• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Convolutional Autoencoder Based Fault Detection Method for Metro Railway Turnout

    2023-02-17 03:12:52ChenChenXingqiuLiKaiHuangZhongweiXuandMengMei

    Chen Chen,Xingqiu Li,Kai Huang,Zhongwei Xu and Meng Mei

    1School of Electronic and Information Engineering,Tongji University,Shanghai,201804,China

    2School of Engineering,City University of Hong Kong,Hong Kong,200433,China

    3School of Civil Aviation,Northwestern Polytechnical University,Xi’an,710072,China

    4School of Computer Engineering,Jimei University,Xiamen,361021,China

    ABSTRACT Railway turnout is one of the critical equipment of Switch & Crossing (S&C) Systems in railway, related to the train’s safety and operation efficiency. With the advancement of intelligent sensors, data-driven fault detection technology for railway turnout has become an important research topic.However,little research in the literature has investigated the capability of data-driven fault detection technology for metro railway turnout. This paper presents a convolutional autoencoder-based fault detection method for the metro railway turnout considering human field inspection scenarios.First,the one-dimensional original time-series signal is converted into a twodimensional image by data pre-processing and 2D representation.Next,a binary classification model based on the convolutional autoencoder is developed to implement fault detection.The profile and structure information can be captured by processing data as images.The performance of our method is evaluated and tested on real-world operational current data in the metro stations.Experimental results show that the proposed method achieves better performance,especially in terms of error rate and specificity,and is robust in practical engineering applications.

    KEYWORDS Convolutional autoencoder;fault detection;metro railway turnout

    1 Introduction

    As an essential mode of transportation, urban rail transit has been rapidly developed in many countries.For instance,China’s urban rail transit(URT)has developed into the most prolonged and widespread urban rail transit network worldwide.By the end of 2021,the total length of China’s URT network has reached more than 9,192 kilometers [1]. The safety and efficiency of the URT network have been receiving increasing attention, which is deeply affected by the URT’s equipment. With the development of URT and the increasing awareness,prognostics and health management(PHM)research in URT has become the focus of attention[2,3].

    Railway turnout is the critical infrastructure component in Switch&Crossing (S&C) Systems in high-speed rail, general-speed rail, and URT, which control the switch of tracks in operation [4].Accordingly,railway turnout affects trains’safety and operational efficiency[5,6].This study focuses on PHM research in metro railway turnout.Fault detection and fault diagnosis are the main contents of PHM research.Fault detection aims to identify whether a device is faulty,and fault diagnosis refers to recognizing the type of fault [7]. Fault detection can distinguish fault samples from the test data mixed with large numbers of normal samples to reduce the manual judgment workload.Furthermore,fault detection can be divided into abrupt and incipient fault detection based on the cause of the fault[8,9].This study focuses on abrupt fault detection,which can be viewed as a classification problem.

    Recent intelligent sensor advancements have contributed to data-driven PHM research on railway turnout.The related research contents include gap measurement[10-12],electric power analysis[13-15],electric current analysis[16-18],and sound analysis[19-21].These studies are highly dependent on features,and they are divided into three categories according to the way features are constructed:the manual features applied in classifiers approach[22,23],the distance-based measurement approach[14,24],and the automatic features with deep learning approach[25-27].There are two types of features for the manual features and classifiers approach: signal-processing-based and statistical features.Márquez et al. [22] extracted 11 time-domain features from the point machine’s current and force signal.An et al.[23]proposed a multi-scale analysis and feature extraction method for high-speed rail’s turnout switch machine. The fault features were represented by the wavelet packet’s energy entropy.Conversely, the main idea of the distance-based measurement approach is to realize identification by comparing the distance metric. Meanwhile, it requires standard curves of various turnout states.Huang et al.[28]used Fréchet distance to distinguish normal and abnormal turnout current curves for general-speed rail.Although the above two methods proved effective,these methods highly depend on expert experience.

    The automatic features with deep learning approach have become an emerging research topic in PHM research[29].Deep learning can solve the limitations of the expert experience by providing an efficient way to extract features automatically[30,31].Zhang et al.[25]proposed a convolutional neural network method for the fault diagnosis of high-speed railway turnout. This study combines 2-D image representation and convolutional operation to extract features automatically.However,this work only decomposed time series data piecewise and stacked it into two-dimensional images,losing the original curve data’s profile and spatial structure information.Guo et al.[26]designed a stacked autoencoder method for fault detection of high-speed railway turnout. Chen et al. [27] developed a sparse autoencoder approach to detect the health condition of general speed train turnout.The data process method of literature[26,27]was to process the data directly as a one-dimensional vector,which destroyed the data’s profile and structure information,leading to the loss of curve data information.

    As described,most existing approaches focus on the turnout of high-speed rail and normal-speed railway. Although some studies have applied the data-driven fault detection method to monitoring URT turnout [32,33], little research has considered preserving the curve data’s profile and structure information. This paper develops a fault detection method for URT turnout to address the above limitations. The real on-site detection method in URT is to read the pictures of the current curve and make a judgment based on the profile and structure of the curve.By using the image-based data processing method,curve data’s profile and structure information can be preserved and in line with the domain knowledge in real-life inspection scenarios.The convolution operation and autoencoder are combined to extract features and modeling as the processed data are image data.In summary,this study makes the following contributions:

    1. This paper proposes a method for detecting metro turnout faults that applies to solving a practical engineering issue.

    2. The proposed data processing method fully considers the real detection scene of metro turnout by preserving the curve data’s profile and structure information.

    3. Data from real metro stations validated the proposed method.

    This paper is organized as follows: railway turnout and field data description are given in Section 2. The proposed research method is illustrated in Section 3. In Section 4, we evaluate and test the proposed method using real-world operational data.Lastly,the conclusion and future work are drawn in Section 5.

    2 Railway Turnout and Field Data Formulation

    S&C Systems mainly include rails,actuators,and turnout(switch machine),as shown in Fig.1.In this study,the research object is the switch machine,and the machine type is ZDJ9.In general,there are two types of definitions for railway turnouts.According to the literature[22],turnout can refer to a switch machine or the combination of switches and crossing.In this article,the authors adopt the term ‘turnout’to describe the switch machine. A microcomputer monitoring system is mainly used in China to monitor turnouts online via their current or power signals. It can be detected whether a turnout is faulty through current signals analysis since current signals reflect the condition of the turnout’s movement [32,34]. All-round rail transit control system integrator (CASCO) collected the real-life data used in this study.Three subway stations in Shanghai Metro Line 13 have been tested:Jinyun Road,Nanjing West Road,and Fengzhuang.

    Figure 1:A simplified schematic diagram of S&C systems in railway

    The current curve of ZDJ9 includes A, B, and C three-phase currents with the 380 V threephase AC power supply.According to the literature[25],compared with B-phase and C-phase current curves,A-phase current curve can provide more comprehensive information on the turnout movement.Therefore,this study uses the A-phase current curve to monitor the ZDJ9.The state transition of the switch machine is divided into two situations:positioning to reverse position and reverse position to positioning. Due to the similarity of the A-phase current’s profile and trend in two conditions, this paper takes the case of normal to reverse position as an example,as shown in Fig.2.

    Figure 2:The A-phase current curve

    The A-phase current curve consists of four stages:unlocking,switching,locking,and switching on.The specific description of each stage is as follows:

    (1) Stage 1(unlocking)(T0-T1):

    After the switch machine starts,it must overcome the strong resistance to complete the unlocking.Therefore,the motor needs to provide strong power support.The current increase rapidly,showing a prominent pulse peak on the curve.Afterward,power and current return to standard levels.

    (2) Stage 2(conversion)(T1-T2):

    The conversion process requires less resistance and relatively more minor power than the unlocking stage.The switch machine provides power to pull the switch to realize the conversion.This process is time-consuming, and the power is maintained at a relatively stable value. The current curve also keeps a smooth straight line with slight fluctuation.

    (3) Stage 3(locking)(T2-T3):

    After the conversion process is completed, the position of the switch needs to be fixed, and the tip rail is not allowed to move by an external force.This stage is locking.The locking process time is short,and the curve has no prominent feature.

    (4) Stage 4(slow release)(T3-T4):

    The switch state transition is completed when the lock ends and the current is disconnected with the switch action.The circuit is turned on,resulting in a rapid drop in the switch machine’s operating current.

    ZDJ9 turnout takes 7-9 s to accomplish once state transition, with the sample rate of 25 Hz.Specifically, the field dataset consisted of 500 normal and 500 fault samples. Each current curve includes 256 sample points.

    3 Methodology

    This paper develops a convolutional autoencoder-based (CAE) method for modeling and identifying turnout using the A-phase current curve.The method’s inputs are A-phase current signals of turnout.The outputs are whether the switch is faulty.As shown in Fig.3,there are two modules in the presented approach.

    (1) Curve data pre-processing and image generation.The primary purpose of this module is to preprocess curve data to match the input requirements of the convolutional autoencoder-based model.The process involves the cleaning,normalization,and image generation of the current curve data.The MATLAB software is performed to generate images in a specified size.With the processed data,we can complete the next module’s convolution.

    (2) Classification modeling.A CAE model is designed to identify the current curve.The input of this module is the current curve images,and the module’s output is the trained model for fault detection.

    Figure 3:The flowchart of the presented approach

    3.1 Curve Data Pre-Processing and Image Generation

    The real on-site turnout detection in URT is to read the images of electrical characteristic curves.The 2D image represents the raw current signals based on this domain knowledge.MATLAB’s‘plot’and‘saveas’functions are used to generate images from raw current curves.The size of the generated images in this study was set to 32×32.The whole process is shown in Fig.4.

    Figure 4:The flowchart for converting time series to images

    To summarize, unlike the previous study [22,23], this step does not require complex signal processing calculations, nor does it destroy the spatial structure of the current curve. Furthermore,it combines on-site manual detection with the real scene.

    3.2 Proposed CAE-Based Model

    The convolutional autoencoder is a type of autoencoder that is effective for unsupervised learning. It introduces convolutional operations into the encoding and decoding steps. Through the combination of convolutional operations and autoencoders, it provides powerful feature extraction and unsupervised feature clustering. In encoding, convolution and pooling are used to map highdimensional image data to low-dimensional feature space. In the decoding part, the feature space is reconstructed and transformed into the original data by deconvolution and unpooling.Intermediate hidden layers can effectively represent the original data and provide features for classifiers[35].

    In practical engineering application scenarios, the sample size is often relatively small. In this situation,we designed the network structure as shown in Fig.5,where the encoding part includes two convolution operations and the corresponding two pooling operations,and the decoding part includes two deconvolution operations and the corresponding two unpooling operations.

    Figure 5:Schematic diagram of the proposed network structure

    The configuration of each layer of the proposed structure is shown in Fig.6. Specifically, the meaning of‘Conv2D’is the 2D convolution operation.‘Deconv2D’means the 2D deconvolution operation.‘Maxpooling2D’represents 2D max-pooling operation.‘Unpooling2D’denotes 2D unpooling operation. (3×3×16) represents the size of the convolution kernel or deconvolution kernel is 3×3,and the number of the corresponding filter is 16. (2×2) means the size of the pooling kernel or unpooling kernel is 2×2. ‘Full-connected’denotes the fully connected layer, and the corresponding(64) represents 64 neurons in the layer. The autoencoder’s loss function is the mean squared error(MSE) function. The classifier layer consists of two neurons whose loss function is the SoftMax function to perform classification.

    Let us consider the operation dataset iswhereis a current signal,andNdenotes the number of the current signal.A brief introduction of the proposed method will be presented as follows.

    Following data processing and image transformation,the input matrixAis represented as follows:

    wheremandnrepresent the length and width of the matrix.

    (1) The convolution operation for matrixAis represented as:

    whereCis the activation map of the input matrixA,fjis thejthconvolution filter andσ(·)denotes the activation function.The size of the image is 2k+1.The direction is indicated as the x-axis and y-axis,respectively.

    (2) The encoding part of the convolutional autoencoder is as follows:

    Through the convolution operation, the original data is mapped into the feature spaceand the encoding operation is as follows:

    whereAirepresents the input matrix, * denotes the 2-D convolution,Fkis the kthfilter for 2-D convolution,b1denotes encoder bias,σ(·)represents the activation function.

    And the pooling operation is denoted as follows:

    wheresiis the feature space after pooling operation, anduirepresents the feature space calculated by convolution,σ(·)is the activation function, W denotes the weight matrix for the kthpooling operation,b2denotes bias.

    Then the decoder operation is as follows:

    whereis the decoder reconstruction of input dataAi,σ(·)represents the activation function,siis the feature space after pooling operation calculation,Fkis the kthfilter for 2-D convolution of decoder,b3denotes bias.

    Then the unsupervised loss function is as follows:

    Theqthlayer features are proposed to represent the original images through unsupervised clustering of autoencoders.The first and the(k >2)hidden layers features are shown as follows

    whereWqis the weight matrix,bqis the bias vector.

    Then the selected hidden layer features are fed into the fully connected layer for classification.The SoftMax function is used as the activation function of the classifier’s output layer,and the SoftMax function is represented as follows:

    wherehdenotes the input vector.

    The specific formula of the classifier’s output layer is:

    whereW(k+1)the weight matrix,b(k+1)is the bias vector.

    The corresponding loss function of the classifier is

    4 Experiments on Field Data

    The proposed method is validated by the real field current turnout data in the metro system,as described in Section 2.First,we pre-process the field data by cleaning and normalization.Next,the data is transformed into the 32×32 images by MATLAB function, with 500 normal and 500 fault samples.In this study,the positive sample represents the fault sample,and the negative sample denotes the normal sample.The ratio of the training set to the test set is 8:2.Lastly,comparative experiments are conducted to analyze the proposed method.

    4.1 Experimental Setup

    The deep learning framework keras accomplish the developed method with python 3.6.All models are implemented on the workstation with NVIDIA RTX 2080 GPU and Intel i7-8700 CPU.There are four evaluation metrics selected for comparison.The metrics are error rate,F1-score,sensitivity,and specificity.The definitions and formulas of these evaluation metrics are shown as follows:

    ? Error rate:the probability of recognition error.

    ? F1-score:a measure of prediction accuracy.

    ? Sensitivity:the probability of a positive sample being predicted to be positive.

    ? Specificity:the probability that a negative sample is predicted to be negative.

    where the values TP,FP,TN,and FN correspond to True Positive,False Positive,True Negative,and False Negative,respectively.

    Specifically, true positives indicate the number of positive samples predicted correctly. False negatives indicate the number of positive samples predicted as negatives.False positives indicate the number of negative samples predicted as positives,and true negatives indicate the number of negative samples predicted correctly.

    4.2 Performance Comparison

    To evaluate the performance of the presented method, we compared it with the fault detection models in the existing literature.The comparison models include the convolutional neural networks(CNN) model [25], stacked autoencoder (Stacked AE) model [26], and stacked sparse autoencoder(Stacked SAE) model [27]. Stacked AE and Stacked SAE models use autoencoders and sparse autoencoders for feature extraction, respectively. The classifier layer consists of two neurons whose loss function is the SoftMax function to perform classification.The CNN model’s input is the same as this study’s image data.For the Stacked AE and Stacked SAE models,the input is the vector of the original time series in the A-phase current curve. The model’s network structure and key parameter settings follow the original literature’s settings.The comparison experiment is conducted from three perspectives:model performance under different epochs,batch sizes,and the best parameters.Table 1 shows the detail of the hyper-parameters setting in the models, wherer,b, anderepresent learning rate,batch size,and epoch,respectively.

    Table 1: Hyper-parameters setting of the models for comparison

    Table 1 (continued)Model Hyper-parameters Training range Stacked SAE {r, b, e} {[0.0001,1],[5,25],[5,25]}Proposed CAE {r, b, e} {[0.0001,1],[5,25],[5,25]}

    Experiment 1:Comparison of different models with changes in the number of epochs.

    With other parameters fixed, models’performances in terms of evaluation metrics in different epoch numbers are shown in Tables 2 and 3. The proposed CAE model performs better than other methods in each evaluation index under different iteration times.The experimental results verify the feasibility and effectiveness of the proposed method.

    Table 2: Comparison of models for error rate and F1-score with different epoch numbers

    Table 3: Comparison of models for sensitivity and specificity with different epoch numbers

    Experiment 2:Comparison of different models with the change in batch size.

    With other parameters fixed,models’performances in evaluation metrics in different batch sizes are shown in Tables 4 and 5.The proposed CAE model performs better than other methods in each evaluation index under different batch sizes.The experimental results further verify the feasibility and effectiveness of the proposed method.

    Table 4: Comparison of models for error rate and F1-score with different batch size

    Table 5: Comparison of models for sensitivity and specificity with batch sizes

    Experiment 3:Models’performance under the best parameters.

    Under the best parameters, models’performances in evaluation metrics are shown in Table 6.We find that proposed CAE and CNN perform better than other methods. The reason is that the image-based processing method contains more information than the one-dimensional array processing method. The proposed CAE method also outperforms the CNN model because the proposed CAE use the autoencoder to reduce the dimension for data representation.

    To summarize, the proposed model offers two distinct advantages over the other method.Firstly, the data processing process considers the curve data’s profile and structure information.Meanwhile, the convolution autoencoder model combines the advantages of convolution operation and autoencoder.Consequently,the proposed method performs well compared to other related studies in experiments 1,2,and 3,demonstrating our approach’s robustness.

    Table 6: Comparison of each model under the best parameters

    4.3 Discussion on the Detection Failures Case

    The samples that failed to be identified in experiment 3 were clustered by k-means clustering and analyzed.Three types of fault samples could not be entirely correctly identified.The specific examples are shown in Fig.7.

    Figure 7:The examples of detection failures case

    As a result,the proposed method is difficult to completely identify the fault curve if the profile or structure is relatively small changes compared to the standard curve.

    5 Conclusion

    This study proposes a convolutional autoencoder-based fault detection method for metro railway turnout. The presented method included 1) Curve data pre-processing and image generation and 2)Classification modeling based on the convolutional autoencoder.Furthermore,the main contribution lies in developing a new data-driven fault detection method for metro railway turnout without expert experience-based feature engineering. The proposed method combines the advantages of convolutional operations and autoencoders. Specifically, the developed method is evaluated and validated with real-world operation data. While our approach is highly dependent on the quality of the data,it is difficult to identify some kinds of samples.Furthermore,the proposed method still needs to improve accuracy and interpretability,and incipient fault detection is not considered.

    Future work will focus on the model’s accuracy, interpretability, and incipient fault detection.We will improve the model’s accuracy and interpretability by circuit physics modeling and the neural network’s loss functions embedded with the partial differential equations. For the incipient fault detection, a dynamic model of the turnout circuit will be constructed based on circuit parameters,describing the degradation process. Afterward, threshold technology will be used to recognize the incipient fault.

    Acknowledgement:The authors would like to thank the all-round rail transit control system integrator(CASCO)for providing research data and domain knowledge support.

    Funding Statement:This research work is supported in part by the National Natural Science Foundation of China under Grant U1734211.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    啦啦啦在线观看免费高清www| 欧美精品国产亚洲| 久久久久精品人妻al黑| 伊人久久国产一区二区| 亚洲欧美一区二区三区国产| 久久99热这里只频精品6学生| 日韩三级伦理在线观看| 天天躁夜夜躁狠狠久久av| 国产精品久久久av美女十八| 午夜精品国产一区二区电影| 国产成人aa在线观看| 亚洲 欧美一区二区三区| 欧美另类一区| 久久久久视频综合| 国产一区二区三区av在线| 亚洲经典国产精华液单| 80岁老熟妇乱子伦牲交| 亚洲av综合色区一区| 99久久综合免费| 国产高清国产精品国产三级| 少妇的丰满在线观看| 中国三级夫妇交换| 国产成人精品婷婷| 久久午夜综合久久蜜桃| 久久久久久久久免费视频了| 亚洲成国产人片在线观看| 欧美日韩视频精品一区| 国产成人精品久久二区二区91 | 欧美 亚洲 国产 日韩一| 精品午夜福利在线看| 青草久久国产| av在线观看视频网站免费| 国产精品av久久久久免费| 中文字幕人妻丝袜一区二区 | 丝袜脚勾引网站| 日日爽夜夜爽网站| 高清av免费在线| 亚洲精品国产一区二区精华液| 亚洲综合色惰| 性少妇av在线| 国产成人精品婷婷| 久久影院123| 久久97久久精品| 在线观看国产h片| 一本色道久久久久久精品综合| 观看av在线不卡| 大香蕉久久成人网| 精品国产乱码久久久久久小说| 国产精品偷伦视频观看了| 伊人亚洲综合成人网| 亚洲欧美一区二区三区黑人 | 日韩三级伦理在线观看| 69精品国产乱码久久久| 少妇的丰满在线观看| 国产一区二区 视频在线| 欧美日韩亚洲国产一区二区在线观看 | 一级毛片 在线播放| 久久精品亚洲av国产电影网| 大陆偷拍与自拍| 免费在线观看完整版高清| 亚洲国产精品国产精品| 国产精品熟女久久久久浪| 99久久精品国产国产毛片| 成人18禁高潮啪啪吃奶动态图| 制服人妻中文乱码| 有码 亚洲区| 久久久精品国产亚洲av高清涩受| 欧美日韩一区二区视频在线观看视频在线| 欧美老熟妇乱子伦牲交| 少妇的逼水好多| 两个人免费观看高清视频| 国产乱人偷精品视频| 人妻系列 视频| 老司机亚洲免费影院| 一区二区三区四区激情视频| 2018国产大陆天天弄谢| 看十八女毛片水多多多| 国产在线视频一区二区| 蜜桃在线观看..| 韩国av在线不卡| 国产1区2区3区精品| 午夜激情久久久久久久| 久久久精品国产亚洲av高清涩受| 日韩大片免费观看网站| 久久久久国产一级毛片高清牌| 性少妇av在线| 色吧在线观看| 成人黄色视频免费在线看| av网站免费在线观看视频| 亚洲男人天堂网一区| 免费看不卡的av| 在线观看免费视频网站a站| 免费黄频网站在线观看国产| 天堂俺去俺来也www色官网| 亚洲四区av| 最近手机中文字幕大全| 精品国产国语对白av| 亚洲内射少妇av| 美女国产视频在线观看| 免费在线观看黄色视频的| 亚洲av中文av极速乱| 母亲3免费完整高清在线观看 | 国产极品天堂在线| 久久久久久久久久久久大奶| 看十八女毛片水多多多| 日韩一区二区视频免费看| 97在线人人人人妻| 国产一级毛片在线| 老汉色∧v一级毛片| 午夜激情av网站| 中文乱码字字幕精品一区二区三区| 日韩免费高清中文字幕av| 一级毛片电影观看| 日韩av免费高清视频| 欧美xxⅹ黑人| 国产av精品麻豆| 久久鲁丝午夜福利片| 精品一品国产午夜福利视频| 免费黄频网站在线观看国产| 亚洲图色成人| 亚洲精品一区蜜桃| 国产在线一区二区三区精| 十八禁高潮呻吟视频| 亚洲精品国产av蜜桃| 天堂俺去俺来也www色官网| 日韩 亚洲 欧美在线| 免费日韩欧美在线观看| 亚洲欧美中文字幕日韩二区| 夜夜骑夜夜射夜夜干| 天天躁日日躁夜夜躁夜夜| 精品国产国语对白av| av卡一久久| 国精品久久久久久国模美| 9191精品国产免费久久| 一本大道久久a久久精品| 精品卡一卡二卡四卡免费| 啦啦啦在线免费观看视频4| 一区二区三区四区激情视频| 国产精品女同一区二区软件| 国产一区二区 视频在线| 成人18禁高潮啪啪吃奶动态图| 久久午夜综合久久蜜桃| 欧美另类一区| 欧美国产精品一级二级三级| www.熟女人妻精品国产| 亚洲欧洲日产国产| 日韩av免费高清视频| 国产男人的电影天堂91| www.精华液| 成人影院久久| 伦理电影免费视频| 日韩欧美精品免费久久| 在线观看免费高清a一片| 国产一区二区在线观看av| 肉色欧美久久久久久久蜜桃| 99久久人妻综合| 王馨瑶露胸无遮挡在线观看| 久久久久久伊人网av| 国产熟女欧美一区二区| 亚洲第一青青草原| 国产又爽黄色视频| 久久精品国产亚洲av天美| 人妻少妇偷人精品九色| 天美传媒精品一区二区| 久久99蜜桃精品久久| www.av在线官网国产| 深夜精品福利| 国产精品不卡视频一区二区| 久久这里有精品视频免费| 日韩一区二区视频免费看| h视频一区二区三区| 99re6热这里在线精品视频| 欧美老熟妇乱子伦牲交| 国产成人精品一,二区| tube8黄色片| 国产xxxxx性猛交| 午夜福利乱码中文字幕| 亚洲人成网站在线观看播放| 色网站视频免费| 亚洲国产精品一区二区三区在线| 你懂的网址亚洲精品在线观看| 国产av码专区亚洲av| 大香蕉久久网| 人体艺术视频欧美日本| 美女脱内裤让男人舔精品视频| 狠狠婷婷综合久久久久久88av| 欧美日韩一区二区视频在线观看视频在线| 亚洲av电影在线进入| 久久国产精品大桥未久av| 精品少妇黑人巨大在线播放| 久久久久精品人妻al黑| 国产精品一区二区在线观看99| 国产熟女欧美一区二区| 中文字幕另类日韩欧美亚洲嫩草| av网站免费在线观看视频| 视频在线观看一区二区三区| 欧美日韩视频精品一区| 久久精品国产自在天天线| 国产欧美日韩综合在线一区二区| 亚洲天堂av无毛| 亚洲国产av影院在线观看| 女人精品久久久久毛片| 亚洲av福利一区| 一级片'在线观看视频| 男女边吃奶边做爰视频| 欧美精品国产亚洲| 国产成人av激情在线播放| 99久国产av精品国产电影| 国产精品久久久久久精品古装| 日韩一区二区视频免费看| 日韩av不卡免费在线播放| 国产视频首页在线观看| 九色亚洲精品在线播放| 热99久久久久精品小说推荐| 女性生殖器流出的白浆| 美女主播在线视频| 亚洲 欧美一区二区三区| 激情视频va一区二区三区| 1024香蕉在线观看| 制服诱惑二区| 日本爱情动作片www.在线观看| 亚洲欧美一区二区三区国产| 两个人免费观看高清视频| 91午夜精品亚洲一区二区三区| 色吧在线观看| 午夜老司机福利剧场| 男女午夜视频在线观看| 色94色欧美一区二区| 中文字幕人妻熟女乱码| 在线观看美女被高潮喷水网站| 少妇 在线观看| 秋霞伦理黄片| 电影成人av| 久久久久人妻精品一区果冻| 色婷婷久久久亚洲欧美| 秋霞伦理黄片| 欧美日韩成人在线一区二区| 91在线精品国自产拍蜜月| 欧美精品亚洲一区二区| 欧美精品高潮呻吟av久久| 亚洲成人av在线免费| 极品人妻少妇av视频| 亚洲综合精品二区| 亚洲美女搞黄在线观看| 99精国产麻豆久久婷婷| 成人国产av品久久久| 另类亚洲欧美激情| 成人免费观看视频高清| 久久精品亚洲av国产电影网| 我的亚洲天堂| 97人妻天天添夜夜摸| 91成人精品电影| 精品人妻熟女毛片av久久网站| 人成视频在线观看免费观看| 99热网站在线观看| 国产精品久久久久久av不卡| 韩国高清视频一区二区三区| 国产精品国产av在线观看| 亚洲欧美一区二区三区黑人 | 又黄又粗又硬又大视频| 韩国精品一区二区三区| 国产一区二区激情短视频 | 久久精品人人爽人人爽视色| 汤姆久久久久久久影院中文字幕| 国产97色在线日韩免费| 国产亚洲最大av| 亚洲四区av| 日日啪夜夜爽| 国产免费现黄频在线看| 亚洲精品自拍成人| 一边亲一边摸免费视频| av电影中文网址| 自线自在国产av| 性高湖久久久久久久久免费观看| 国产欧美日韩综合在线一区二区| 精品一区在线观看国产| 色婷婷久久久亚洲欧美| videos熟女内射| 亚洲经典国产精华液单| 一本色道久久久久久精品综合| 最近手机中文字幕大全| 秋霞伦理黄片| 精品人妻偷拍中文字幕| 精品第一国产精品| 欧美亚洲日本最大视频资源| 国产在线免费精品| 亚洲国产av影院在线观看| 亚洲婷婷狠狠爱综合网| 伊人久久国产一区二区| 最近中文字幕2019免费版| 亚洲美女视频黄频| 国产在视频线精品| 国产在线一区二区三区精| 免费女性裸体啪啪无遮挡网站| 美女国产视频在线观看| 国产精品欧美亚洲77777| 亚洲欧美一区二区三区久久| 在线亚洲精品国产二区图片欧美| 亚洲,欧美精品.| 日韩av不卡免费在线播放| 一级毛片电影观看| 亚洲欧美中文字幕日韩二区| 久久久国产欧美日韩av| 女性生殖器流出的白浆| 26uuu在线亚洲综合色| 免费观看性生交大片5| 激情视频va一区二区三区| 99国产精品免费福利视频| 男女边摸边吃奶| 韩国av在线不卡| 国产精品不卡视频一区二区| 夫妻性生交免费视频一级片| 久久精品久久久久久噜噜老黄| 日本av手机在线免费观看| 女人被躁到高潮嗷嗷叫费观| 亚洲人成77777在线视频| 久久久国产一区二区| 久久精品久久久久久久性| 国产在线免费精品| 少妇的丰满在线观看| 侵犯人妻中文字幕一二三四区| 亚洲精品美女久久av网站| 爱豆传媒免费全集在线观看| 水蜜桃什么品种好| 大香蕉久久网| 亚洲国产欧美在线一区| 婷婷成人精品国产| 亚洲成色77777| 又大又黄又爽视频免费| 欧美人与性动交α欧美软件| 欧美激情 高清一区二区三区| 搡女人真爽免费视频火全软件| 老司机亚洲免费影院| 欧美老熟妇乱子伦牲交| 看非洲黑人一级黄片| 亚洲欧美清纯卡通| 亚洲,欧美精品.| 一边亲一边摸免费视频| 青春草国产在线视频| 国产免费现黄频在线看| 欧美另类一区| 三上悠亚av全集在线观看| 国产有黄有色有爽视频| 制服人妻中文乱码| 国产在线一区二区三区精| 成年美女黄网站色视频大全免费| 一本色道久久久久久精品综合| 美女国产高潮福利片在线看| 1024香蕉在线观看| 青草久久国产| 国产免费一区二区三区四区乱码| 国产又爽黄色视频| 在线观看免费日韩欧美大片| 国产1区2区3区精品| 亚洲三级黄色毛片| 视频在线观看一区二区三区| 久久热在线av| 亚洲av在线观看美女高潮| 国产熟女欧美一区二区| 男女高潮啪啪啪动态图| av在线app专区| 亚洲激情五月婷婷啪啪| 国产1区2区3区精品| 美女午夜性视频免费| 国产 一区精品| 五月天丁香电影| 精品少妇黑人巨大在线播放| 人人妻人人澡人人看| 亚洲综合精品二区| 亚洲三级黄色毛片| 亚洲av成人精品一二三区| 丝袜美足系列| 欧美在线黄色| 青草久久国产| 欧美日韩国产mv在线观看视频| 国产亚洲精品第一综合不卡| 在线看a的网站| 国精品久久久久久国模美| 国产爽快片一区二区三区| 精品国产露脸久久av麻豆| 欧美日韩亚洲国产一区二区在线观看 | 国产成人精品久久二区二区91 | 亚洲av成人精品一二三区| 曰老女人黄片| 国产在线视频一区二区| 午夜久久久在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲一码二码三码区别大吗| 黄片播放在线免费| 十八禁高潮呻吟视频| 91午夜精品亚洲一区二区三区| 日本av手机在线免费观看| 999久久久国产精品视频| 国产av一区二区精品久久| 亚洲欧洲国产日韩| 9热在线视频观看99| 国产在线视频一区二区| 99久久中文字幕三级久久日本| 建设人人有责人人尽责人人享有的| 一级毛片黄色毛片免费观看视频| 我的亚洲天堂| 日韩视频在线欧美| 如日韩欧美国产精品一区二区三区| 高清不卡的av网站| 久久久国产欧美日韩av| 国产精品偷伦视频观看了| 超碰成人久久| 黄色一级大片看看| 亚洲欧洲日产国产| 少妇精品久久久久久久| 久久精品国产自在天天线| 国产 精品1| 夫妻性生交免费视频一级片| 青春草亚洲视频在线观看| 女人被躁到高潮嗷嗷叫费观| 国产精品 国内视频| 日日爽夜夜爽网站| 一级爰片在线观看| 日本av免费视频播放| av不卡在线播放| 在线天堂中文资源库| 国产精品人妻久久久影院| 婷婷色av中文字幕| 成人毛片60女人毛片免费| 国产精品久久久久久av不卡| 亚洲视频免费观看视频| 一本—道久久a久久精品蜜桃钙片| 欧美日韩亚洲高清精品| 18在线观看网站| 最近手机中文字幕大全| 在线精品无人区一区二区三| 久久久久国产一级毛片高清牌| 男人舔女人的私密视频| 美女大奶头黄色视频| 卡戴珊不雅视频在线播放| 一区二区日韩欧美中文字幕| 亚洲综合色惰| 超碰97精品在线观看| 熟女电影av网| 国精品久久久久久国模美| 国产xxxxx性猛交| 成人毛片a级毛片在线播放| av国产精品久久久久影院| 久热这里只有精品99| 亚洲综合色惰| 亚洲av综合色区一区| 亚洲经典国产精华液单| 国产激情久久老熟女| 侵犯人妻中文字幕一二三四区| www.av在线官网国产| av网站在线播放免费| 亚洲精品在线美女| 欧美日韩一区二区视频在线观看视频在线| 久久99热这里只频精品6学生| 女人被躁到高潮嗷嗷叫费观| 熟女av电影| 七月丁香在线播放| 999久久久国产精品视频| 欧美日韩成人在线一区二区| 在线 av 中文字幕| 日韩一区二区视频免费看| 爱豆传媒免费全集在线观看| 日韩制服丝袜自拍偷拍| 91aial.com中文字幕在线观看| 亚洲精品成人av观看孕妇| 天天操日日干夜夜撸| 免费在线观看视频国产中文字幕亚洲 | 80岁老熟妇乱子伦牲交| 久久99蜜桃精品久久| 亚洲综合精品二区| 黄片小视频在线播放| 一本—道久久a久久精品蜜桃钙片| 18禁动态无遮挡网站| 黑丝袜美女国产一区| av网站在线播放免费| 丝袜喷水一区| 成人国产麻豆网| 天天躁夜夜躁狠狠躁躁| 亚洲天堂av无毛| 日本av手机在线免费观看| 婷婷色av中文字幕| 狠狠婷婷综合久久久久久88av| 视频区图区小说| 丰满少妇做爰视频| 亚洲精品一二三| 美女国产视频在线观看| 麻豆精品久久久久久蜜桃| 99精国产麻豆久久婷婷| 9色porny在线观看| tube8黄色片| 男人操女人黄网站| a级毛片黄视频| 黄色一级大片看看| 亚洲欧洲日产国产| 乱人伦中国视频| freevideosex欧美| 王馨瑶露胸无遮挡在线观看| a级片在线免费高清观看视频| 亚洲av男天堂| 啦啦啦啦在线视频资源| 免费女性裸体啪啪无遮挡网站| 午夜免费鲁丝| 国产又爽黄色视频| 欧美bdsm另类| 少妇 在线观看| 叶爱在线成人免费视频播放| 黑人欧美特级aaaaaa片| 精品人妻一区二区三区麻豆| 只有这里有精品99| 国产精品熟女久久久久浪| 欧美激情极品国产一区二区三区| 欧美国产精品一级二级三级| 亚洲精品一区蜜桃| 亚洲美女黄色视频免费看| 欧美国产精品va在线观看不卡| 岛国毛片在线播放| 国产片内射在线| 在线观看一区二区三区激情| 少妇被粗大猛烈的视频| 国产精品免费视频内射| 欧美日韩综合久久久久久| 在线观看美女被高潮喷水网站| 青春草视频在线免费观看| 精品国产一区二区久久| 精品国产超薄肉色丝袜足j| 免费观看av网站的网址| av在线播放精品| 18+在线观看网站| av又黄又爽大尺度在线免费看| 国产精品蜜桃在线观看| 亚洲av国产av综合av卡| 不卡av一区二区三区| 亚洲成色77777| 观看美女的网站| 国产成人午夜福利电影在线观看| 亚洲成国产人片在线观看| 亚洲精品国产av蜜桃| 这个男人来自地球电影免费观看 | 高清不卡的av网站| 国产伦理片在线播放av一区| 欧美日韩亚洲国产一区二区在线观看 | 成年女人毛片免费观看观看9 | 啦啦啦在线免费观看视频4| 国产成人精品一,二区| 日本wwww免费看| 丝瓜视频免费看黄片| 观看av在线不卡| 少妇 在线观看| 日韩一本色道免费dvd| 人妻少妇偷人精品九色| 人成视频在线观看免费观看| 老司机影院成人| 精品国产露脸久久av麻豆| 好男人视频免费观看在线| 久久久国产精品麻豆| 亚洲色图综合在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产黄色免费在线视频| 精品国产国语对白av| 久久毛片免费看一区二区三区| 日韩中文字幕视频在线看片| 久热久热在线精品观看| 日本-黄色视频高清免费观看| 日本猛色少妇xxxxx猛交久久| 三级国产精品片| 久久精品国产亚洲av高清一级| 亚洲精品av麻豆狂野| 久久久欧美国产精品| 七月丁香在线播放| 国产一级毛片在线| 精品福利永久在线观看| 男男h啪啪无遮挡| 午夜免费观看性视频| 一本色道久久久久久精品综合| 三级国产精品片| 免费观看在线日韩| √禁漫天堂资源中文www| 侵犯人妻中文字幕一二三四区| 99re6热这里在线精品视频| 一本色道久久久久久精品综合| 人妻系列 视频| 成年美女黄网站色视频大全免费| 色视频在线一区二区三区| 美女午夜性视频免费| 极品人妻少妇av视频| 春色校园在线视频观看| 大香蕉久久网| 精品一区在线观看国产| 精品99又大又爽又粗少妇毛片| a级毛片在线看网站| 春色校园在线视频观看| 99国产精品免费福利视频| 可以免费在线观看a视频的电影网站 | 精品福利永久在线观看| 免费黄色在线免费观看| 久久久亚洲精品成人影院| 亚洲五月色婷婷综合| 国产 一区精品| 国产精品久久久久久精品古装| 国产极品天堂在线| 一二三四在线观看免费中文在| 纵有疾风起免费观看全集完整版| 高清欧美精品videossex| 最近中文字幕2019免费版| 丝袜美足系列| 国产成人精品在线电影| 国产成人a∨麻豆精品| av有码第一页| 久久精品久久精品一区二区三区| 午夜福利,免费看| 久久ye,这里只有精品| 日韩欧美一区视频在线观看| 激情五月婷婷亚洲| 蜜桃在线观看..| 美女xxoo啪啪120秒动态图|