• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Skyrmion-based logic gates controlled by electric currents in synthetic antiferromagnet

    2023-02-20 13:16:12LinlinLi李林霖JiaLuo羅佳JingXia夏靜YanZhou周艷XiaoxiLiu劉小晰andGuopingZhao趙國平
    Chinese Physics B 2023年1期
    關(guān)鍵詞:氧吧負(fù)氧離子資源

    Linlin Li(李林霖), Jia Luo(羅佳), Jing Xia(夏靜), Yan Zhou(周艷),Xiaoxi Liu(劉小晰), and Guoping Zhao(趙國平),4,?

    1College of Physics and Electronic Engineering,Sichuan Normal University,Chengdu 610068,China

    2Department of Electrical and Computer Engineering,Shinshu University,Wakasato 4-17-1,Nagano 380-8553,Japan

    3School of Science and Engineering,The Chinese University of Hong Kong,Shenzhen 518172,China

    4Center for Magnetism and Spintronics,Sichuan Normal University,Chengdu 610068,China

    Keywords: skyrmions,logic gates,synthetic antiferromagnets,micromagnetic simulation

    1. Introduction

    Various ways have been proposed to realize the motion of skyrmions in a racetrack,[33–36]including the spinpolarized current, the temperature gradient, the magnetic anisotropy gradient,etc.[29,37,38]However, the ferromagnetic(FM) skyrmion will exhibit a lateral drift during the motion (i.e., the skyrmion Hall effect) due to the presence of Magnus force,[39–41]which may cause the annihilation of skyrmions at the racetrack edge and thus destroy the information.[29]Therefore, interest has been devoted to SAF skyrmions that can effectively suppress the skyrmion Hall effect without affecting the topological protection.[31,42–45]Up to now, there are many logic devices that have been designed based on skyrmions and domain wall (DW) dynamics in nanotrack, such as the reversible conversion and the collision between the skyrmion and the domain wall,[23,24,26,46,47]skyrmion–skyrmion collision,[27,40,48–50]skyrmion Hall effect and skyrmion–edge repulsion.[40]Compared with the most investigated FM skyrmions and domain wall, the racetrack memory and logic devices based on SAF skyrmions exhibit five distinctive characteristics. Firstly, SAF skyrmions can move straight along the spin-polarized current without the skyrmion Hall effect.[42]Secondly,it can robustly protect the magnetic perturbation as the net magnetization of skyrmion is zero.[42]Thirdly, SAF skyrmion can move at higher velocity driven by spin currents than FM skyrmion and domain wall.[31]Fourthly, logic devices only use skyrmion’s motion and interaction without the reversible conversion between skyrmions and DW,which can effectively decrease the complexity of logic implementation.[27,28]Fifthly, the SAFskyrmion-based logic gates can simplify the driving mode of devices, reducing energy consumption, enhancing the motion speed of skyrmion and increasing the types of logic functions.[30]

    In this work,we have analyzed the skyrmion motion velocity of SAF skyrmion in SAF racetracks and found the velocity can be influenced by the edge and driving force,[46,51]which agrees very well with the simulation results. Further,we computationally propose a complete logic gate on SAF skyrmions including AND,OR,NOT,NOR,XOR,and NAND gates by utilizing the spin–orbit torque,[52–54]skyrmion Hall effect,[42,55,56]skyrmion–skyrmion repulsion, and skyrmion–edge interaction.[40,57]In the SAF bilayer, we show that bilayer-skyrmion can travel along the racetrack at a high speed driven by spin current,which is beneficial to simplify the operation of skyrmion-based devices.

    2. Model and methods

    Figure 1(a) illustrates the proposed structure, which is composed of two perpendicularly magnetized FM layers strongly coupled via the antiferromagnetic (AFM) interface interaction with a heavy metal layer beneath the bottom FM layer.[42]For the current-induced SAF skyrmion dynamics,we apply electric current in the +xdirection in the heavy metal(HM)layer to produce a vertical spin current to the magnetic layer and numerically solve the modified Landau–Lifshitz–Gilbert(LLG)equation including the damping-like spin–orbittorque in the simulation. Here,the time-dependent magnetization dynamics is thus governed by[29,58]

    where?eff=-?Htotal/μ0Ms?miis the effective magnetic field induced by the free energy density of the system,μ0is the vacuum magnetic permittivity andMsis the saturation magnetization.mirepresents the local magnetic moment orientation,γ0is the gyromagnetic ratio andαis the Gilbert damping coefficient,andp=-represents a spin polarization vector.

    is the damping-like spin–orbit-torque coefficient with ˉhas the reduced Planck constant,eis the electron charge,jis the applied driving current density,θSH=0.1 is the spin Hall angle,ais the film thickness of FM layer. For the total HamiltonianHtotal, we consider the Hamiltonian of each FM layerHnand the interlayer AFM exchange couplingHinterbetween the top and bottom FM layers,[42,59]which can be written as

    The Hamiltonian for each FM layer can be written as follows:

    wherenis the FM layer index (n=T, B represents the top layer and bottom layer, respectively),denotes the local magnetic moment orientation normalized as=1 at the sitei, and the〈i,j〉runs over all the nearest-neighbor sites in each FM layer. The first term represents the intralayer FM exchange interaction with FM exchange stiffnessAintra. The second and third terms represent the perpendicular magnetic anisotropy with the anisotropy constantKand the DMI with the DMI vectorD, respectively, whileHDDIrepresents the dipole–dipole interaction. The Hamiltonian for the interlayer AFM exchange interactions can be written as follows:

    什寒村是海南島上海拔最高的村莊之一。什寒村之所以擁有天然氧吧的稱號,而且適宜居住、養(yǎng)生、旅游等,是因?yàn)檫@里優(yōu)質(zhì)的空氣。什寒村處于海南三大河流之一的昌化江流域,擁有茂盛的森林、眾多的溪流,每一立方米含30000個(gè)至40000個(gè)負(fù)氧離子。同時(shí)還擁有許多豐富的資源如生態(tài)旅游資源、健康養(yǎng)生資源等,被比喻為"天上什寒"、"天然氧吧"。

    The symbol ofAinteris negative for the interlayer AFM interaction, where we assume that spins in the top FM layer are pointing upward and the spins in the bottom FM layer are pointing downward owing to the interlayer AFM exchange coupling. The strong antiferromagnetic coupling results in the two FM layers having opposite magnetization configurations,which plays a key role in eliminating the skyrmion Hall effect.[60]

    Here, we simulate the SAF skyrmion logic functions using the Object Oriented Micromagnetic Framework(OOMMF) with an extended module of the Dzyaloshinskii–Moriya interaction.[61]For micromagnetic simulations, the standard magnetic material parameters of Co/Pt multilayers are used for the SAF structure:[27,29,42,45,59]MS=580 kA·m-1,K= 0.65 MJ·m-3–0.85 MJ·m-3with a default value ofK= 0.8 MJ·m-3,Aintra= 15 pJ·m-1,D=2.9 mJ·m-2–3.3 mJ·m-2with a default value ofD=3 mJ·m-2, antiferromagnetic coupling strengthAinter=4 mJ·m-2,γ0=2.211×105m·(A·s)-1,α=0.3. Considering the balance between the numerical accuracy and computational efficiency, all the cell size used in this simulation is 2 nm×2 nm×1 nm.

    For the steady motion of skyrmion in the proposed SAF logic gates, we use the Thiele equation to interpret the simulation results of isolated skyrmion.[46,51,62,63]The currentinduced skyrmion motion in a bilayer nanotrack can be written as

    wherev,α,Ddiss,andBrepresent the skyrmion velocity,the damping constant,the dissipative tensor,and the tensor related to the driving current,respectively. In the fourth term,Fedgeis the external force that includes the joint repulsive force from the tilted edge and notches,where the constantb=μ0aMs/γ0.G=(0,0,-4πQ) is the gyromagnetic coupling vector, withQbeing the skyrmion topological number.[64]The skyrmion number in each FM layer can be defined as

    The dissipative tensor can be written as

    withFx-edgeandFy-edgerepresenting edge forces in thexandydirections,respectively. For the rigid magnetic skyrmion in this work,we always haveDxx=Dyy=Ddiss,Ixy=-Iyx=I,and the value ofIandDdissare positive. Namely, the motion equation of isolated SAF skyrmion can be rewritten into the following form

    where the spin-polarized current flows along thexdirection(jy=0). Considering the steady motion of skyrmion along the nanotrack, boundary forces in thexandydirections can be ignored. Further,the topologic number of the SAF bilayer skyrmion is zero and the velocity could be simplified as

    According to Refs. [51,59],I=πR/4 andDdiss=(2R2+Δ2)/ΔRfor a rigid skyrmion withvy= 0.Ris the skyrmion radius which can be calculated asR ≈Δ/whereΔ=is the wellknown Bloch wall width parameter andDC=4(Keff=K-(1/2)μ0can be seen as an effective anisotropy constant).[65]The theoretical solutions show that the isolated skyrmion in the SAF monolayer steadily moves along thexdirection, and the velocity of the isolated SAF skyrmion is proportional to the driving force,which is consistent with the simulation results.

    Fig.1. Schematic diagram of the antiferromagnetically exchange-coupled bilayer system and the proposed structure of logic gates. (a) The antiferromagnetically-coupled bilayer structure for the motion of a bilayer-skyrmion driven by the spin current,where we apply electric current in the HM layer to produce a vertical spin current to the magnetic layer; (b)the illustration of skyrmion logic AND and logic OR gates with two inputs and two outputs;(c)the illustration of skyrmion logic XOR and logic NOR gates with two inputs and one output;(d)the illustration of skyrmion logic NAND gate with two inputs and one output;(e)the illustration of skyrmion logic NOT gate with one input and one output.

    3. Results and discussion

    3.1. Realization of OR and AND logic functions

    The proposed structure of the logic OR gate is shown in Fig. 1(b), input A and input B are placed on the left side of the nanotrack and the output C is placed on the upper right side as well as a triangular notch on the right side of the nanotrack.Here,the presence of a skyrmion represents the data bit“1”and the absence of a skyrmion represents the data bit“0”.When no skyrmion is created at inputs A and C, the logical operations OR“0+0=0”can be implemented. As shown in Fig. 2(a) and supplementary video S1, the generated isolated skyrmion at the input A moves along the+xdirection due to the spin torque and deviates to the-ydirection, and finally stops at the output C because of the notch boundary repulsion.Similarly, when a nucleated skyrmion at the input B moves along the nanotrack,it stops at the same site as the right region,as suggested by Fig.2(b)and supplementary video S2. Thus,the logical operations OR “1+0=1” and “0+1=1” can be implemented successfully. However,when both skyrmions from input A and input B move in this nanotrack as shown in Fig. 2(c) and supplementary video S3, the bottom skyrmion created at input B can stop at the lower side of the right region once it meets with the top skyrmion. As a result, the logical operation OR“1+1=1”can be implemented.

    Fig.2. The micromagnetic simulations for the logic AND and OR gates in the SAF nanotrack. (a)–(c)The micromagnetic simulations of three cases for the logic AND and OR gates in the SAF nanotrack. (d)The top view of the logic OR and AND structure,where the black dashed circles represent the input and output MTJs. (e)The working window of the notch size in the logic AND and OR structure. (f)–(g)The truth tables for logic OR and AND gates.

    The logic function of AND can be implemented in the same structure as the OR logic gate by changing the detection region as depicted in Fig.1(b). When the lower right region is set as the output D, the logic function “1·0=0” and“0·1=0”of AND are similar to the function of the OR gate which can be implemented as depicted in Figs.2(a)–2(b)and supplementary videos S1 and S2. In this structure,regardless of whether the isolated skyrmion is at input A or input B, it cannot reach input D under+xdirection driving current. Only when two skyrmions move along the+xdirection from input A and input B simultaneously,the bottom skyrmion nucleated at the input B can be squeezed into the output D region due to the skyrmion–skyrmion interaction as shown in Fig. 2(c)and supplementary video S3. Namely, the logical operation AND“1·1=1”can be implemented. It is noted that when no skyrmion exists for both inputs, there is no data transmission on the nanotrack and the logical operation AND “0·0=0”is achieved. Here, the height (H) and the base (W) length of the triangle influence the final stable position of the bottom skyrmion as shown in the top-view of the structure(Fig.2(d)),where the phase diagram of logical operations and the working window of the input position of AND and OR gates are provided in Fig. 2(e) and video S6(a). The corresponding truth tables for the logic OR and AND gates are shown in Figs.2(f)and 2(g).

    3.2. Realization of XOR and NOR logic functions

    The SAF bilayer XOR and NOR gates can be achieved with a structure similar to the AND gate as shown in Fig.1(c),input A and input B are at the left side of the F-type nanotrack,while output C is at the center of the right side. The difference between logic XOR and OR gates is that they lack the triangular notch in the upper right. In this regime,when no skyrmion is created in the inputs A and B, the logic operation of XOR gate“0⊕0=0”can be realized. As shown in Figs.3(a)–3(b)and supplementary videos S4 and S5, only one skyrmion is created in input A or input B. The skyrmion is driven by the spin current and then stops at the center of the right side due to the skyrmion–edge repulsion. Thus, the logic operation of XOR gate “1⊕0=1” and “0⊕1=1” can be implemented.However,when two skyrmions are created in inputs A and B,the two skyrmion driven by the spin current will push one another away from the center of the right nanotrack and output data bit“0”as shown in Fig.3(c)and supplementary video S6.In addition,the working window of the input position of XOR gate is given in video S6(a). So, the logic operation of XOR gate“1⊕1=0”can also be implemented.

    The SAF bilayer NOR logic gate is proposed with the same structure as the XOR gate. Initially, a skyrmion is already nucleated at the output C. In this regime, as shown in Fig. 3(d) and supplementary video S7, when no skyrmion is created in the input A and B, the skyrmion in the center of the right side of the nanotrack remains stationary and the logic operation of the NOR gate=1”can be realized. However,when an individual skyrmion is created at the input A or B,driving by the +xdirection current, the left skyrmion will meet with the right one and push one another away from the center of the right nanotrack due to the skyrmion–skyrmion repulsion. Therefore, the logic operation of NOR “=”and “=” can be implemented as shown in Figs. 3(e)–3(f)and supplementary videos S8 and S9. Furthermore,if two skyrmions are nucleated in input A and input B,the skyrmion in output C will be annihilated by the repulsion between the skyrmions, and the two skyrmions created from the left side are going to push one another away from the center of the right region as shown in Fig.3(g)and supplementary video S10. In addition, the working window of the input position of NOR gate is given in video S6(a).Namely,the operation of the NOR gate“=0”can be realized.

    Fig.3. The micromagnetic simulations and truth tables for the logic XOR and NOR gates in the SAF nanotrack. (a)–(c) Three cases of inputs and their corresponding micromagnetic simulations for the logic XOR gate in the nanotrack. (d)–(g) Four cases of inputs and their corresponding micromagnetic simulations for the NOR gate in the nanotrack. (h)The truth tables of the logic XOR and NOR gates.

    3.3. Realization of NAND logic function

    The logic function of NAND can be implemented in the proposed structure as shown in Fig.1(d). Here shows a triangular notch is on the lower right side and a trapezoidal notch is on the upper right side. Input A and B are placed on the left side of the nanotrack,while the output C is placed at the center of the right side. Similar to the logic NOR gate,there is an individual skyrmion at the center of the right-side nanotrack initially as shown in Fig. 4(a) and supplementary video S11.When both inputs data bit are“0”,there is no skyrmion moving in the SAF nanotrack and output“1”state and the logical operation of NAND“=1”can be implemented.As shown in Figs. 4(b)–4(c) and supplementary videos S12 and S13,considering only one skyrmion is created at the left input A or B,the left skyrmion will annihilate as it moves along the nanotrack at the boundary due to edge geometry confined. Hence,the operation of“=1”,and“=1”can be carried out.The most important operation of“=0”is implemented by the presence of skyrmions in both input A and B.As shown in Fig. 4(d) and supplementary video S14, all skyrmions in this operation will annihilate due to the skyrmion–skyrmion repulsion and skyrmion–edge repulsion. Here, the height (H) and the base(W)length of the triangle influence the state of the left skyrmion as shown in the top-view of the structure(Fig.4(e)).In addition,the phase diagram of the operations,the working window of the input position of NAND gate and corresponding truth tables for NAND gates are given in Figs. 4(f)–4(g)and video S6(b).

    Fig.4. The simulation results of logic NAND gate with two notches. (a)–(d) The micromagnetic simulations of four cases of inputs for the logic NAND gate in the SAF nanotrack. (e)The top view of the logic NAND structure. (f)The working window of the notch size in the logic NAND structure. (g)The truth table of the logic NAND.

    3.4. Realization of NOT logic function

    The logic NOT gate is implemented in ay-junction structure as shown in Fig. 1(e). There are two nanotracks, where the input terminal A is at the left nanotrack and the output terminal B is at the center of the right nanotrack.Note an isolated skyrmion is initially nucleated in the center of the right nanotrack, as shown in Fig. 5(a) and supplementary video S15.When no skyrmion is created in the left nanotrack,namely input data bit “0”, the skyrmion in the center of the nanotrack remains at its original position due to the edge-skyrmion repulsion and output data bit“1”. Hence,the NOT gate“ˉ0=1”is accomplished. A skyrmion is created in the left nanotrack and driven by a+xdirection spin current. In that case,the left skyrmion will meet the right skyrmion and rotate at an angle of 90°and push one another away from the center of the right nanotrack as shown in Fig.5(b)and supplementary video S16.And the working window of the input position of NOT gate is also given in video S6(c). Therefore, the logic function of NOT gate“ˉ1=0”has also been implemented.

    In particular, a logic switching delay is determined by the skyrmion velocity and the distance between the input and output terminals.[45,49]Therefore, the trade-off between skyrmion-based logic gates’ response speed and energy consumption needs to be considered.[48]Namely, a smaller driving current can decrease the energy consumption and a large current can be adopted for high switching speed. As shown in Fig. 6(a), the driving current of the above logic gates should be limited to 1×1011A·m2–4×1011A·m2,and SAF skyrmion velocity is proportional to the driving current density, where the larger current density may lead to SAF skyrmion annihilation at the right side due to large spin orbit torque. Figure 6(b)shows that the magnetic material parameters such asKandDcan also affect the skyrmion velocity, where the velocity increases asDincreases and decreases asKincreases in the above logic gates. Moreover,the skyrmion size can effectively reduce the scale of the logic devices and influence the distance between the input and output terminal,which can be determined by magnetic material parameters such as PMA and DMI constants. Figure 6(c) shows that the diameter of the skyrmion increases asDincreases and decreases asKincreases. Hence,the switching delay can be affected by downscale of the logic gates via adjusting magnetic parameters.

    Fig.5. The simulation results of logic NOT gate. (a)The logical operation of NOT gate ˉ0=1 on SAF nanotrack. (b) The logical operation of NOT gate ˉ1=0 on SAF nanotrack.

    Fig.6. Skyrmion velocity and skyrmion size vary with the current density and material parameters. (a)Simulation results of the motion velocity of isolated skyrmion vary with the current density. (b)Simulation results of the motion velocity with the PMA constant(K)and DMI constant(D). (c)The skyrmion diameter varies with PMA constant(K)and DMI constant(D).

    4. Conclusion

    In conclusion,we theoretically study the skyrmion velocity in the SAF monolayer, which indicates that the skyrmion velocity can be influenced by the driving force and the edge of the nanotrack. The theoretical results are consistent with the numerical simulation results. By designing geometric notches and tilted edges on the SAF nanotracks,we have proposed six basic logic gates based on the motion of SAF skyrmion, including the logic AND, OR, NOR, XOR, NOT, and NAND gates,which are implemented by spin–orbit torque,skyrmion Hall effect, skyrmion–skyrmion repulsion, and skyrmion–edge interaction. The proposed SAF skyrmion-based logic gates in this work have potential application in the future topological magnetic devices.

    Data availability statement

    The data that support the findings of this study are openly available in Science Data Bank at the following link http://doi.org/10.57760/sciencedb.j00113.00066.

    Acknowledgements

    Guoping Zhao acknowledges the support from the National Natural Science Foundation of China (Grant Nos. 51771127, 52171188, and 52111530143) and the Central Government Funds of Guiding Local Scientific and Technological Development for Sichuan Province, China(Grant No. 2021ZYD0025). Jing Xia was a JSPS International Research Fellow supported by JSPS KAKENHI(Grant No.JP22F22061). Yan Zhou acknowledges the support from Guangdong Basic and Applied Basic Research Foundation(Grant No. 2021B1515120047), Guangdong Special Support Project (Grant No. 2019BT02X030), Shenzhen Fundamental Research Fund(Grant No.JCYJ20210324120213037),Shenzhen Peacock Group Plan (No. KQTD20180413181702403),Pearl River Recruitment Program of Talents (Grant No.2017GC010293),and the National Natural Science Foundation of China (Grant Nos. 11974298 and 61961136006).Xiaoxi Liu acknowledges the support from the Grantsin-Aid Scientific Research from JSPS KAKENHI (Grant Nos.JP20F20363,JP21H01364,and JP21K18872).

    猜你喜歡
    氧吧負(fù)氧離子資源
    原位聚合法負(fù)氧離子尼龍纖維的制備及應(yīng)用
    家紡產(chǎn)品對空間負(fù)氧離子含量和分布的影響實(shí)驗(yàn)研究
    黑龍江“氧吧經(jīng)濟(jì)”如何借勢騰飛?
    基礎(chǔ)教育資源展示
    相約天然氧吧 感受宜居“金匱”
    揭西縣負(fù)氧離子濃度特征及與氣象條件的關(guān)系
    廣東氣象(2021年4期)2021-08-31 01:11:28
    一樣的資源,不一樣的收獲
    資源回收
    世界各地的天然氧吧
    資源再生 歡迎訂閱
    資源再生(2017年3期)2017-06-01 12:20:59
    精品久久蜜臀av无| 最新美女视频免费是黄的| 欧美另类亚洲清纯唯美| tocl精华| 久久久精品欧美日韩精品| 午夜免费观看网址| 日韩欧美一区二区三区在线观看| 国产xxxxx性猛交| 国产野战对白在线观看| 亚洲成人精品中文字幕电影 | 极品教师在线免费播放| 俄罗斯特黄特色一大片| 亚洲国产精品sss在线观看 | 在线免费观看的www视频| 亚洲成人国产一区在线观看| 最近最新中文字幕大全免费视频| 日本vs欧美在线观看视频| 在线播放国产精品三级| 亚洲人成网站在线播放欧美日韩| 黄色女人牲交| 五月开心婷婷网| 精品国产一区二区三区四区第35| 国产精品av久久久久免费| 国产成人影院久久av| 十八禁人妻一区二区| 99精国产麻豆久久婷婷| 69av精品久久久久久| 日韩有码中文字幕| 日本三级黄在线观看| 欧美人与性动交α欧美软件| 老司机靠b影院| av在线播放免费不卡| 欧美激情高清一区二区三区| 一区二区三区精品91| 最近最新中文字幕大全免费视频| a级毛片在线看网站| 老鸭窝网址在线观看| 久久精品人人爽人人爽视色| 亚洲第一青青草原| 国产精品一区二区三区四区久久 | 欧美色视频一区免费| 99热国产这里只有精品6| 日本一区二区免费在线视频| 亚洲免费av在线视频| 国内久久婷婷六月综合欲色啪| 淫妇啪啪啪对白视频| 亚洲色图综合在线观看| 老司机深夜福利视频在线观看| 日本黄色视频三级网站网址| 人人妻,人人澡人人爽秒播| 亚洲精品美女久久久久99蜜臀| 国产黄色免费在线视频| 欧美最黄视频在线播放免费 | av超薄肉色丝袜交足视频| 国产97色在线日韩免费| 一边摸一边抽搐一进一出视频| 亚洲欧美日韩无卡精品| 国内毛片毛片毛片毛片毛片| 欧美日韩视频精品一区| 夜夜爽天天搞| 久久精品国产综合久久久| 成人三级做爰电影| 精品无人区乱码1区二区| 午夜免费激情av| 在线观看免费日韩欧美大片| 国产麻豆69| 成熟少妇高潮喷水视频| xxxhd国产人妻xxx| 色综合婷婷激情| 国产精品98久久久久久宅男小说| 亚洲中文字幕日韩| 女人被躁到高潮嗷嗷叫费观| 伊人久久大香线蕉亚洲五| 国产又色又爽无遮挡免费看| 99在线人妻在线中文字幕| 国产有黄有色有爽视频| 亚洲一码二码三码区别大吗| 亚洲avbb在线观看| 动漫黄色视频在线观看| 久久精品人人爽人人爽视色| 婷婷丁香在线五月| 午夜两性在线视频| 免费高清视频大片| 女人被狂操c到高潮| 国产免费男女视频| 另类亚洲欧美激情| 青草久久国产| 热re99久久国产66热| 国产男靠女视频免费网站| 99国产综合亚洲精品| 亚洲一区中文字幕在线| 精品电影一区二区在线| 黄色视频,在线免费观看| 女人精品久久久久毛片| 中文字幕精品免费在线观看视频| 一级a爱片免费观看的视频| 69av精品久久久久久| svipshipincom国产片| 一级a爱视频在线免费观看| 精品一品国产午夜福利视频| 午夜老司机福利片| 人妻久久中文字幕网| 热99国产精品久久久久久7| 亚洲少妇的诱惑av| 中国美女看黄片| 久久国产精品人妻蜜桃| 韩国精品一区二区三区| 天堂中文最新版在线下载| 成人三级做爰电影| 麻豆成人av在线观看| 亚洲成人国产一区在线观看| x7x7x7水蜜桃| 无限看片的www在线观看| avwww免费| 这个男人来自地球电影免费观看| 午夜免费鲁丝| 久久人人精品亚洲av| 久久久久久久精品吃奶| 欧美久久黑人一区二区| 国产野战对白在线观看| 在线观看免费日韩欧美大片| 真人做人爱边吃奶动态| 日韩 欧美 亚洲 中文字幕| 久久亚洲真实| 窝窝影院91人妻| 国产精品综合久久久久久久免费 | 国产黄a三级三级三级人| 国产成人av教育| 搡老熟女国产l中国老女人| 99re在线观看精品视频| 国产熟女午夜一区二区三区| 热re99久久国产66热| 亚洲国产精品999在线| 日韩av在线大香蕉| 免费在线观看日本一区| 丁香欧美五月| 免费看十八禁软件| 中文字幕高清在线视频| 两个人免费观看高清视频| 十八禁人妻一区二区| 啦啦啦在线免费观看视频4| 亚洲少妇的诱惑av| 亚洲精华国产精华精| 精品一区二区三区av网在线观看| 涩涩av久久男人的天堂| 在线观看免费日韩欧美大片| 国产免费男女视频| 一二三四社区在线视频社区8| 日本一区二区免费在线视频| 黄色成人免费大全| 欧美日韩中文字幕国产精品一区二区三区 | 黄片小视频在线播放| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩精品中文字幕看吧| av有码第一页| svipshipincom国产片| 国产成人欧美| 精品国产乱码久久久久久男人| 午夜成年电影在线免费观看| 身体一侧抽搐| 日日干狠狠操夜夜爽| 久久热在线av| 成人三级黄色视频| 久9热在线精品视频| netflix在线观看网站| 亚洲第一av免费看| bbb黄色大片| 欧美性长视频在线观看| 亚洲熟妇熟女久久| 免费av中文字幕在线| 欧美一区二区精品小视频在线| 久久人妻福利社区极品人妻图片| 黑人欧美特级aaaaaa片| 国产精品久久久av美女十八| 国产熟女午夜一区二区三区| 九色亚洲精品在线播放| 亚洲性夜色夜夜综合| 国产激情久久老熟女| 老汉色∧v一级毛片| 丝袜美腿诱惑在线| 淫妇啪啪啪对白视频| 91成人精品电影| 久久亚洲真实| 欧美乱码精品一区二区三区| 国产精品二区激情视频| 欧洲精品卡2卡3卡4卡5卡区| 波多野结衣高清无吗| 人成视频在线观看免费观看| netflix在线观看网站| 日韩欧美一区二区三区在线观看| 久久久国产成人精品二区 | 黄色片一级片一级黄色片| 中文字幕精品免费在线观看视频| 亚洲精品粉嫩美女一区| 在线播放国产精品三级| 涩涩av久久男人的天堂| 中文字幕人妻熟女乱码| 9热在线视频观看99| 欧美激情极品国产一区二区三区| svipshipincom国产片| 91字幕亚洲| 免费人成视频x8x8入口观看| 色播在线永久视频| 天堂动漫精品| 男女高潮啪啪啪动态图| 亚洲自拍偷在线| 嫁个100分男人电影在线观看| 中文字幕高清在线视频| 精品人妻在线不人妻| 99精国产麻豆久久婷婷| 97超级碰碰碰精品色视频在线观看| 日韩欧美在线二视频| 欧美日韩国产mv在线观看视频| 国产精品免费视频内射| 成年版毛片免费区| 亚洲精品在线观看二区| 精品乱码久久久久久99久播| 国产精品自产拍在线观看55亚洲| 十八禁人妻一区二区| 精品久久蜜臀av无| 窝窝影院91人妻| 每晚都被弄得嗷嗷叫到高潮| 亚洲精品国产精品久久久不卡| 久9热在线精品视频| 精品一区二区三区av网在线观看| 久久国产精品影院| 一进一出好大好爽视频| 久久精品成人免费网站| 国产在线精品亚洲第一网站| 国产精品综合久久久久久久免费 | 最好的美女福利视频网| 精品一区二区三卡| 男女床上黄色一级片免费看| 国产成人影院久久av| 成人三级做爰电影| 女性被躁到高潮视频| 亚洲全国av大片| 国产一区二区三区综合在线观看| 久久香蕉激情| 韩国av一区二区三区四区| 国产成人系列免费观看| 日韩人妻精品一区2区三区| 国产aⅴ精品一区二区三区波| 精品国产超薄肉色丝袜足j| 亚洲熟妇熟女久久| 免费在线观看亚洲国产| 男男h啪啪无遮挡| 亚洲 国产 在线| 国产亚洲欧美在线一区二区| 久久这里只有精品19| 欧美性长视频在线观看| 国产高清激情床上av| 亚洲国产欧美一区二区综合| 制服人妻中文乱码| 12—13女人毛片做爰片一| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲欧美日韩另类电影网站| 极品教师在线免费播放| 色综合婷婷激情| 美女高潮喷水抽搐中文字幕| 免费av中文字幕在线| 精品久久久久久,| 欧美人与性动交α欧美精品济南到| a级毛片黄视频| 亚洲av电影在线进入| 国产精品一区二区在线不卡| 国产免费av片在线观看野外av| 性欧美人与动物交配| 国产亚洲欧美98| 久久人妻av系列| 中出人妻视频一区二区| 久久国产精品影院| 88av欧美| 久99久视频精品免费| 亚洲国产精品合色在线| 亚洲精品美女久久久久99蜜臀| 欧美成人性av电影在线观看| 大码成人一级视频| 亚洲一区中文字幕在线| 男女床上黄色一级片免费看| 精品欧美一区二区三区在线| 身体一侧抽搐| av在线天堂中文字幕 | 高清欧美精品videossex| 免费在线观看完整版高清| 精品无人区乱码1区二区| 久久国产亚洲av麻豆专区| 成人av一区二区三区在线看| 18禁国产床啪视频网站| 国产精品 国内视频| 正在播放国产对白刺激| 久久午夜亚洲精品久久| 两个人看的免费小视频| 国产高清视频在线播放一区| 免费女性裸体啪啪无遮挡网站| 久久久国产成人免费| 99精品在免费线老司机午夜| 国产xxxxx性猛交| 青草久久国产| 亚洲一区二区三区不卡视频| 亚洲少妇的诱惑av| 这个男人来自地球电影免费观看| 可以在线观看毛片的网站| 色在线成人网| 18美女黄网站色大片免费观看| 怎么达到女性高潮| 精品一区二区三区视频在线观看免费 | 欧美日韩国产mv在线观看视频| 欧美av亚洲av综合av国产av| 国产精品久久视频播放| 91老司机精品| 午夜免费成人在线视频| 久久久久久久久久久久大奶| 91精品国产国语对白视频| 久久狼人影院| 制服诱惑二区| 一本大道久久a久久精品| 他把我摸到了高潮在线观看| 一区二区三区精品91| 丰满迷人的少妇在线观看| 精品电影一区二区在线| 日日干狠狠操夜夜爽| 国产精品一区二区免费欧美| 亚洲精品在线观看二区| 亚洲精华国产精华精| 亚洲精品av麻豆狂野| 日韩成人在线观看一区二区三区| 在线观看午夜福利视频| 色综合婷婷激情| 国产av一区二区精品久久| 日韩有码中文字幕| 国产精品国产高清国产av| 亚洲男人天堂网一区| 老司机午夜十八禁免费视频| 国产精品免费视频内射| 色综合站精品国产| 午夜成年电影在线免费观看| 国产精品香港三级国产av潘金莲| 熟女少妇亚洲综合色aaa.| 一级a爱片免费观看的视频| 成人国语在线视频| 巨乳人妻的诱惑在线观看| 久久精品国产99精品国产亚洲性色 | 国产成人影院久久av| 亚洲久久久国产精品| 亚洲一卡2卡3卡4卡5卡精品中文| 日日摸夜夜添夜夜添小说| 精品一区二区三区视频在线观看免费 | 身体一侧抽搐| 长腿黑丝高跟| 人人妻人人澡人人看| 精品卡一卡二卡四卡免费| av欧美777| 亚洲一卡2卡3卡4卡5卡精品中文| 高清欧美精品videossex| 男女床上黄色一级片免费看| 久久草成人影院| 午夜视频精品福利| 一个人观看的视频www高清免费观看 | 欧美精品亚洲一区二区| 久久久久久久午夜电影 | 国产欧美日韩一区二区三| 国产区一区二久久| 国产无遮挡羞羞视频在线观看| 欧美日韩亚洲综合一区二区三区_| 最近最新中文字幕大全电影3 | 无人区码免费观看不卡| 麻豆成人av在线观看| 欧美日韩乱码在线| 欧美 亚洲 国产 日韩一| 国产有黄有色有爽视频| 免费日韩欧美在线观看| 日韩人妻精品一区2区三区| 午夜激情av网站| 亚洲黑人精品在线| 亚洲欧美激情在线| 久久性视频一级片| 亚洲自偷自拍图片 自拍| 欧美激情极品国产一区二区三区| 成人特级黄色片久久久久久久| 欧美日本中文国产一区发布| 欧美另类亚洲清纯唯美| 日本免费一区二区三区高清不卡 | 亚洲精品中文字幕一二三四区| 欧美人与性动交α欧美精品济南到| 亚洲午夜理论影院| 在线免费观看的www视频| 日韩欧美在线二视频| 男人舔女人下体高潮全视频| 性欧美人与动物交配| 国产亚洲精品第一综合不卡| 精品久久久久久电影网| 黄网站色视频无遮挡免费观看| 18禁美女被吸乳视频| 成熟少妇高潮喷水视频| 国产男靠女视频免费网站| 欧美日韩一级在线毛片| 欧美激情久久久久久爽电影 | 19禁男女啪啪无遮挡网站| 我的亚洲天堂| 亚洲,欧美精品.| 在线av久久热| 亚洲精品在线观看二区| 国产欧美日韩综合在线一区二区| 老司机靠b影院| 一区二区三区精品91| 水蜜桃什么品种好| 亚洲av第一区精品v没综合| 黄色a级毛片大全视频| 日本 av在线| 久久久久国产一级毛片高清牌| 国产精品综合久久久久久久免费 | 日本黄色日本黄色录像| 人人澡人人妻人| 国产91精品成人一区二区三区| 校园春色视频在线观看| 一级a爱片免费观看的视频| 日本撒尿小便嘘嘘汇集6| 好男人电影高清在线观看| 国产精品成人在线| 国产精品亚洲一级av第二区| 夜夜爽天天搞| 一边摸一边抽搐一进一出视频| 黑丝袜美女国产一区| 脱女人内裤的视频| 在线永久观看黄色视频| 美女扒开内裤让男人捅视频| 日本免费一区二区三区高清不卡 | 女人被狂操c到高潮| 国产深夜福利视频在线观看| 一级作爱视频免费观看| 中文亚洲av片在线观看爽| 交换朋友夫妻互换小说| 老司机亚洲免费影院| 俄罗斯特黄特色一大片| 午夜91福利影院| 十八禁网站免费在线| 搡老乐熟女国产| 另类亚洲欧美激情| 欧洲精品卡2卡3卡4卡5卡区| 亚洲成人免费av在线播放| 久久久国产成人免费| 变态另类成人亚洲欧美熟女 | 欧美日韩一级在线毛片| 嫁个100分男人电影在线观看| 国产免费男女视频| 女性生殖器流出的白浆| 久久影院123| 男女下面进入的视频免费午夜 | 欧美日韩精品网址| 成人免费观看视频高清| 丰满迷人的少妇在线观看| 在线观看一区二区三区激情| 在线观看日韩欧美| 久久国产精品影院| 日韩人妻精品一区2区三区| 欧美激情久久久久久爽电影 | 国产高清国产精品国产三级| 亚洲熟妇熟女久久| 搡老熟女国产l中国老女人| 人成视频在线观看免费观看| 亚洲精品国产区一区二| 亚洲免费av在线视频| 久久精品aⅴ一区二区三区四区| 黑人欧美特级aaaaaa片| 日韩视频一区二区在线观看| 老司机在亚洲福利影院| 久9热在线精品视频| 最好的美女福利视频网| 男女高潮啪啪啪动态图| 男女做爰动态图高潮gif福利片 | 波多野结衣一区麻豆| 国产精品1区2区在线观看.| 黄频高清免费视频| 国产伦一二天堂av在线观看| 国产精品爽爽va在线观看网站 | 午夜免费观看网址| 精品久久久久久成人av| 在线观看一区二区三区| av网站在线播放免费| 国产又爽黄色视频| 桃色一区二区三区在线观看| www.自偷自拍.com| 精品熟女少妇八av免费久了| 黄色 视频免费看| 成年人黄色毛片网站| 精品国产亚洲在线| 国产成人影院久久av| 亚洲精品成人av观看孕妇| 久久精品91无色码中文字幕| 视频区欧美日本亚洲| 50天的宝宝边吃奶边哭怎么回事| 叶爱在线成人免费视频播放| 黑人巨大精品欧美一区二区mp4| 日韩有码中文字幕| 一a级毛片在线观看| 久久国产精品人妻蜜桃| 俄罗斯特黄特色一大片| 女同久久另类99精品国产91| 精品一区二区三区四区五区乱码| 男女做爰动态图高潮gif福利片 | 女性被躁到高潮视频| 青草久久国产| 免费看a级黄色片| 欧美中文综合在线视频| 成年人免费黄色播放视频| 99国产精品一区二区三区| 午夜免费激情av| 午夜免费成人在线视频| 国产人伦9x9x在线观看| 亚洲性夜色夜夜综合| 侵犯人妻中文字幕一二三四区| 中文字幕人妻熟女乱码| 久久久国产欧美日韩av| 国产精品一区二区免费欧美| 极品教师在线免费播放| 日韩中文字幕欧美一区二区| 欧美黄色淫秽网站| 人人妻人人爽人人添夜夜欢视频| 成人永久免费在线观看视频| 在线观看免费日韩欧美大片| 色在线成人网| 淫妇啪啪啪对白视频| 国产伦人伦偷精品视频| 亚洲精品中文字幕在线视频| 精品欧美一区二区三区在线| 长腿黑丝高跟| a级毛片黄视频| 欧美日韩福利视频一区二区| 国产主播在线观看一区二区| 美女福利国产在线| 久久天躁狠狠躁夜夜2o2o| 嫩草影视91久久| 午夜久久久在线观看| 成年人免费黄色播放视频| 亚洲一区中文字幕在线| 99热国产这里只有精品6| 在线观看免费视频网站a站| 亚洲男人的天堂狠狠| 宅男免费午夜| 国产成人av激情在线播放| 久久精品影院6| 亚洲国产欧美网| 男女之事视频高清在线观看| 亚洲欧美一区二区三区久久| 国产有黄有色有爽视频| 超碰成人久久| 人成视频在线观看免费观看| 亚洲五月色婷婷综合| 亚洲五月婷婷丁香| 成人av一区二区三区在线看| 国产成人av教育| 亚洲美女黄片视频| 久久久久国产一级毛片高清牌| 亚洲精品久久成人aⅴ小说| 天堂影院成人在线观看| 99热只有精品国产| 日韩大尺度精品在线看网址 | 黄频高清免费视频| 9热在线视频观看99| 又大又爽又粗| 久久婷婷成人综合色麻豆| 在线观看免费午夜福利视频| 波多野结衣高清无吗| 国产单亲对白刺激| 日本 av在线| 黄片播放在线免费| 亚洲七黄色美女视频| 免费在线观看影片大全网站| 欧美中文综合在线视频| 成在线人永久免费视频| 999久久久精品免费观看国产| 婷婷丁香在线五月| 亚洲av日韩精品久久久久久密| 麻豆成人av在线观看| 首页视频小说图片口味搜索| 日本黄色日本黄色录像| 亚洲精品一卡2卡三卡4卡5卡| 两性夫妻黄色片| 女人被躁到高潮嗷嗷叫费观| 国内久久婷婷六月综合欲色啪| 大陆偷拍与自拍| 亚洲精品国产区一区二| 国产精品久久电影中文字幕| 嫩草影院精品99| 久久久久久免费高清国产稀缺| 久久草成人影院| 国产亚洲欧美在线一区二区| 一二三四在线观看免费中文在| 国产亚洲欧美98| 欧美日本中文国产一区发布| 一二三四在线观看免费中文在| 亚洲免费av在线视频| 国产一区二区三区综合在线观看| 国产精品1区2区在线观看.| e午夜精品久久久久久久| 一二三四社区在线视频社区8| 亚洲午夜精品一区,二区,三区| 极品人妻少妇av视频| 国产精品一区二区三区四区久久 | www.熟女人妻精品国产| 中文字幕另类日韩欧美亚洲嫩草| 欧美成人午夜精品| 精品国产一区二区久久| 啦啦啦免费观看视频1| 91老司机精品| 精品国产乱码久久久久久男人| 黄色成人免费大全| 在线观看免费午夜福利视频| 国产男靠女视频免费网站| 欧美日韩亚洲国产一区二区在线观看| 久久中文看片网| 在线国产一区二区在线| 亚洲av熟女| 色哟哟哟哟哟哟|