• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Laboratory demonstration of geopotential measurement using transportable optical clocks

    2023-02-20 13:14:46DaoXinLiu劉道信JianCao曹健JinBoYuan袁金波KaiFengCui崔凱楓YiYuan袁易PingZhang張平SiJiaChao晁思嘉HuaLinShu舒華林andXueRenHuang黃學人
    Chinese Physics B 2023年1期
    關鍵詞:華林張平

    Dao-Xin Liu(劉道信), Jian Cao(曹健), Jin-Bo Yuan(袁金波), Kai-Feng Cui(崔凱楓), Yi Yuan(袁易),Ping Zhang(張平), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒華林), and Xue-Ren Huang(黃學人),4,?

    1State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics,Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences,Wuhan 430071,China

    2Key Laboratory of Atomic Frequency Standards,Innovation Academy for Precision Measurement Science and Technology,Chinese Academy of Sciences,Wuhan 430071,China

    3University of the Chinese Academy of Sciences,Beijing 100049,China

    4Wuhan Institute of Quantum Technology,Wuhan 430206,China

    Keywords: geopotential difference measurement, transportable optical clock, repeatability evaluation of clocks

    1. Introduction

    Recently, optical clocks have been improved greatly in uncertainty and instability with the technical development of cold atom and ultra-stable laser. The uncertainty or instability has reached the order of magnitude 10-18or even better,[1–5]which is far exceeding the current second definition based on the Cs fountain clock.Therefore,high-precision optical clocks motivate the redefinition of the second in terms of an optical atomic transition.[6,7]In addition, optical clocks can also be used in relativistic geodesy,[8,9]precise measurement of physical constants,[10–13]and detection of dark matter.[14,15]

    According to the Einstein’s theory of general relativity(GR), a clock at a lower altitude runs slower than that at a higher altitude on the surface of the Earth due to the difference of the gravitational field,which is the so-called the gravitational red shift effect. By accurately measuring the frequency difference of the two optical clocks at separate locations through fiber or other links,[16–18]the related altitude difference can be acquired directly. This effect corresponds to a fractional frequency shift of about 1.1×10-18per centimeter of change in altitude on the surface of the Earth,confirmed by several experiments by using optical clocks. In 2010,Chouet al.firstly demonstrated this effect using two27Al+ion optical clocks with a resolution of 15 cm.[9]Thereafter, McGrewetal.[3]and Takanoet al.[19]reported lattice clocks enabling geodesy at the centimeter level,respectively. Recently,Bothwellet al.[20]reported a millimeter-scale gravitational red shift measurement using the Sr lattice atomic clock, which is the highest resolution reported to date. These researches show us various opportunities of outdoor applications provided by optical clocks for establishing a global unified elevation network towards geophysics,satellites navigation,environmental monitoring,and resource exploration.[21]

    However,optical clock is an ultra-precise and large equipment with considerable complexity, including atomic system and related laser-stabilization system, which limits the applicable scenario significantly. Thus,developing a transportable optical clock (TOC) with sufficient robustness and compactness is an effective solution for outdoor applications. At present,various institutions around the world are actively developing TOCs using different atomic references,[22–27]and some demonstrations on relativistic geodesy and test of the theory of GR have been reported now.[22,23]

    The40Ca+single-ion confined in an ion trap, due to its easy-to-acquired semiconductor lasers, is a promising option in the development of robust and compact TOCs. In addition, an excellent performance of systematic frequency uncertainty and instability makes it quite attractive and costeffective. At present, several transportable single ion optical clocks (TOC-729-1, 2, 3) have been developed based on the 4s2S1/2?3d2D5/2electric quadrupole transition of40Ca+in Wuhan. These three TOCs are based on the previous work[24]with improvements to the modular and integrated design of clocks, upgraded controlling system, suppressed systematic shifts and related high precision evaluation. For TOC-729-2,its outer size of the physical package is 1.2 m×0.9 m×0.3 m apart from the controlling electronics placed in 19-in. racks.It was moved 1200 km from Wuhan to Beijing by express delivery and then resumed to work quickly, and its systematic uncertainty was reevaluated as 1.1×10-17, which remained almost the same as in Wuhan. This TOC shows a high uptime of 92%in 35 days of absolute frequency measurement and will be used to steer the local time scale.[28]

    In this paper, a pair of TOCs is used to demonstrate the geopotential difference measurement in the laboratory. Referenced to the stationary TOC-729-1, the geopotential difference measurements are performed by moving TOC-729-3 to three different altitudes. The fractional frequency difference changes are measured at the level of 2.0×10-17,corresponding to an altitude uncertainty at 20 cm level. Meanwhile, to analyze the reproducibility of these two TOCs, the frequency difference between them is evaluated to be-0.7(2.2)×10-17,including both the statistic and systematic (gravitational red shift included) uncertainties at three different altitudes. This result is consistent well with the systematic uncertainties of the two clocks,demonstrating the reliability of TOCs for elevation measurements at the uncertainty level of 20 cm. This work is meaningful as a preliminary preparation for establishing a global unified elevation network and for the testing of fundamental physics laws.

    2. Experimental details

    The two transportable40Ca+optical clocks (TOC-729-1 and TOC-729-3) used for geopotential difference measurements have a similar structure. The same vacuum chambers and linear Paul traps are employed.In addition,these two traps are worked at the magic radio-frequency (24.801 MHz) to eliminate the frequency shifts due to excess micromotion.[29]These two clocks share a common 729 nm cavity-stabilized diode laser system as the local oscillator,[30]and other related lasers (397 nm/854 nm/866 nm) are stabilized by a 3-in-1 cavity to suppress long-term frequency drifts.[24]A high-resolution timing controlling system based on the fieldprogrammable gate arrays (FPGAs) is shared temporarily,which can achieve fast timing sequence with a resolution of nanosecond level. In the comparisons, the probe pulses of the clock laser for the two TOCs are precisely synchronized,which allows two clocks to sample the same laser noise.Therefore, the frequency difference between them benefits from a common-mode rejection of the laser noise.

    In addition to the above commons,these two clocks have different ways of loading ions. TOC-729-1, similar to TOC-729-2,uses a calcium oven to load a single ion,but TOC-729-3 uses the laser-ablation method[31]alternatively. A pulsed laser at 1064 nm acts as an ablation source controlled by an acousto–optic modulator (AOM). This method can quickly and stably load a single ion without contaminating the trap electrodes by precisely controlling the power and pulse-time of the ablation laser.

    Fig.1. Schematic diagram of the geopotential difference measurements.TOC-729-1 and TOC-729-3 share a cavity-stabilized clock laser at 729 nm,which is split and sent to each ion trapping module of the clock system.To ensure each optical clock has independent frequency control of clock laser beams, TOC-729-1 and TOC-729-3 have been equipped with separate AOMs. The 729 nm laser frequency is locked to the clock transition using a digital servo that provides a correction to the AOM driver for the corresponding clock. The geopotential difference measurements are performed at three different altitudes between two clocks of-0.792(10)m,0.035(10)m,and 1.072(10)m,respectively. Inset on the top left shows the actual physical system of TOC-729-3 when it was placed at three different altitudes.

    The workflow of the clocks from the preparation to operation is kept the same to each other. After a single ion is loaded, various experimental parameters should be inspected and optimized. The compensation electrodes of the ion trap are optimized by using a parametric excitation method[32]to minimize the excess-micromotion. The Doppler-cooling parameters of the single ion are optimized to ensure the time dilation shift due to the secular motion remains stable. Two sensors (PT1000) are pasted on the vacuum chamber of the ion-trapping module to record the temperature during the comparison, and the data is employed to evaluate the black-body radiation (BBR) shift. A frequency-resolved optical pumping method[33]is employed for state preparation to double the transition probability and improve the clock instability bytimes. For all measurements presented in this paper, a Rabi interrogation time of 60 ms is performed for clock operation,corresponding to a Fourier limited linewidth of 13.3 Hz. The optical frequency is locked to the electrical quadrupole transition at 729 nm by feeding the frequency corrections back to the rf driver of AOM. This rf frequency is recorded to determine the difference between the two clocks. During the geopotential difference measurement, as shown in Fig. 1, TOC-729-1 is placed on the optical platform as a reference, and the iontrapping module of TOC-729-3 is encapsulated in a box of 0.62 m×0.50 m×0.34 m for moving conveniently in the order of(I)→(II)→(III)→(IV).

    3. Experimental results

    3.1. Geopotential difference measurement

    According to the GR,the gravitational red shift between the clocks (Δυ=υ2-υ1) located at positions 1 and 2 is given by their relative altitude difference (Δh) as Δυ/υ1=(1+α)gΔh/c2, whereυ1(2)is the clock transition frequency at location 1 (2),gis the gravitational acceleration,cis the speed of light, andαindicates a violation factor of the GR.The geopotential difference measurements are realized assumingα ≈0. As shown in Table 1, at three different altitudes,the frequency differences between TOC-729-1 and TOC-729-3 are measured as-46.5(5.2) mHz,-12.8(4.8) mHz, and 38.1(4.2)mHz,respectively.

    Table 1. Results of the geopotential difference measurements at three different altitudes. Unit: mHz.

    After correcting the systemic shifts of-9.4(7.3) mHz,-10.4(7.8) mHz, and-7.4(8.7) mHz, the final frequency differences at three different altitudes are synthesized to be-37.1(9.0) mHz,-2.4(9.2) mHz, and 45.5(9.7) mHz, respectively. Detailed experimental data is shown in Fig. 2(a).The fractional frequency shifts are calculated as-9.0(2.2)×10-17,-0.6(2.3)×10-17, and 11.1(2.4)×10-17. Based on Δυ/υ1=gΔh/c2,wheregis 9.793461(2)m/s2obtained from an atomic gravimeter,[34]the altitude differences are calculated as-0.83(20)m,-0.05(21)m,and 1.02(22)m,in agreement with the measurement of-0.792(10) m, 0.035(10) m,and 1.072(10)m using a meter ruler.

    On the contrary,these measurements can be analyzed by using Δυ=kΔhto test the GR, wherekis defined as (1+α)υ1g/c2. As shown in Fig. 2(b), the slopekis 0.0444(12),andαis calculated as-9(27)×10-3. GR verification is an important step in the testing of the fundamental physical laws. However, the measurement precision ofαis limited by the uncertainties of the clocks and the altitude difference between them. The Gravity Probe A mission[35]obtains|α|≈1.4×10-4by using a hydrogen maser in a spacecraft launched to Δh=104km, which is benefited a lot from the large scale of altitude difference. The accuracy of the optical clocks is 5 to 6 orders of magnitude better than that of hydrogen masers, so we can obtain more preciseαwith an appropriate altitude difference. For example,Takamotoet al.[23]operated a pair of transportable Sr lattice clocks with an altitude difference of Δh ≈450 m at Tokyo Skytree to measureαas (1.4±9.1)×10-5. Its accuracy has already surpassed the result by using hydrogen masers.[35]By improving the uncertainty of our TOCs to 5×10-18and increasing the altitude difference to about 5 km, the uncertainty ofαwill be measured as 8.9×10-6to perform a more precise test of GR in the future.

    Fig.2. Results of the geopotential difference measurements at three different altitudes. (a) The 38 points of measurement data. Each data point is corrected with the systematic shifts(gravitational red shift excluded). The solid line and shadowed area represent the weighted mean and the corresponding standard deviation. The red hollow circle data points are taken after moving TOC-729-3 to its initial position,to verify the repeatability of the clock.(b) The relationship between the frequency differences and the altitude differences. The red dots represent the measurement data, and the red solid line indicates the linear fit of them. The blue dashed line with the slope of 0.04479(3) is the theorized expectation according to the local gravitational acceleration. The shaded red area represents the 95%confidence intervals.

    3.2. Repeatability evaluation of clocks

    To evaluate the repeatability of these two clocks, two sets of measurements are performed at the same location(ΔHclock3–clock1=0.035(10)m)with an interval of a month.The results are consistent with the uncertainty as shown in Fig. 2(a). Due to TOC-729-3 moving within the range of 2 m altitude difference in the laboratory, the change of gravitational acceleration can be ignored, and the more accurate evaluation of gravitational red shift can be obtained from the geometrical measurement with a meter ruler. After correcting the gravitational red shifts at three different altitudes with this method, as shown in Fig. 3, a fractional instability of 4.8×10-15/is achieved for both TOCs, which is reasonable agreement with the QPN limit of 3.1×10-15/. The frequency difference between the two TOCs is calculated as-0.7(2.2)×10-17with the statistic uncertainty of 1.0×10-17and the systematic uncertainty of 1.9×10-17. This systematic uncertainty is derived from the synthesis of the uncertainty of each clock at the level of 1.3×10-17. The frequency difference is consistent well with the systematic uncertainties of two TOCs, which verifies the reliability of TOCs for geopotential difference measurements at the uncertainty level of 20 cm.

    Fig.3. The Allan deviation measured for each clock. The frequency difference between the two clocks is divided byto reflect the instability of a single clock. The red solid line shows the 1/ fti of the data yielding an instability of a single clock as 4.8×10-15/ The green dash line stands for the theoretical predicted quantum projection noise(QPN)limit of 3.1×10-15 calculated under the condition of 16.2 s feedback time.[36]Inset: Statistical distribution of the frequency difference between the two clocks after correcting the systematic shifts.

    The systematic frequency shift uncertainties of the optical clocks are the most important factor limiting the accuracy of the geopotential difference measurement,and its evaluation is also an important part of the repeatability evaluation of the optical clock. The details about the main sources of errors in the clock evaluation are described below.

    For our40Ca+optical clock,the systematic uncertainty is limited by the BBR related frequency shift, as shown in Table 2. To evaluate this item,the environment temperature seen by the ion needs to be measured with high precision.However,this is quite difficult due to the non-uniform temperature distribution caused by the heating effect of the rf driving. However,we have proposed an improved BBR temperature evaluation method[37]based on the analysis of the effective solid angle of each component of the ion trap system using the finite element method. By combining with the temperature of each component measured in a dummy trap system, the effective temperature felt by the ion can be calculated. The vacuum chamber temperature, monitored by calibrated PT1000 sensors, is 295.89(55) K for TOC-729-1 and 294.32(66) K for TOC-729-3. According to the temperature distribution model of ion trap established,the effective temperature felt by the ion is calculated respectively as 296.69(77) K and 294.83(84) K,corresponding to a BBR ac-Stark shift uncertainty of 3.8 mHz and 4.1 mHz.

    Table 2. Systematic shifts and uncertainties for the evaluations of the two TOCs. All values shown here are in millihertz except for the last row.

    The electric quadrupole frequency shift is caused by the interaction of the electric quadrupole moment of the2D5/2level with the electric field gradient. In order to eliminate this kind of shift effectively, three pairs of Zeeman components labeledmj=±1/2,mj=±3/2, andmj=±5/2 are detected alternately.[38]The average value of the center frequencies of three pairs of lines is used as the output of the clock. The uncertainty of the electric quadrupole shift can be estimated by evaluating the difference of center frequencies among the three pairs of lines.[24]During all the geopotential difference measurements, the electric quadrupole shift uncertainty is measured to be 3.8 mHz and 3.2 mHz for TOC-729-1 and TOC-729-3,respectively.

    The linear Zeeman shift can be canceled out effectively by probing on three pairs of symmetrical Zeeman components.However, as these components can only be detected alternately, the drift of the magnetic field will produce a residual linear Zeeman shift of 16.8 Hz/nT by a worst-case scenario.Due to the proximity to the subway, the environmental magnetic field can fluctuate as much as 1000 nT. Although there are two layers of the magnetic shields, the residual magnetic field drift at the ion position calculated from the frequency records during the clock operation is at the level of 10-5nT/s,which is a little higher than that of TOC-729-2 as it is far from the subway.[28]Considering the 2.7 s probing interval between each Zeeman component,the linear Zeeman shift uncertainty is estimated to be 0.3 mHz for TOC-729-1 and 1.1 mHz for TOC-729-3.

    The servo error is also an important item in the systematic uncertainty of a single ion optical clock,which is caused by the long servo feedback time and the inevitable frequency drift of the clock laser referenced to an ultra-stable cavity.Two methods are employed to reduce the servo feedback period of the clock. The first is using state preparation to reduce the feedback time of clock servo,and the second is using a highspeed FPGAs controlling system to reduce the dead time in the sequence of laser pulses. As a result, the total feedback time is reduced from 32.2 s to 16.2 s dramatically with a constant 60 ms probe time. For the frequency drift of the clock laser,a linear drift compensation with refreshed data intermittently is superimposed to the AOM before the ultra-stable cavity, and the residual frequency drift of the probe laser can be controlled within±5 mHz/s.In addition,a second-order integral is added to the clock servo loop,[39]thereby reducing the servo error caused by the frequency drift of the ultra-stable cavity. With these efforts,the final servo error uncertainty is suppressed to 0.6 mHz for both clocks.

    In addition to the main sources mentioned above,all other items are at the level of 1.0×10-17or even lower. As shown in Table 2, TOC-729-1 and TOC-729-3 are both with a total uncertainty of 1.3×10-17and the fractional uncertainty of the total systematic shift difference between the two TOCs is calculated as 1.9×10-17.

    4. Conclusion and perspectives

    We reported an experimental demonstration of geopotential difference measurement using two transportable40Ca+optical clocks in the laboratory with the same systematic uncertainty of 1.3×10-17, which was limited by the uncertainty of BBR shift of each clock. The altitude differences were measured with total uncertainties at the level of 20 cm,which were in agreement with the results of geometrical measurement. After correcting the systematic shift (gravitational red shift included), the frequency difference of the two clocks was estimated to be-0.7×10-17with a total uncertainty of 2.2×10-17. It verified the reliability of the transportable40Ca+optical clock at the low level of 10-17. Considering the limitation of the instability of clock laser and the uncertainty of the BBR frequency shift, it was necessary to take some measures to further improve the clock precision. In the future, correlation spectroscopy can be employed to improve the instability of clock comparison by measuring the correlated atomic spectroscopy between the two clocks,[40]which provides a frequency difference measurement beyond the laser coherence time. For the clock systematic uncertainty, the BBR frequency shift of40Ca+optical clock can be reduced further to 2.0×10-18with an improved trap design and using a BBR shielding.[37]With these improvements,the transportable40Ca+optical clocks will be developed towards an uncertainty at a low level of 10-18at room temperature,fulfilling the requirement of establishing the global unified elevation network with a precision of centimeter and testing the validity of GR with high accuracy.

    Acknowledgments

    Project supported by the Basic Frontier Science Research Program of Chinese Academy of Sciences (Grant No.ZDBS-LY-DQC028),the National Key Research and Development Program of China(Grant No.2017YFA0304404),and the National Natural Science Foundation of China(Grant No.11674357).

    猜你喜歡
    華林張平
    Topological properties of Sb(111)surface: A first-principles study
    嘰嘰喳喳的小喜鵲
    這是你爺倆
    金秋(2020年16期)2020-12-09 01:41:50
    Enhanced spin-dependent thermopower in a double-quantum-dot sandwiched between two-dimensional electron gases?
    華林 加速全球布局
    華林 向愛而行
    華林 修身立德 以道致遠
    華林 一企千人助萬家
    華林 行穩(wěn)致遠
    張平書法作品選
    99视频精品全部免费 在线| 天堂网av新在线| 国产成人影院久久av| 久久精品夜夜夜夜夜久久蜜豆| 亚洲性久久影院| 国模一区二区三区四区视频| 精品国产三级普通话版| 午夜免费男女啪啪视频观看| 在线观看午夜福利视频| 精品熟女少妇av免费看| 免费观看人在逋| 国产成人91sexporn| 伊人久久精品亚洲午夜| 在线免费观看不下载黄p国产| 免费不卡的大黄色大毛片视频在线观看 | av免费在线看不卡| www.av在线官网国产| 欧美xxxx性猛交bbbb| 最好的美女福利视频网| 尾随美女入室| 人妻系列 视频| 精品久久国产蜜桃| 日本-黄色视频高清免费观看| 可以在线观看的亚洲视频| 久久精品综合一区二区三区| 欧美日韩一区二区视频在线观看视频在线 | 日韩欧美国产在线观看| 日本av手机在线免费观看| 最好的美女福利视频网| 青春草视频在线免费观看| 岛国在线免费视频观看| 蜜臀久久99精品久久宅男| 青春草视频在线免费观看| 欧美色视频一区免费| 欧美日韩在线观看h| 日韩在线高清观看一区二区三区| 欧美丝袜亚洲另类| 3wmmmm亚洲av在线观看| 啦啦啦观看免费观看视频高清| 能在线免费观看的黄片| 亚洲国产欧洲综合997久久,| 国产毛片a区久久久久| 午夜精品国产一区二区电影 | 国产三级中文精品| 三级经典国产精品| 欧美日本亚洲视频在线播放| 国产精品不卡视频一区二区| 精品日产1卡2卡| 99在线视频只有这里精品首页| 日韩av在线大香蕉| 美女黄网站色视频| 黄片无遮挡物在线观看| 色综合色国产| 亚洲人成网站在线播| 久久国内精品自在自线图片| 国产精品国产三级国产av玫瑰| 你懂的网址亚洲精品在线观看 | 亚洲国产欧洲综合997久久,| 自拍偷自拍亚洲精品老妇| 欧美日韩综合久久久久久| 国产探花在线观看一区二区| 99热全是精品| 一级毛片久久久久久久久女| 亚洲成人中文字幕在线播放| 欧美一区二区精品小视频在线| 黄色一级大片看看| 久久精品久久久久久久性| 一级二级三级毛片免费看| 蜜臀久久99精品久久宅男| 日本成人三级电影网站| 国产亚洲精品av在线| 成人一区二区视频在线观看| 天堂影院成人在线观看| 精品久久久久久成人av| 精品无人区乱码1区二区| 欧美成人一区二区免费高清观看| 舔av片在线| 久久婷婷人人爽人人干人人爱| 亚洲精品乱码久久久久久按摩| 夜夜看夜夜爽夜夜摸| 麻豆成人av视频| 成人鲁丝片一二三区免费| 韩国av在线不卡| 麻豆乱淫一区二区| 亚洲四区av| 一边摸一边抽搐一进一小说| 少妇的逼好多水| 日本五十路高清| 国产熟女欧美一区二区| 亚洲精华国产精华液的使用体验 | 不卡视频在线观看欧美| 欧美日韩国产亚洲二区| 黄色欧美视频在线观看| 国产又黄又爽又无遮挡在线| 观看免费一级毛片| 老女人水多毛片| 国产高清三级在线| 又黄又爽又刺激的免费视频.| 久久人妻av系列| 亚洲国产日韩欧美精品在线观看| 精品久久久久久久久久久久久| 久久人人爽人人片av| 免费大片18禁| 精华霜和精华液先用哪个| 亚洲人成网站在线观看播放| 男插女下体视频免费在线播放| 深夜a级毛片| 天堂影院成人在线观看| 嫩草影院入口| 亚洲成人精品中文字幕电影| 成人美女网站在线观看视频| 久久久久久大精品| 波野结衣二区三区在线| 色视频www国产| 亚洲av成人av| 亚洲最大成人中文| 久久久国产成人免费| 男女做爰动态图高潮gif福利片| 日韩,欧美,国产一区二区三区 | 99热只有精品国产| 人人妻人人澡欧美一区二区| 三级男女做爰猛烈吃奶摸视频| 天天一区二区日本电影三级| 少妇的逼水好多| 久久精品国产亚洲av天美| 国产精品久久久久久久久免| 三级毛片av免费| 国模一区二区三区四区视频| 两个人视频免费观看高清| 中文精品一卡2卡3卡4更新| 最新中文字幕久久久久| 2021天堂中文幕一二区在线观| 夜夜看夜夜爽夜夜摸| 日本成人三级电影网站| 伦精品一区二区三区| 亚洲欧美成人精品一区二区| 国产色婷婷99| 天堂网av新在线| 久久久久久久亚洲中文字幕| 99热这里只有精品一区| 免费黄网站久久成人精品| 亚洲av电影不卡..在线观看| 久久精品国产亚洲网站| 少妇人妻精品综合一区二区 | 国产v大片淫在线免费观看| 又爽又黄无遮挡网站| 国产麻豆成人av免费视频| 亚洲成人久久爱视频| 插阴视频在线观看视频| 久久九九热精品免费| 国产成人aa在线观看| 可以在线观看的亚洲视频| 亚洲国产精品成人久久小说 | 久久鲁丝午夜福利片| 亚洲国产精品合色在线| 亚洲国产精品合色在线| 国产女主播在线喷水免费视频网站 | 春色校园在线视频观看| 国产精品乱码一区二三区的特点| 久久韩国三级中文字幕| 99久久中文字幕三级久久日本| 大香蕉久久网| 亚洲成a人片在线一区二区| 国内精品宾馆在线| 麻豆久久精品国产亚洲av| 国产精品久久久久久亚洲av鲁大| 丝袜喷水一区| 中国国产av一级| 中文欧美无线码| 亚洲成人中文字幕在线播放| 看黄色毛片网站| 男女那种视频在线观看| 亚洲aⅴ乱码一区二区在线播放| 爱豆传媒免费全集在线观看| 中文字幕制服av| 国产视频内射| 亚洲五月天丁香| 国产黄色小视频在线观看| 色哟哟·www| 日本免费a在线| 最新中文字幕久久久久| 久久亚洲国产成人精品v| 亚洲欧美清纯卡通| 亚洲国产精品sss在线观看| 啦啦啦啦在线视频资源| 2021天堂中文幕一二区在线观| 亚洲精华国产精华液的使用体验 | 日韩国内少妇激情av| 亚洲成a人片在线一区二区| 国产一区二区三区在线臀色熟女| 亚洲精品乱码久久久久久按摩| 欧美变态另类bdsm刘玥| 别揉我奶头 嗯啊视频| 99久久无色码亚洲精品果冻| 亚洲欧洲日产国产| 国产黄a三级三级三级人| 日韩强制内射视频| 久久久久久国产a免费观看| 国产黄片美女视频| 日本在线视频免费播放| 女人被狂操c到高潮| 亚洲欧美精品综合久久99| 亚洲精品乱码久久久v下载方式| 在线播放国产精品三级| 99久久精品国产国产毛片| 99九九线精品视频在线观看视频| 成人漫画全彩无遮挡| 深爱激情五月婷婷| 成人午夜高清在线视频| 亚洲av成人av| 日韩欧美在线乱码| 性色avwww在线观看| 国产精品女同一区二区软件| 午夜亚洲福利在线播放| 毛片女人毛片| 国产视频内射| 老师上课跳d突然被开到最大视频| 午夜福利成人在线免费观看| 我要看日韩黄色一级片| 国产高清有码在线观看视频| 精品欧美国产一区二区三| 国产av不卡久久| 国产 一区精品| 国产精品一区二区性色av| 亚洲一区二区三区色噜噜| 一区二区三区高清视频在线| 日韩欧美精品v在线| av免费在线看不卡| a级毛片免费高清观看在线播放| 欧美性猛交╳xxx乱大交人| 菩萨蛮人人尽说江南好唐韦庄 | 日日撸夜夜添| 少妇被粗大猛烈的视频| 午夜a级毛片| 黄色一级大片看看| 久久久欧美国产精品| 男女那种视频在线观看| 人妻久久中文字幕网| 99热6这里只有精品| 国产精品嫩草影院av在线观看| 久久午夜福利片| 久久精品影院6| 美女大奶头视频| 午夜a级毛片| 成人三级黄色视频| 伊人久久精品亚洲午夜| 日本一本二区三区精品| 夜夜夜夜夜久久久久| 成人午夜高清在线视频| 国产精品一区二区三区四区久久| 午夜福利高清视频| 亚洲最大成人中文| 免费观看精品视频网站| 特大巨黑吊av在线直播| 春色校园在线视频观看| 嫩草影院精品99| 夜夜看夜夜爽夜夜摸| 国产毛片a区久久久久| 三级国产精品欧美在线观看| 国产黄片美女视频| 亚洲人成网站在线播放欧美日韩| 精品日产1卡2卡| av视频在线观看入口| 一级毛片电影观看 | 精品少妇黑人巨大在线播放 | 日韩一区二区三区影片| 在线免费观看不下载黄p国产| 九九爱精品视频在线观看| 99久久成人亚洲精品观看| 女的被弄到高潮叫床怎么办| 99热全是精品| 日韩三级伦理在线观看| 欧美日本亚洲视频在线播放| 黄色日韩在线| 国产精品麻豆人妻色哟哟久久 | 1000部很黄的大片| 国内揄拍国产精品人妻在线| 美女xxoo啪啪120秒动态图| 插阴视频在线观看视频| 国产单亲对白刺激| 看片在线看免费视频| 成人一区二区视频在线观看| 99久国产av精品| 国产在线精品亚洲第一网站| 国产成人精品一,二区 | 国产高潮美女av| 久久精品国产自在天天线| 麻豆国产97在线/欧美| 一区二区三区免费毛片| 美女高潮的动态| 欧美+日韩+精品| 国产精品久久久久久亚洲av鲁大| 舔av片在线| 国产精品久久久久久精品电影小说 | 综合色丁香网| 最近2019中文字幕mv第一页| 欧美潮喷喷水| 亚洲在线观看片| 国产成人午夜福利电影在线观看| av天堂中文字幕网| 亚洲欧美精品专区久久| 国产黄a三级三级三级人| 国产成人影院久久av| 国产单亲对白刺激| 午夜免费男女啪啪视频观看| 亚洲国产高清在线一区二区三| avwww免费| 又粗又硬又长又爽又黄的视频 | 国产精品嫩草影院av在线观看| 非洲黑人性xxxx精品又粗又长| 校园春色视频在线观看| 精品久久久久久久人妻蜜臀av| 免费av不卡在线播放| 2022亚洲国产成人精品| 免费电影在线观看免费观看| 国产精品女同一区二区软件| 日韩欧美精品免费久久| 成人鲁丝片一二三区免费| 中文字幕久久专区| 国产毛片a区久久久久| 久久欧美精品欧美久久欧美| 亚洲精品色激情综合| 嫩草影院入口| 国产v大片淫在线免费观看| 国产午夜精品一二区理论片| 在线天堂最新版资源| 精品人妻视频免费看| 哪里可以看免费的av片| 一本久久中文字幕| 内地一区二区视频在线| 亚洲精华国产精华液的使用体验 | 少妇猛男粗大的猛烈进出视频 | 亚洲无线在线观看| 亚洲成人久久爱视频| 人人妻人人看人人澡| 午夜福利在线在线| 97超视频在线观看视频| 久久6这里有精品| 国产精品久久久久久精品电影小说 | 在线播放无遮挡| 国内少妇人妻偷人精品xxx网站| 爱豆传媒免费全集在线观看| 好男人视频免费观看在线| 中文字幕人妻熟人妻熟丝袜美| 在线观看免费视频日本深夜| 99久久中文字幕三级久久日本| 狂野欧美激情性xxxx在线观看| 亚洲av一区综合| 午夜福利在线观看吧| 日本撒尿小便嘘嘘汇集6| 精品久久久久久久久久免费视频| 在线观看免费视频日本深夜| 五月玫瑰六月丁香| 国产美女午夜福利| 波多野结衣巨乳人妻| 欧美三级亚洲精品| 悠悠久久av| 一级毛片电影观看 | 12—13女人毛片做爰片一| 哪里可以看免费的av片| 国产人妻一区二区三区在| 久久这里有精品视频免费| 久久久午夜欧美精品| 日本免费a在线| 高清毛片免费看| 你懂的网址亚洲精品在线观看 | 欧美bdsm另类| 国产精品三级大全| 亚洲五月天丁香| 欧美极品一区二区三区四区| 在线观看66精品国产| 长腿黑丝高跟| 麻豆av噜噜一区二区三区| 国产高清三级在线| 在线观看av片永久免费下载| 麻豆国产97在线/欧美| 久久久久性生活片| 看片在线看免费视频| 久久热精品热| 激情 狠狠 欧美| 国产亚洲欧美98| 国产精品不卡视频一区二区| 国产一区二区三区av在线 | 亚洲第一电影网av| .国产精品久久| 高清日韩中文字幕在线| 亚洲最大成人av| 中文字幕免费在线视频6| 成人特级黄色片久久久久久久| 高清日韩中文字幕在线| 欧美成人a在线观看| 九九爱精品视频在线观看| 婷婷精品国产亚洲av| 色综合亚洲欧美另类图片| 99riav亚洲国产免费| 精品久久久久久久久久久久久| 女同久久另类99精品国产91| 丰满人妻一区二区三区视频av| 国产精华一区二区三区| 欧美一级a爱片免费观看看| 99久久久亚洲精品蜜臀av| 久久久久久国产a免费观看| 午夜激情福利司机影院| 国产亚洲精品av在线| 亚洲欧美日韩无卡精品| 日韩成人av中文字幕在线观看| 国产麻豆成人av免费视频| 中文资源天堂在线| www日本黄色视频网| 午夜精品在线福利| 欧美日韩国产亚洲二区| 日韩制服骚丝袜av| 狂野欧美白嫩少妇大欣赏| kizo精华| 欧美日本亚洲视频在线播放| 日日摸夜夜添夜夜爱| 久久久久性生活片| 亚洲在久久综合| 美女黄网站色视频| 国产麻豆成人av免费视频| 国产黄片美女视频| 国产亚洲91精品色在线| 久久久国产成人免费| 成人一区二区视频在线观看| 在线观看一区二区三区| 午夜精品在线福利| 亚洲在久久综合| 亚洲18禁久久av| 久久精品国产亚洲网站| 亚洲欧美成人精品一区二区| 成人特级黄色片久久久久久久| 亚洲av成人av| 一级黄片播放器| 天天一区二区日本电影三级| 五月玫瑰六月丁香| 亚洲欧美精品综合久久99| 中文亚洲av片在线观看爽| 舔av片在线| 亚洲av成人精品一区久久| 日韩av不卡免费在线播放| 亚洲无线在线观看| 国产精品嫩草影院av在线观看| 97超碰精品成人国产| 亚洲欧美成人综合另类久久久 | 99热网站在线观看| 欧美成人免费av一区二区三区| 99久久精品国产国产毛片| 日本一本二区三区精品| 三级国产精品欧美在线观看| 我要搜黄色片| 亚洲欧美日韩高清在线视频| 97人妻精品一区二区三区麻豆| 在现免费观看毛片| 中国美白少妇内射xxxbb| 日韩欧美一区二区三区在线观看| 国产老妇伦熟女老妇高清| 精品少妇黑人巨大在线播放 | 99国产极品粉嫩在线观看| 日本av手机在线免费观看| 九九爱精品视频在线观看| 亚洲成人久久性| 亚洲av一区综合| 99久久成人亚洲精品观看| 国内少妇人妻偷人精品xxx网站| 欧美性感艳星| 又爽又黄a免费视频| 久久精品91蜜桃| 国产精品爽爽va在线观看网站| 女的被弄到高潮叫床怎么办| 精品熟女少妇av免费看| 国产一区二区亚洲精品在线观看| 国产精品久久久久久久久免| 国产熟女欧美一区二区| 亚洲欧洲日产国产| 欧洲精品卡2卡3卡4卡5卡区| 日韩人妻高清精品专区| 国产精品女同一区二区软件| 国产av麻豆久久久久久久| 精华霜和精华液先用哪个| 亚洲人与动物交配视频| 亚洲国产高清在线一区二区三| 一区二区三区四区激情视频 | 97人妻精品一区二区三区麻豆| 性插视频无遮挡在线免费观看| 国产精品麻豆人妻色哟哟久久 | 综合色丁香网| 99精品在免费线老司机午夜| 免费av毛片视频| 免费看av在线观看网站| 国产伦理片在线播放av一区 | 亚洲熟妇中文字幕五十中出| 一本久久中文字幕| 日本三级黄在线观看| 91午夜精品亚洲一区二区三区| 嫩草影院入口| 亚洲在久久综合| 国产一区二区三区在线臀色熟女| 国产亚洲av片在线观看秒播厂 | 日韩强制内射视频| 亚洲国产精品国产精品| 日韩一本色道免费dvd| 两个人视频免费观看高清| 中文字幕久久专区| 九九久久精品国产亚洲av麻豆| 久久精品久久久久久久性| 男女啪啪激烈高潮av片| 给我免费播放毛片高清在线观看| 国产黄片美女视频| 黄色视频,在线免费观看| 国产色婷婷99| 精品一区二区免费观看| 嘟嘟电影网在线观看| 成人毛片60女人毛片免费| 国产精品久久久久久av不卡| 亚洲在久久综合| 乱人视频在线观看| 国产精品电影一区二区三区| 久久精品夜夜夜夜夜久久蜜豆| 美女 人体艺术 gogo| 波野结衣二区三区在线| 日本免费a在线| 国产伦精品一区二区三区四那| 日韩制服骚丝袜av| 成熟少妇高潮喷水视频| 亚洲av中文av极速乱| 久久九九热精品免费| 欧美区成人在线视频| 亚洲av熟女| 内射极品少妇av片p| 18禁在线播放成人免费| 日日摸夜夜添夜夜添av毛片| 久久久久久国产a免费观看| 亚洲第一电影网av| 少妇丰满av| 最近2019中文字幕mv第一页| 九草在线视频观看| 欧美性猛交╳xxx乱大交人| 一级毛片aaaaaa免费看小| 搡女人真爽免费视频火全软件| 成熟少妇高潮喷水视频| 人人妻人人澡欧美一区二区| 精品人妻熟女av久视频| .国产精品久久| 一级毛片久久久久久久久女| 国内精品久久久久精免费| 国产蜜桃级精品一区二区三区| 国产v大片淫在线免费观看| 99国产极品粉嫩在线观看| 国产精品一区www在线观看| 永久网站在线| 午夜福利在线观看吧| 色综合色国产| 69人妻影院| 欧美人与善性xxx| 床上黄色一级片| 老女人水多毛片| 国产蜜桃级精品一区二区三区| 极品教师在线视频| 亚洲成人中文字幕在线播放| 一级av片app| 91av网一区二区| 99久国产av精品| 蜜臀久久99精品久久宅男| 好男人在线观看高清免费视频| 人体艺术视频欧美日本| 91在线精品国自产拍蜜月| 尾随美女入室| 久久久精品94久久精品| 精品国内亚洲2022精品成人| 国产精品久久久久久精品电影| 一级av片app| 日本与韩国留学比较| 国产精品美女特级片免费视频播放器| 天堂中文最新版在线下载 | 12—13女人毛片做爰片一| 禁无遮挡网站| av福利片在线观看| 免费搜索国产男女视频| 久久久久国产网址| 校园人妻丝袜中文字幕| 久久久久免费精品人妻一区二区| 丰满乱子伦码专区| 联通29元200g的流量卡| 国产男人的电影天堂91| 国产色爽女视频免费观看| 日日撸夜夜添| 国产av一区在线观看免费| 亚洲av.av天堂| av在线老鸭窝| 久久精品影院6| 国产高清三级在线| 国产精品一区二区三区四区久久| 欧美一级a爱片免费观看看| 国产高清视频在线观看网站| 老女人水多毛片| av免费在线看不卡| 日韩欧美国产在线观看| 国产蜜桃级精品一区二区三区| 欧美成人免费av一区二区三区| 五月伊人婷婷丁香| 亚洲美女搞黄在线观看| 色综合亚洲欧美另类图片| 乱码一卡2卡4卡精品| 国产成人精品婷婷| 99精品在免费线老司机午夜| 少妇的逼好多水| 免费人成在线观看视频色| 国产精品三级大全| 免费观看精品视频网站| 麻豆国产97在线/欧美| 亚洲人成网站在线观看播放| 亚洲国产欧美人成| kizo精华| 日本av手机在线免费观看| 成年版毛片免费区|