectifying direction(Fig.5(c)). WhenVg=-5 V is applied,similarly,more holes are accumulated in the WSe2,and the heterojunction finally becomes a p+–n diode due to the difference of carrier concentration (Fig. 5(d)). For the photoresponse, while light is illuminated on the heterojunction,the photons can be absorbed by both WSe2and Si due to that the light can be transmitted through the very thin WSe2. The absorbed photons generate photo-excited charge carriers that are then separated by the built-in electrical field in the heterojunction and the photocurrent is present. As we all know, a reverse bias voltage can strengthen the built-in electric field in the p–n diode,leading to the increase of the photoresponse in the reverse bias condition. Therefore, in our experiment we used a reverse bias voltage to strengthen the photoresponse. It should be noted in Fig. 3(f) that the photoresponse decreases obviously for the light of 805 nm and almost disappears for 1045 nm,which should be due to the decrease of the absorbed photons since they are consistent to the light absorption characteristics of the WSe2and Si.[33,37]

    Fig.5. (a) Transfer characteristic curve of the ambipolar WSe2 FET.Band diagram of the WSe2/Si heterojunction diode with gate voltage of(b)open,(c)5 V and(d)-5 V,respectively.

    3. Conclusion

    We reported a field-effect WSe2/Si heterojunction diode by adopting the 2D WSe2and the device layer of SOI. In terms of electrical properties,the heterojunction exhibits a p–n diode behavior with a rectifying ratio of~300 and an ideality factor of 1.37. As a photodetector, the heterojunction has optoelectronic properties with response time of 0.13 ms,Rof 0.045 A/W,D*of 4.5×1010Jones and EQE of 8.9%.Due to the ambipolar characteristic of the WSe2, the heterojunction can be modulated among p–n, n+–n and p+–n diode by controlling the gate voltage, accompanied by the modulation of electrical and optoelectronic properties. WithVg=5 V, the heterojunction exhibits an n+–n diode behavior withR,D*and EQE tuned up to 0.122 A/W, 1.2×1011Jones and 24.1%,respectively. WhileVg=-5 V,the heterojunction exhibits a p+–n diode behavior withR,D*and EQE of 0.044 A/W, 1.33×1010Jones and 8.7%, respectively. Our field-effect WSe2/Si heterojunction diode with gate tunable properties should be applicable as logic optoelectronic devices and neuromorphic optoelectronic devices for in-sensor computing circuits. In addition, the SOI wafer used here makes the device more easily isolated and integrated,which may enable large-scale integration and be more suitable for integrated circuits and image sensors.

    Data availability statement

    The data that support the findings of this study are openly available in Science Data Bank at http://doi.org/10.57760/sciencedb.j00113.00055.

    Acknowledgements

    Project supported by the Ministry of Science and Technology of China(Grant No.2018YFE0118300),the National Key Research and Development Program of China (Grant No. 2018YFA0703703), and State Key Laboratory of ASIC& System (Grant No. 2021MS003), and Science and Technology Commission of Shanghai Municipality, China (Grant No.20501130100).

    猜你喜歡
    王越建國
    Discovery of new potential magnetic semiconductors in quaternary Heusler compounds by addition of lanthanides
    程建國作品(一)
    大眾文藝(2023年3期)2023-03-03 03:30:50
    程建國作品(二)
    大眾文藝(2023年3期)2023-03-03 03:30:44
    象牙為什么長在嘴外面
    好孩子畫報(2022年6期)2022-12-01 07:10:30
    向日葵為什么會跟著太陽轉(zhuǎn)?
    好孩子畫報(2022年5期)2022-06-06 21:29:20
    Flow separation control over an airfoil using continuous alternating current plasma actuator
    你是我最牽掛的人
    P-V Criticality of Born-Infeld AdS Black Holes Surrounded by Quintessence?
    中國手機二維碼之父:苦撐6年盼到移動支付潮
    世紀人物(2017年8期)2017-08-07 07:40:04
    “病漂”情侶:“心肺聯(lián)盟”的詞典里沒有仇怨
    成人av一区二区三区在线看 | 免费在线观看影片大全网站| 色综合欧美亚洲国产小说| 亚洲黑人精品在线| 视频在线观看一区二区三区| 成在线人永久免费视频| 性高湖久久久久久久久免费观看| 日韩精品免费视频一区二区三区| 三上悠亚av全集在线观看| 岛国在线观看网站| 午夜日韩欧美国产| 麻豆国产av国片精品| 国产有黄有色有爽视频| 满18在线观看网站| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产日韩一区二区| 亚洲第一青青草原| 视频区欧美日本亚洲| 欧美黄色片欧美黄色片| av欧美777| 久久狼人影院| 波多野结衣av一区二区av| 国产精品一二三区在线看| 国产精品99久久99久久久不卡| 一本大道久久a久久精品| 国产精品一区二区精品视频观看| 曰老女人黄片| 99国产精品一区二区三区| 欧美久久黑人一区二区| 青草久久国产| 人成视频在线观看免费观看| 在线精品无人区一区二区三| 少妇被粗大的猛进出69影院| 十八禁高潮呻吟视频| 黄色a级毛片大全视频| 中文字幕色久视频| 亚洲美女黄色视频免费看| 亚洲中文av在线| 亚洲成人国产一区在线观看| 精品一品国产午夜福利视频| 在线观看人妻少妇| a级毛片黄视频| 高清欧美精品videossex| 中文字幕高清在线视频| 亚洲人成电影免费在线| 制服诱惑二区| 18禁裸乳无遮挡动漫免费视频| 国产极品粉嫩免费观看在线| 欧美亚洲 丝袜 人妻 在线| 亚洲av国产av综合av卡| 久久精品国产亚洲av高清一级| 日本精品一区二区三区蜜桃| 成年动漫av网址| 黑人巨大精品欧美一区二区蜜桃| 亚洲欧美精品综合一区二区三区| 2018国产大陆天天弄谢| 欧美日韩一级在线毛片| 国产有黄有色有爽视频| 成人亚洲精品一区在线观看| 亚洲,欧美精品.| 自线自在国产av| 一级a爱视频在线免费观看| 一级毛片精品| 亚洲国产精品一区三区| 高清av免费在线| 首页视频小说图片口味搜索| 午夜精品久久久久久毛片777| 汤姆久久久久久久影院中文字幕| 亚洲欧美精品自产自拍| 叶爱在线成人免费视频播放| 国产av精品麻豆| 国产一区二区激情短视频 | 99国产综合亚洲精品| 高清欧美精品videossex| 国产一区二区 视频在线| 99久久精品国产亚洲精品| av超薄肉色丝袜交足视频| 91av网站免费观看| 国产一区二区三区在线臀色熟女 | 国产区一区二久久| 电影成人av| 黄色视频不卡| 国产亚洲av片在线观看秒播厂| 五月天丁香电影| 国产亚洲午夜精品一区二区久久| 这个男人来自地球电影免费观看| 91成年电影在线观看| h视频一区二区三区| 在线亚洲精品国产二区图片欧美| 日韩中文字幕欧美一区二区| 国产成人a∨麻豆精品| 国产成人免费无遮挡视频| 国产精品一区二区免费欧美 | 亚洲va日本ⅴa欧美va伊人久久 | 国产精品熟女久久久久浪| 午夜福利影视在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品国产精品久久久不卡| 日韩熟女老妇一区二区性免费视频| 久久久国产精品麻豆| av欧美777| 蜜桃在线观看..| 成人av一区二区三区在线看 | 精品视频人人做人人爽| 乱人伦中国视频| 国产精品久久久av美女十八| 18禁观看日本| 老汉色∧v一级毛片| 一区二区三区激情视频| 一边摸一边抽搐一进一出视频| 中文字幕高清在线视频| 多毛熟女@视频| 老司机亚洲免费影院| 777米奇影视久久| 精品一区在线观看国产| 啦啦啦中文免费视频观看日本| 国产精品免费视频内射| 秋霞在线观看毛片| 日韩一区二区三区影片| 国产无遮挡羞羞视频在线观看| 每晚都被弄得嗷嗷叫到高潮| 亚洲av成人不卡在线观看播放网 | 亚洲精品第二区| 亚洲中文字幕日韩| 一本久久精品| 色老头精品视频在线观看| 午夜激情久久久久久久| 欧美日韩一级在线毛片| 亚洲五月婷婷丁香| 天天添夜夜摸| 狠狠婷婷综合久久久久久88av| 男女免费视频国产| av超薄肉色丝袜交足视频| 中文欧美无线码| 69精品国产乱码久久久| 国产区一区二久久| 亚洲色图综合在线观看| 久久人人爽人人片av| 精品视频人人做人人爽| 精品国产乱码久久久久久男人| 午夜精品久久久久久毛片777| 亚洲av电影在线观看一区二区三区| 久久精品亚洲熟妇少妇任你| www.自偷自拍.com| 成人国产一区最新在线观看| 91字幕亚洲| 国产高清视频在线播放一区 | 老汉色av国产亚洲站长工具| 亚洲男人天堂网一区| 99国产精品免费福利视频| 亚洲国产精品999| 在线天堂中文资源库| 99国产精品免费福利视频| 亚洲av电影在线进入| 色94色欧美一区二区| 精品国产一区二区三区久久久樱花| 大陆偷拍与自拍| 欧美精品一区二区大全| 欧美在线一区亚洲| 亚洲九九香蕉| 香蕉丝袜av| 亚洲九九香蕉| 男女免费视频国产| 日韩人妻精品一区2区三区| 日韩大码丰满熟妇| 亚洲一区二区三区欧美精品| 国产黄色免费在线视频| 久久人妻福利社区极品人妻图片| 国产成人精品无人区| 色精品久久人妻99蜜桃| 亚洲一码二码三码区别大吗| 国产精品 国内视频| 欧美精品一区二区大全| 中亚洲国语对白在线视频| 18在线观看网站| 亚洲一码二码三码区别大吗| 精品福利永久在线观看| 久久中文字幕一级| 欧美日韩亚洲综合一区二区三区_| 国产xxxxx性猛交| h视频一区二区三区| 精品国产一区二区三区四区第35| www.自偷自拍.com| 乱人伦中国视频| 天天躁狠狠躁夜夜躁狠狠躁| 午夜免费成人在线视频| 欧美日韩亚洲高清精品| 不卡一级毛片| 中文字幕制服av| 国产亚洲av片在线观看秒播厂| 国产伦理片在线播放av一区| 日韩 欧美 亚洲 中文字幕| 少妇被粗大的猛进出69影院| 亚洲视频免费观看视频| 精品亚洲成国产av| 麻豆乱淫一区二区| 美女福利国产在线| 丝袜脚勾引网站| 久久青草综合色| 亚洲国产欧美在线一区| 欧美久久黑人一区二区| 99九九在线精品视频| 亚洲欧美激情在线| 午夜免费成人在线视频| 男人添女人高潮全过程视频| 久久精品aⅴ一区二区三区四区| av视频免费观看在线观看| 国产亚洲欧美在线一区二区| 久久久国产成人免费| 国产国语露脸激情在线看| 一本—道久久a久久精品蜜桃钙片| 国产精品欧美亚洲77777| 老司机午夜福利在线观看视频 | 久久久精品国产亚洲av高清涩受| 99香蕉大伊视频| 久久这里只有精品19| av网站在线播放免费| 丁香六月欧美| 亚洲精品国产av成人精品| 色老头精品视频在线观看| 国产高清视频在线播放一区 | 免费人妻精品一区二区三区视频| 国产精品九九99| 国产一区二区三区在线臀色熟女 | 日韩免费高清中文字幕av| 极品人妻少妇av视频| 精品一区二区三区av网在线观看 | 久久亚洲精品不卡| 免费在线观看完整版高清| 人妻一区二区av| 大香蕉久久网| 俄罗斯特黄特色一大片| 99国产精品一区二区蜜桃av | 天天躁夜夜躁狠狠躁躁| www.自偷自拍.com| 天天躁日日躁夜夜躁夜夜| 超碰成人久久| 国产日韩一区二区三区精品不卡| 两性夫妻黄色片| 精品熟女少妇八av免费久了| 国产成人欧美在线观看 | 男人爽女人下面视频在线观看| 岛国在线观看网站| 动漫黄色视频在线观看| 飞空精品影院首页| 国产一区二区激情短视频 | 午夜精品久久久久久毛片777| 精品欧美一区二区三区在线| 91精品伊人久久大香线蕉| 建设人人有责人人尽责人人享有的| 丝袜喷水一区| 国产一卡二卡三卡精品| 亚洲成av片中文字幕在线观看| 久久av网站| 男女之事视频高清在线观看| 国产一区二区三区av在线| 窝窝影院91人妻| 久久久久网色| 久久久久网色| 老熟妇仑乱视频hdxx| 美女中出高潮动态图| 人人妻人人澡人人爽人人夜夜| 天天操日日干夜夜撸| 人人妻人人澡人人看| 两个人看的免费小视频| 女性被躁到高潮视频| 飞空精品影院首页| 亚洲精品久久成人aⅴ小说| 午夜福利,免费看| 国产成人精品久久二区二区91| 人人妻人人澡人人爽人人夜夜| 久久免费观看电影| 最新的欧美精品一区二区| 亚洲国产av影院在线观看| 国产亚洲午夜精品一区二区久久| 一级片'在线观看视频| 亚洲成国产人片在线观看| 少妇人妻久久综合中文| 美女扒开内裤让男人捅视频| 免费久久久久久久精品成人欧美视频| 啦啦啦中文免费视频观看日本| 国产老妇伦熟女老妇高清| 欧美精品亚洲一区二区| av天堂在线播放| 少妇被粗大的猛进出69影院| 一区福利在线观看| 国产日韩欧美在线精品| 亚洲视频免费观看视频| 成在线人永久免费视频| 又大又爽又粗| 久久精品成人免费网站| 黄片小视频在线播放| 高清视频免费观看一区二区| 91av网站免费观看| 国产高清视频在线播放一区 | 少妇猛男粗大的猛烈进出视频| 纯流量卡能插随身wifi吗| 啦啦啦 在线观看视频| 成人国产av品久久久| 多毛熟女@视频| 日日夜夜操网爽| 国产精品麻豆人妻色哟哟久久| 亚洲黑人精品在线| 午夜免费鲁丝| 国产深夜福利视频在线观看| 成在线人永久免费视频| 首页视频小说图片口味搜索| 日韩 亚洲 欧美在线| 一二三四社区在线视频社区8| 亚洲国产av新网站| 亚洲一区中文字幕在线| 国产欧美日韩一区二区三 | 大片免费播放器 马上看| 日韩精品免费视频一区二区三区| 一区二区三区精品91| 操美女的视频在线观看| 久久热在线av| 久久人人97超碰香蕉20202| 欧美97在线视频| 国产有黄有色有爽视频| av福利片在线| √禁漫天堂资源中文www| 无限看片的www在线观看| av天堂在线播放| 国产免费现黄频在线看| 交换朋友夫妻互换小说| 在线av久久热| 免费一级毛片在线播放高清视频 | 这个男人来自地球电影免费观看| 2018国产大陆天天弄谢| 成人av一区二区三区在线看 | 亚洲国产精品一区三区| 涩涩av久久男人的天堂| 1024视频免费在线观看| 亚洲中文日韩欧美视频| 亚洲国产看品久久| 99精品久久久久人妻精品| 亚洲自偷自拍图片 自拍| 欧美黑人精品巨大| 国产成人影院久久av| 操出白浆在线播放| 久久这里只有精品19| 国产人伦9x9x在线观看| 国产日韩欧美视频二区| 日韩电影二区| 精品国产乱码久久久久久男人| 中文欧美无线码| 精品久久蜜臀av无| 美女扒开内裤让男人捅视频| 国产成人免费观看mmmm| 欧美国产精品一级二级三级| 亚洲欧美日韩高清在线视频 | 丝袜喷水一区| 一二三四社区在线视频社区8| 国产精品.久久久| 精品亚洲乱码少妇综合久久| 亚洲五月色婷婷综合| 国产不卡av网站在线观看| 永久免费av网站大全| av网站在线播放免费| 久久精品亚洲熟妇少妇任你| 91字幕亚洲| 国产淫语在线视频| 在线看a的网站| 在线看a的网站| 精品国产一区二区久久| 日韩中文字幕视频在线看片| 男男h啪啪无遮挡| 18禁观看日本| 热99久久久久精品小说推荐| 99精国产麻豆久久婷婷| 亚洲人成电影免费在线| 欧美大码av| 亚洲欧美一区二区三区久久| 一边摸一边抽搐一进一出视频| 两性午夜刺激爽爽歪歪视频在线观看 | 久久人妻福利社区极品人妻图片| 日本wwww免费看| 日本av手机在线免费观看| 一二三四在线观看免费中文在| 国产欧美日韩一区二区三 | 久久狼人影院| 久久久水蜜桃国产精品网| 在线精品无人区一区二区三| 精品福利永久在线观看| 夫妻午夜视频| 亚洲国产精品成人久久小说| 欧美在线黄色| 丁香六月天网| 他把我摸到了高潮在线观看 | 秋霞在线观看毛片| 一区二区日韩欧美中文字幕| 成年人免费黄色播放视频| 欧美日韩福利视频一区二区| 免费在线观看日本一区| 免费在线观看影片大全网站| 日本精品一区二区三区蜜桃| 少妇裸体淫交视频免费看高清 | 亚洲专区国产一区二区| 一级黄色大片毛片| avwww免费| 亚洲人成77777在线视频| 国产精品麻豆人妻色哟哟久久| 亚洲久久久国产精品| 成人手机av| 亚洲情色 制服丝袜| 午夜激情av网站| 男女无遮挡免费网站观看| 精品乱码久久久久久99久播| 日韩人妻精品一区2区三区| 高清在线国产一区| 后天国语完整版免费观看| 男女高潮啪啪啪动态图| 一级a爱视频在线免费观看| 欧美老熟妇乱子伦牲交| 免费观看人在逋| 午夜激情久久久久久久| 国产成人精品久久二区二区免费| 伊人久久大香线蕉亚洲五| 久久精品熟女亚洲av麻豆精品| 最近中文字幕2019免费版| 男女边摸边吃奶| 亚洲成国产人片在线观看| av福利片在线| 国产成人精品久久二区二区免费| 国产精品久久久久久精品电影小说| netflix在线观看网站| 欧美亚洲日本最大视频资源| 视频区欧美日本亚洲| 国产精品亚洲av一区麻豆| 色视频在线一区二区三区| 日韩人妻精品一区2区三区| 久久久久国产一级毛片高清牌| 在线观看舔阴道视频| 国产免费视频播放在线视频| 国产高清视频在线播放一区 | 国产一区二区激情短视频 | 在线观看免费视频网站a站| 91九色精品人成在线观看| 一级毛片精品| 午夜福利乱码中文字幕| 少妇的丰满在线观看| 丝袜在线中文字幕| 男女边摸边吃奶| 免费在线观看日本一区| 秋霞在线观看毛片| 欧美精品高潮呻吟av久久| 在线观看免费日韩欧美大片| www日本在线高清视频| 午夜福利在线免费观看网站| 精品少妇久久久久久888优播| 黄片小视频在线播放| 久久久国产一区二区| 在线观看人妻少妇| 三级毛片av免费| 亚洲三区欧美一区| 黄频高清免费视频| 我的亚洲天堂| 日韩欧美一区视频在线观看| 国产国语露脸激情在线看| 性色av一级| 亚洲精品自拍成人| 国产在视频线精品| 俄罗斯特黄特色一大片| 黑人猛操日本美女一级片| 成人国产一区最新在线观看| 成年人黄色毛片网站| 超碰97精品在线观看| 国产熟女午夜一区二区三区| 成年av动漫网址| 亚洲精品日韩在线中文字幕| 韩国高清视频一区二区三区| 欧美在线一区亚洲| 亚洲一区中文字幕在线| 满18在线观看网站| 9热在线视频观看99| 99国产精品一区二区蜜桃av | 亚洲专区国产一区二区| 啪啪无遮挡十八禁网站| 免费日韩欧美在线观看| 99国产综合亚洲精品| 久久久久久久精品精品| 亚洲久久久国产精品| 国产高清国产精品国产三级| 1024香蕉在线观看| av国产精品久久久久影院| 91av网站免费观看| 亚洲欧美日韩另类电影网站| 人人妻人人澡人人看| 国产真人三级小视频在线观看| 欧美久久黑人一区二区| 精品久久久久久久毛片微露脸 | 叶爱在线成人免费视频播放| 久热爱精品视频在线9| 精品国产乱码久久久久久小说| 国产成人系列免费观看| 人人澡人人妻人| 亚洲人成77777在线视频| 丝袜脚勾引网站| 欧美精品一区二区免费开放| 精品人妻1区二区| 亚洲精品国产一区二区精华液| 精品少妇黑人巨大在线播放| 欧美 亚洲 国产 日韩一| 中国美女看黄片| 伊人久久大香线蕉亚洲五| 欧美另类亚洲清纯唯美| 在线精品无人区一区二区三| 亚洲自偷自拍图片 自拍| 欧美日韩成人在线一区二区| 涩涩av久久男人的天堂| 中国国产av一级| 大陆偷拍与自拍| 秋霞在线观看毛片| 日韩有码中文字幕| 亚洲精品久久成人aⅴ小说| 亚洲av电影在线观看一区二区三区| 丝袜人妻中文字幕| 狠狠精品人妻久久久久久综合| 两人在一起打扑克的视频| 国产又色又爽无遮挡免| 在线观看免费高清a一片| 日韩视频一区二区在线观看| 国产亚洲av高清不卡| 精品国产乱码久久久久久小说| 男人添女人高潮全过程视频| 啦啦啦在线免费观看视频4| 大型av网站在线播放| 不卡一级毛片| 亚洲综合色网址| 亚洲国产日韩一区二区| 美女国产高潮福利片在线看| 欧美日韩一级在线毛片| 欧美97在线视频| 一区二区三区四区激情视频| 天天操日日干夜夜撸| 三上悠亚av全集在线观看| 欧美另类亚洲清纯唯美| 国产精品.久久久| 国产精品1区2区在线观看. | 国产精品一区二区在线观看99| 美女国产高潮福利片在线看| bbb黄色大片| 青春草视频在线免费观看| 高清在线国产一区| 一本一本久久a久久精品综合妖精| 久久99热这里只频精品6学生| 亚洲精品粉嫩美女一区| 夫妻午夜视频| 精品乱码久久久久久99久播| √禁漫天堂资源中文www| 国产精品久久久人人做人人爽| 色视频在线一区二区三区| 日韩,欧美,国产一区二区三区| 亚洲精品久久午夜乱码| 高清视频免费观看一区二区| 黄色a级毛片大全视频| 精品乱码久久久久久99久播| 欧美精品av麻豆av| 久久亚洲精品不卡| 婷婷丁香在线五月| 精品亚洲成a人片在线观看| 国产男人的电影天堂91| 国产一区有黄有色的免费视频| 一本—道久久a久久精品蜜桃钙片| 国产亚洲精品第一综合不卡| 99精品久久久久人妻精品| 精品国产超薄肉色丝袜足j| 欧美精品一区二区免费开放| 老汉色∧v一级毛片| 久久九九热精品免费| 欧美日韩黄片免| 国产黄频视频在线观看| 一区二区三区激情视频| 别揉我奶头~嗯~啊~动态视频 | 亚洲国产av影院在线观看| 欧美97在线视频| 91大片在线观看| 99精品欧美一区二区三区四区| 在线观看免费高清a一片| 51午夜福利影视在线观看| 国产视频一区二区在线看| 亚洲熟女精品中文字幕| av天堂在线播放| 可以免费在线观看a视频的电影网站| 久久精品熟女亚洲av麻豆精品| 亚洲国产av影院在线观看| 亚洲欧美激情在线| 久久天躁狠狠躁夜夜2o2o| 午夜福利影视在线免费观看| 交换朋友夫妻互换小说| 国产精品国产三级国产专区5o| 亚洲精品中文字幕一二三四区 | 亚洲欧美激情在线| 欧美日韩福利视频一区二区| 丝袜喷水一区| 午夜久久久在线观看| 99精品欧美一区二区三区四区| 亚洲成人手机| 久久99一区二区三区| 三上悠亚av全集在线观看| av一本久久久久| 丝袜美腿诱惑在线| 蜜桃国产av成人99| 一级片'在线观看视频| 精品久久久久久久毛片微露脸 | 日本a在线网址| 飞空精品影院首页| 欧美少妇被猛烈插入视频| 少妇裸体淫交视频免费看高清 | 丝袜美腿诱惑在线| 亚洲精品在线美女| 欧美中文综合在线视频| 香蕉丝袜av| 女人被躁到高潮嗷嗷叫费观|