• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Metric Identification of Vertices in Polygonal Cacti

    2023-02-17 03:14:10XiujunZhangMuhammadSalmanAnamRaniRashnaTanveerUsmanAliandZehuiShao

    Xiujun Zhang,Muhammad Salman,Anam Rani,Rashna Tanveer,Usman Ali,*and Zehui Shao

    1School of Computer Science,Chengdu University,Chengdu,China

    2Department of Mathematics,The Islamia University of Bahawalpur,Bahawalpur,Pakistan

    3Centre for Advanced Studies in Pure and Applied Mathematics,Bahauddin Zakariya University,Multan,Pakistan

    4Institute for Intelligent Information Processing,South China Business College of Guangdong University of Foreign Studies,Guangzhou,China

    ABSTRACT The distance between two vertices u and v in a connected graph G is the number of edges lying in a shortest path(geodesic)between them.A vertex x of G performs the metric identification for a pair(u, v)of vertices in G if and only if the equality between the distances of u and v with x implies that u = v(That is,the distance between u and x is different from the distance between v and x).The minimum number of vertices performing the metric identification for every pair of vertices in G defines the metric dimension of G.In this paper,we perform the metric identification of vertices in two types of polygonal cacti:chain polygonal cactus and star polygonal cactus.

    KEYWORDS Metric;metric identification;metric generator;metric dimension;cactus graph

    1 Introduction

    The metric dimension is used in a variety of scientific disciplines,including chemical graph theory and computer networking.A technique for finding a vertex’s precise location or position in a network is called localization.In a work environment,localization is used when a computer sends a printing command to help locate nearby printers,broken equipment,network intruders,illegal or unauthorised connections, and wandering robots. The localization of a network is a difficult, expensive, timeconsuming, and arduous procedure. The minimum number of vertices (the metric dimension of a graph representing the network) is picked in such a way that, with the aid of selected vertices, the location of the required vertex may be identified by its distinctive representation.

    In robotic engineering,there is no concept of direction and no visibility on a polygonal type planar surface/mesh.So handling the navigation of a robot(a navigation agent)from point to point is a crucial task,which can be done quickly with the help of distinctively labelled landmarks.These landmarks help the robot locate itself on the surface(or graph).The visual detection of a landmark sends information to the robot about its direction,allowing it to determine its position.In this way,the robot’s position on the graph can be determined by its distances to the elements of the set of distinctively labelled landmarks.The problem of locating the fewest number of landmarks to determine the robot’s position is equivalent to finding a minimum metric generator of the graph on which the robot’s navigation is required[1].

    Consider a connected graphG=(V(G),E(G)),whereV(G)andE(G)represent vertex set and edge set ofG,respectively.The distance,d(ν,w)between verticesν,w∈V(G)is the length of a shortest path betweenνandw. We use the notationu~νto indicate that the verticesuandνare adjacent inG.

    A vertexxidentifies two distinct verticesν,w∈V(G)ifd(x,w)d(x,w).The metric vector of a vertexν∈V(G)with respect to an ordered setW={w1,w2,...,wκ}?V(G),is theκ-ordered tuple

    The setWperforms the metric identification of verticesxandyinGif and only ifmW(x)=mW(y)impliesx=y.A set of vertices,performing the metric identification ofG,is called a metric generator forG. The minimum cardinality of a metric generator forGis called the metric dimension ofG,symbolized bydim(G)[2,3].

    Slater introduced the concept of metric identification by using the concept of metric generator with name reference (locating) set [3]. Since that, this concept was studied independently, by Melter and Harary where they used the terminology of resolving set for metric generator[2].While working on the idea of navigating long range aids,Slater examined the usage of the concept of metric identification in 1975[3].Moreover,it has been described in[1,4]that how the navigation of robots and likely objects can be performed with this concept.The following short survey will develop the interest of relevant researchers working with the problem of metric identification for various graph families:

    ? Some fundamental problems related to the metric identification in tree graphs and graphs having minimum and maximum metric dimension have been addressed in[4].

    ? Using an algorithmic technique with mathematical induction,the problem of metric identification has been solved for a family of 3-regular circulant graphs by Salman et al.[5],and for two 4-regular families of circulant graphs by Khalid et al.[6].

    ? For three families,P(2n,n-1),P(n,4)andP(n,3),of well-known generalized Petersen graphs,the metric identification problem has been solved in[7-9],respectively.

    ? The study of metric identification has also been taken into account for various chemical networks such as for chordal ring networks in[10](the authors used the algorithmic technique),for silicate networks in [11], for torus networks in [12] and for two hexa chemical networks in[13].

    ? Various graph products have also been considered in the context of metric identification problem such as the lexicographic product in [14], the cartesian product in [15,16], and the corona product in[17].

    The following theorem provides the minimum metric dimension for a connected graph:

    Theorem 1.1.[1,4]LetGbe a connected graph,thendim(G)=1 if and only ifGis a path graph.

    A connected graph in which no edge is a part of more than one cycle is called a cactus graph,see Fig.1. A cycleCκof lengthκis called aκ-polygon. If each edge in a cactus graph is a part of aκpolygon,then the cactus is called aκ-polygonal(or simply polygonal)cactus.IfCκcontains precisely one cut-vertex, thenCκis called a pendent polygon. Otherwise,Cκis called a non-pendent polygon[18].An induced subgraph of ajthκ-cycleCκin a polygonal cactus obtained by deleting its cut(vertex)vertices will be called ajth blockBjin the cactus.Two distinct verticesxandyin a polygonal cactus are said to be block-wise distance similar(in short BDS)if the distance ofxandyis same with all the vertices of at least one block of the cactus.We label the vertices of a polygonal cactus as follows.

    Figure 1:Cactus graphs:(a)is polygonal and(b)is non-polygonal

    LetVj= {: 1 ≤i≤κ}be the set of vertices injthκ-cycle of a polygonal cactus for 1 ≤j≤n.Then the vertex set of the cactus isThe aim of this paper is to explore the metric identification of vertices in polygonal cacti.We investigate the minimum number of vertices which perform the metric identification in chain and star polygonal cacti. It is worth noticing that the metric identification of certain graphs have been studied[19,20].However,this notion has not been explored for the chain and star polygonal cacti which makes the paper different from the available literature.

    2 Chain Polygonal Cactus

    A chain polygonal cactus, denoted byTn,κ, is a class of polygonal cactus in which each polygon has at most two cut vertices,wherenis the number ofκ-polygons,known as the length ofTn,κ.

    Lemma 2.1.Forκ≥3 withn≥2,ifSis a metric generator forTn,κ,thenSmust contain at least one vertex from both the end blocks ofTn,κ.

    Proof.Without loss of generality,suppose thatSdoes not contain any vertex from the first block ofTn,κ.Then for two verticesx,ysuch thatx~ν1andy~ν1(ν1is the cut vertex between first and second polygons ofTn,κ),we havemS(x)=mS(y),a contradiction.

    According to the definition, cactus chainTn,κhas exactlyn-2 non-pendent polygons and two pendent polygons.Forn≥3,Tn,3is unique.However,Tn,κis not unique forκ≥4 andn≥3.Hereafter,we define two special classes of cactus chains forκ≥4 andn≥3.

    2.1 Tn,κ with Adjacent Cut Vertices

    InTn,κ,if we let=νj(a joint/cut vertex betweenjth and(j+1)th polygons/cycles)for 1 ≤j≤n-1,then cut vertices inTn,κare adjacent,and this type of chain polygonal cactus is denoted byHn,κ.In fact,cut-vertices inHn,κ,lying in the same non-pendent polygon,are adjacent.See Fig.2.

    Figure 2:A 4-polygonal chain cactus with adjacent cut vertices

    Lemma 2.2.Forκ,n >3,it is not possible that two consecutive blocks do not contribute to form a metric generator forHn,κ.

    Proof.Contrarily, suppose that two consecutive blocksBiandBi+1do not contribute to form a metric generatorSforHn,κ.Then,there are BDSxinBiandyinBi+1and bothxandyare neighbors of the jointνi,such that no vertexs∈Sidentifiedxandy.So,Sis not a metric generator forHn,κ,a contradiction.

    Theorem 2.1.Forn≥3,dim(Hn,3)=2.

    We can see that all the metric vectors are distinct.So,Wis a metric generator forHn,3,and thereforedim(Hn,3)=2.

    Theorem 2.2.For oddκ≥5,dim(H3,κ)=2.

    Proof.By Theorem 1.1,only path graph has the metric dimension equals to 1.So,dim(H3,κ)≥2.Further,considerand accordingly metric vectors of the vertices are:

    Obviously for every two verticesx,yofH3,κwithxy,mW(x)mW(y). Thus,Wis a metric generator forH3,κanddim(H3,κ)≥2.

    Lemma 2.3.For evenκ≥4,ifSis a minimum metric generator forH4,κ,then|S|≥4.

    Proof.We contrarily assume that|S| = 3.By Lemma 2.1,Smust contain one vertex from each end block.Let a vertexube taken from the blockB1and a vertexwbe taken from the blockB4.ThenSdoes not contain any vertex from one of the remaining two blocks.Without loss of generality, we suppose thatSdoes not contain any vertex from blockB3,then we have two possibilities:

    Hence,our supposition is wrong and|S|≥4.

    Theorem 2.3.For evenκ≥4,dim(H4,κ)=4.

    Proof.Lemma 2.3 provides the lower bound fordim(H4,κ).

    Now, we prove thatdim(H4,κ)≤4. For this, letand we have to show that for any pair(x,y)of vertices inH4,κ,there is always a vertex inSwhich identifies the pair(x,y).For this,we consider three cases:

    Case-IWheneverx,ybelong to the same blockBiofH4,κ,then there are two possibilities:

    1. Ifxandyare BDS,then a vertex inS,chosen from the blockBi,will identifies the pair(x,y).

    2. Ifxandyare not BDS,thend(x,ν)d(y,ν),whereνis the cut vertex of a cycleCi.Thus,d(x,s)d(y,s)for at least one vertexsofSlying in the blockBi+1(or in the blockBi-1).

    Case-IIIfx,ydo not belong to the same blockBi,then there are two possibilities:

    1. Whenxbelongs to the blockBiandybelongs to the blockBi+1(orBi-1).Ifxandyare BDS,then there is a vertex ofSlying either in the blockBiorBi-1orBi+1,which identifies the pair(x,y).Otherwise,there is always a vertexsinSlying in the block containingxorysuch thatd(x,s)d(y,s).

    2. Ifxandydo not belong to the two adjacent blocks,i.e.,x∈Biandy∈Bjforji+1 andi-1,then we always find a vertexwofSlying inBi(orBj)such thatd(x,w)d(w,y).

    Case-IIIWheneverxoryor bothxandyis(are)a joint(s),then there are two possibilities:

    1. Ifxandyare adjacent,then there is a vertexu∈S,such thatd(x,u)=1+d(y,u)whereuandylie on a same cycle,ord(y,u)=d(x,u)+1 whereuandxlie on a same cycle.Accordingly,uidentifies the pair(x,y).

    2. Ifxandyare not adjacent,then there ares1,s2inSsuch thats1,xlie on the same cycleCi(say)ands2,ylie on the a same cycleCj,whereji,i+1,i-1.In this case,boths1ands2identify the pair(x,y),because

    d(x,s2)=d(y,x)+d(y,s2)andd(y,s1)=d(x,y)+d(x,s1).

    According to all these cases,it can be concluded thatSis a metric generator ofH4,κ.

    We suppose thatSdoes not contain a vertex from the blockB2(say).Then there are two vertices,u1in the blockB1andw1in the blockB2,such thatmS(u1)=mS(w1),whereu1~ν1~w1.So,Sis not a metric generator.Thus our claim is true.Now,Smust have at least one vertex from both the blockB2andBn-1,andSmust containm-3 vertices from(n-2)blocks.So,there always exist two consecutive blocks from each and among them no vertex will contribute to form the setS,which is contradiction of Lemma 2.2.

    Both the claims provide that our assumption is wrong.HenceSmust contain at leastm-2 more vertices other thanxandy,which implies that|S|≥m.

    Possibility 1:Whenr=m,then we always have a vertexs∈Ssuch thats∈Br+1ors∈Br-1andsidentifies the pairp.

    Possibility 2:Whenr∈{m,m+1,m-1},then there is a vertexsinSfrom the blockBr(orBm)such thatsidentifies the pairp.

    Possibility 3:Whenr /∈ {m-1,m,m+1},then at least one of the following two observations must true:

    ?Scontains an elementsfrom the blockBr(orBm)such thatsidentifies the pairp.

    ?Scontains an elementsfrom the blockBr+1(orBm+1)such thatsidentifies the pairp.

    Hence,Sis a metric generator forHn,κ.

    2.2 Tn,κ with Non Adjacent Cut Vertices

    Rn,κdenotes a chain cactusTn,κsuch that the cut-vertices,lying in the same non-pendent polygon ofTn,κ,are not adjacent,see Fig.3.We further classifyRn,κinto three types:

    Figure 3:A 5-polygonal chain cactus with non-adjacent cut vertices

    With the similar justification proposed for the proof of Lemma 2.2,we have the following result:

    Lemma 2.6.Forκ >5 andn≥3,it is not possible that two consecutive blocks do not contribute to form any metric generator forRn,κ.

    Theorem 2.6.For oddκ≥3,dim(R2,κ)=2.

    It can be easily verified that for every pairx,yof distinct vertices,we havemW(x)mW(y).So,Wis a metric generator forR2,κ,anddim(R2,κ)≤2.

    Theorem 2.7.For evenκ≥4,dim(R2,κ)=3.

    Proof.The proof follows from the following two claims:

    Claim I:(dim(R2,κ)≥3)

    Suppose contrarily thatdim(R2,κ) <3.Since any metric generator forR2,κmust contain a vertex from both end blocks,by Lemma 2.1,dim(R2,κ)≥2.LetS= {x,y}be a minimum metric generator forR2,κ,wherex∈B1andy∈B2.Then,there are two possibilities:

    Thus, according to these possibilities,Sis not a metric generator. So, our supposition is wrong anddim(R2,κ)≥3.

    Claim II:(dim(R2,κ)≤3)

    Let us consider a setof vertices.Then,metric vectors of the vertices ofR2,κwith respect toSare:

    It can be seen that all the metric vectors are different,which implies thatSis a metric generator forR2,κ.Hencedim(R2,κ)≥3.

    Letu,ν∈V(G)be any two vertices.Then,u,νare called twins if eitherN[u] =N[ν]orN(u)=N(ν).The relation of twins between vertices ofGis an equivalence relation,which partitionedV(G)into classes each of which is called a twin class.A twin class may be singleton[6].The following results are useful tools to identify twins in a graphG.

    Lemma 2.7.[6]Ifuandνare twins in a connected graphG,then no vertex,exceptuandν,ofGidentifies the verticesuandν.

    Accordingly,we have the following remark:

    Remark 2.1.IfUis twin class in a connected graphGwith|U|=l≥2,then every metric generator forGcontains at leastl-1 vertices fromU.

    Theorem 2.8.Forn≥3,dim(Rn,4)=n.

    Proof.We prove the result with two cases providing lower and upper bounds for the metric dimension ofRn,4.

    Case-I(Lower bound)

    InRn,4, we obtainntwin classes each of them has cardinality 2. Now, ifSis a minimum metric generator forRn,4,thenSmust contain at least one vertex from each twin class,by Remark 2.1.This implies thatdim(Rn,4)=|S|≥n.

    Case-II(Upper bound)

    LetS= {: 2 ≤t≤n} ?V(Rn,4). Then,Sis a metric generator forRn,4, because all the vertices have distinct metric vectors with respect toSas listed below:

    This implies thatdim(Rn,4)≤n.

    Lemma 2.8.For evenκ≥6,ifSis a minimum metric generator forR3,κ,then|S|≥3.

    Proof.By Lemma 2.1,Smust contain a vertex from both the end blocks ofR3,κ.Suppose that a 2-element setS= {x,y} is a metric generator forR3,κ, wherexlies in the blockB1andylies in the blockB3.We will discuss two possibilities:

    d(u2,x)=1+d(ν1,x),d(w2,x)=1+d(ν1,x).

    It follows that our supposition is wrong, and no 2-element set is a metric generator forR3,κ. Thus|S|≥3.

    Theorem 2.9.For evenκ≥6,dim(R3,κ)=3.

    Proof.By Lemma 2.8,dim(R3,κ)≥3.Moreover,dim(R3,κ)≤3,because the setS={}is a metric generator forR3,κdue to the following distinct metric vectors of the vertices with respect toS:

    Theorem 2.10.For evenκ≥6,dim(R4,κ)=4.

    Proof.LetS= {} ?V(R4,κ). Then the metric vector ofwith respect toSis given below:

    It can easily verify that all metric vectors are distinct.Thus,Sis a metric generator forR4,κanddim(R4,κ)≤4.

    Now,we claim that ifSis a minimum metric generator forR4,κ,then|S|≥4.Suppose contrarily that |S| = 3. By Lemma 2.1,Smust contain one vertex from both the end blocks ofR4,κ. LetS={x,y,z},wherexlies in the first blockB1andylies in the last blockB4.There are two cases to discuss:

    1. Ifzlies in the blockB1(orB4),then there exist BDS,u1lies in the blockB2andw1lies in the blockB3withu1~ν2~w1,such thatmS(u1)=mS(w1),a contradiction.

    2. Ifzlies in the blockB2(orB3) and, without loss of generality, we suppose thatzlies in the blockB2,then there are two possibilities:

    All these possibilities conclude that our supposition is wrong and|S|≥4.Hence,dim(R4,κ)≥4.

    Theorem 2.11.Forn≥3,dim(Rn,5)=2.

    Proof.By Theorem 1.1, only a path graph has the metric dimension equals to 1. Therefore,dim(Rn,5)≥2.Now,consider a setW={of vertices ofRn,5.Then,metric vectors of the vertices with respect toWare:

    For 2 ≤j≤n,

    It can easily verify that for each pair of distinct vertices (x,y)inR3,κ,we havemW(x)mW(y).Thus,Wis a metric generator forRn,5anddim(Rn,5)≤2.It completes the proof.

    According to the similar reasoning of the proofs of Theorems 2.4 and 2.5 we have the following two results forRn,κ.

    For 2 ≤j≤n,

    It can easily verify that for every two distinct verticesx,yofRn,κ, we havemW(x)mW(y). It follows thatWis a metric generator forRn,κanddim(Rn,κ)≥2.It concludes the proof.

    2.3 Star Polygonal Cactus

    We have the following results on metric dimension problem regarding star cactus.

    Lemma 2.9.Forκ≥3 andn≥3,ifSis a minimum metric generator forWn,κ,thenSmust contain at least one vertex from each block.

    Proof.Suppose contrarily thatSdoes not contain a vertex fromjthblockBj(say), then we have verticesyandxinBj,wherexandyare neighbors of the jointJ,andd(x,u)=d(u,J)+1,d(y,u)=d(u,J)+1 for allu∈S. ThusmS(x)=mS(y), a contradiction. HenceSmust contain at least one vertex from each block ofWn,κ.

    It can be seen that all the metric vectors are distinct, which yields thatSis a metric generator ofWn,κ.

    Theorem 2.16.For oddκ≥3 andn≥3,dim(Wn,κ)=n.

    Proof.LetSbe a minimum metric generator.Wn,κhasnblocks andSmust contain a vertex from each block,by Lemma 2.9.So,dim(Wn,κ)= |S| ≥n.Moreover,Lemma 2.10 provides a metric generator forWn,κof cardinalityn,which yields thatdim(Wn,κ)≤n.

    Lemma 2.11.For evenκ≥4 andn≥3, ifSis a minimum metric generator forWn,κ, thenScontains single vertex from only one block.

    Proof.Suppose contrarily thatScontain only one vertex from two blocks,vertexxfromjthblockBjand vertexyfromtth blockBt.There are two possibilities to discuss:

    andd(w,s)=d(z,s)for eachs∈S-{x,y}. HencemS(w)=mS(z), a contradiction. Therefore,Scontains single vertex from only one block.

    From the above Lemma,we have the following consequence:

    Corollary 2.1.For evenκ≥4 andn≥3,a minimum metric generatorSforWn,κmust contain at least two vertices from each of(n-1)blocks.

    Lemma 2.12.For evenκ≥4 andn≥3,ifSis a minimum metric generator forWn,κ,then|S|≥2n-1.

    Proof.There arenblocks inWn,κandSmust contain a vertex from each block, by Lemma 2.9.So,Smust contain one vertex from only one block and at least 2(n-1)vertices from the remaining(n-1)blocks,by Lemma 2.11 and Corollary 2.1.Thus|S|≥1+2(n-1)=2n-1.

    Lemma 2.13.For evenκ≥4 andn≥3,the setis a metric generator forWn,κ.

    Proof.To prove thatSis a metric generator,we need to show that for each pair(x,y)of vertices inWn,κ,there is generally a vertex inSwhich identifies the pair(x,y).We consider the following cases:

    Case-IWhenever both the verticesxandyare in the same blockBtofWn,κ.Then there are two possibility:

    1. Ifxandyare not BDS,then there is a vertexs∈Ssuch thatd(x,s)/d(y,s)andmS(x)mS(y).So,sidentifies(x,y).

    2. Ifxandyare not BDS, thend(x,νj)d(y,νj). So, there is a vertexs∈S-{such thatd(x,s)=d(x,νj)+d(νj,s),d(x,s)=d(x,νj)+d(νj,s)andd(x,s)/d(y,s).Hence,mS(x)=mS(y).

    Case-IIWhenever bothxandydo not belong to the same block.Suppose thatx∈Bjandy∈Bt,wheretj.Then,we have two possibilities:

    1. Ifx, yare BDS, then there are two verticesu,νinSeitheru,ν∈Btoru,ν∈Bjsuch thatd(x,u)d(y,u) or d(x,ν)/d(y,ν).So,the pair(x,y)must be identified.

    2. Ifx,yare not BDS,then there is a vertexs∈Slying in the block containingxory,such thatd(x,s)d(y,s).So,sidentifies the pair(x,y).

    Case-IIIWhenever eitherxoryis a joint vertex, without any ambiguity, we assume thatxis a joint vertex andylies in any blockBj. Ifxandyare adjacent, then there is always a vertexu∈S,whereubelongs to the blockBt,tjsuch thatd(u,x)=d(u,y)- 1 andd(u,y)=d(u,y)+ 1.HencemS(x)mS(y). Otherwise, there is a vertexs∈Ssuch thatd(s,x)=d(s,y)-d(y,x). So,d(s,x)d(s,y).Hencesidentifies the pair(x,y).

    All these cases proved thatSperforms metric identification forWn,κ.It completes the proof.

    Theorem 2.17.For evenκ≥4 andn≥3,dim(Wn,κ)=2n-1.

    Proof.LetSbe a minimum metric generator forWn,κ.By Lemma 2.12,|S|≥2n-1,sodim(Wn,κ)≥2n-1. Moreover,Wn,κhas a metric generator of cardinality 2n-1, by Lemma 2.13, which implies thatdim(Wn,κ)≤2n-1.It completes the proof.

    3 Concluding Remarks

    A family of graphs has a constant metric dimension ifdim(G)is finite and independent of the order of the graph in the family.Ifdim(G)varies and depends on the order of the graph,then the metric dimension is known as unbounded[9,21].Two types of polygonal cacti are considered in the context of resolvability(metric identification)and computed the exact value of metric dimension.We analyzed that these families of cactus graphs possessed constant metric dimension,only in few cases.Precisely,we investigated that the family of star polygonal cactusWn,κpossessed the unbounded metric dimension,whereas the family of chain polygonal cactus possessed both the constant and unbounded metric dimensions in various cases,described as follows:

    ? The familyHn,κof chain polygonal cactus possessed the constant metric dimension whenever:

    -Hn,κconsisted of more than two polygons of length 3.

    - there were only three polygons inHn,κof odd length more than 3.

    - there were only four polygons inHn,κof even length more than 2.

    - otherwise,Hn,κpossessed the unbounded metric dimension.

    ? The familyRn,κof chain polygonal cactus possessed the constant metric dimension whenever:

    -Rn,κconsisted of two,three and four polygons of length more than 2.

    -Rn,κconsisted of more than two polygons of length 5.

    -d(vi,vi+1)=inRn,κfor oddκ≥7 and anyn≥3.

    - otherwise,Rn,κpossessed the unbounded constant metric dimension.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    9色porny在线观看| 成人av一区二区三区在线看| 亚洲中文日韩欧美视频| 久久人妻av系列| 久久久久国产一级毛片高清牌| 精品久久久久久久毛片微露脸| av视频免费观看在线观看| 精品国产一区二区三区四区第35| 亚洲国产欧美日韩在线播放| 亚洲中文字幕日韩| 曰老女人黄片| 又黄又粗又硬又大视频| 色综合婷婷激情| 好看av亚洲va欧美ⅴa在| 国产精品电影一区二区三区| 久久影院123| av天堂久久9| 久久人妻av系列| 人人妻人人添人人爽欧美一区卜| 亚洲国产中文字幕在线视频| 桃色一区二区三区在线观看| 日本一区二区免费在线视频| 国产熟女午夜一区二区三区| 国产欧美日韩一区二区精品| 香蕉国产在线看| 成年人黄色毛片网站| 99在线视频只有这里精品首页| 99riav亚洲国产免费| 成年人黄色毛片网站| 中国美女看黄片| 国产精华一区二区三区| 一区在线观看完整版| 真人一进一出gif抽搐免费| 久久性视频一级片| 成年人黄色毛片网站| 欧美乱妇无乱码| 久久九九热精品免费| 麻豆av在线久日| 18禁裸乳无遮挡免费网站照片 | 日本一区二区免费在线视频| 操出白浆在线播放| 在线观看日韩欧美| x7x7x7水蜜桃| 桃色一区二区三区在线观看| 成人亚洲精品av一区二区 | 欧美精品啪啪一区二区三区| 日本 av在线| 欧美激情久久久久久爽电影 | 国产区一区二久久| av在线天堂中文字幕 | av网站免费在线观看视频| 久久精品91无色码中文字幕| 午夜免费激情av| 午夜精品久久久久久毛片777| 国产精华一区二区三区| 国产欧美日韩一区二区精品| 亚洲色图 男人天堂 中文字幕| 91国产中文字幕| 国产色视频综合| 69精品国产乱码久久久| 久9热在线精品视频| 99久久国产精品久久久| x7x7x7水蜜桃| 两人在一起打扑克的视频| 性少妇av在线| 亚洲成a人片在线一区二区| 精品午夜福利视频在线观看一区| 日本一区二区免费在线视频| 亚洲成a人片在线一区二区| 淫妇啪啪啪对白视频| 久久久久久久久中文| 真人做人爱边吃奶动态| 国产亚洲精品综合一区在线观看 | 丝袜美足系列| 欧美乱色亚洲激情| 亚洲午夜精品一区,二区,三区| 国产成+人综合+亚洲专区| 麻豆一二三区av精品| 中文字幕高清在线视频| 在线观看舔阴道视频| 日韩国内少妇激情av| www日本在线高清视频| 超碰成人久久| 亚洲专区字幕在线| 国产精品国产高清国产av| 曰老女人黄片| a级毛片黄视频| 欧美不卡视频在线免费观看 | 亚洲一区二区三区色噜噜 | av视频免费观看在线观看| 18禁国产床啪视频网站| 1024香蕉在线观看| www.999成人在线观看| 日韩视频一区二区在线观看| 性色av乱码一区二区三区2| 最近最新免费中文字幕在线| 久久精品91无色码中文字幕| 又大又爽又粗| 别揉我奶头~嗯~啊~动态视频| 色精品久久人妻99蜜桃| 欧美成狂野欧美在线观看| 久99久视频精品免费| 国产中年淑女户外野战色| 亚洲av不卡在线观看| 欧美国产日韩亚洲一区| 日日夜夜操网爽| 中文字幕av在线有码专区| 又黄又爽又免费观看的视频| 亚洲第一区二区三区不卡| av天堂在线播放| 久久久成人免费电影| 精品午夜福利在线看| 乱人视频在线观看| 性色av乱码一区二区三区2| 国模一区二区三区四区视频| 日韩有码中文字幕| 亚洲第一欧美日韩一区二区三区| 欧美中文日本在线观看视频| 欧美国产日韩亚洲一区| 高潮久久久久久久久久久不卡| a级一级毛片免费在线观看| 国产免费男女视频| 一个人看的www免费观看视频| 免费av不卡在线播放| 每晚都被弄得嗷嗷叫到高潮| 国产男靠女视频免费网站| 久久这里只有精品中国| 美女黄网站色视频| 90打野战视频偷拍视频| 亚洲七黄色美女视频| 午夜免费激情av| 日韩 亚洲 欧美在线| 色综合欧美亚洲国产小说| 国产色婷婷99| 天天一区二区日本电影三级| 激情在线观看视频在线高清| 999久久久精品免费观看国产| 国产亚洲精品久久久久久毛片| 我的老师免费观看完整版| 少妇人妻一区二区三区视频| 亚洲片人在线观看| 亚洲熟妇熟女久久| 狠狠狠狠99中文字幕| 一本一本综合久久| 最新在线观看一区二区三区| 老女人水多毛片| 国产精品99久久久久久久久| av在线老鸭窝| av黄色大香蕉| 亚洲国产日韩欧美精品在线观看| 欧美乱色亚洲激情| 国产午夜福利久久久久久| 91av网一区二区| 国产精品一区二区三区四区久久| 精品久久国产蜜桃| 一区二区三区免费毛片| 夜夜夜夜夜久久久久| 国产av一区在线观看免费| 日日摸夜夜添夜夜添小说| 亚洲最大成人中文| 我的老师免费观看完整版| av欧美777| 国产成人福利小说| 69av精品久久久久久| 99精品久久久久人妻精品| 亚洲久久久久久中文字幕| 成人欧美大片| 成人高潮视频无遮挡免费网站| 国产精品国产高清国产av| 亚洲成人久久性| 亚洲片人在线观看| 长腿黑丝高跟| 亚洲五月婷婷丁香| bbb黄色大片| 黄色丝袜av网址大全| 一本综合久久免费| 欧美三级亚洲精品| 2021天堂中文幕一二区在线观| 久久久久久久久久黄片| 国产精品久久久久久人妻精品电影| 好男人在线观看高清免费视频| 欧美黄色淫秽网站| 国产成人a区在线观看| 国内精品久久久久精免费| 亚洲av五月六月丁香网| 中文亚洲av片在线观看爽| 少妇人妻一区二区三区视频| 丰满乱子伦码专区| 久久久久九九精品影院| 校园春色视频在线观看| 免费一级毛片在线播放高清视频| 又黄又爽又免费观看的视频| 神马国产精品三级电影在线观看| 一a级毛片在线观看| 一个人免费在线观看的高清视频| 51午夜福利影视在线观看| 在现免费观看毛片| avwww免费| 欧美午夜高清在线| 一个人免费在线观看电影| 欧美日韩福利视频一区二区| 免费黄网站久久成人精品 | 黄色女人牲交| 国产精品爽爽va在线观看网站| 亚洲黑人精品在线| 欧美色欧美亚洲另类二区| 丁香六月欧美| 日本黄色视频三级网站网址| 日韩中字成人| 99国产综合亚洲精品| 亚洲最大成人手机在线| 99久久成人亚洲精品观看| 天天一区二区日本电影三级| 91午夜精品亚洲一区二区三区 | 欧美一区二区精品小视频在线| 日本 av在线| 国内毛片毛片毛片毛片毛片| 成人av在线播放网站| 美女高潮的动态| 51国产日韩欧美| 淫妇啪啪啪对白视频| 国产精品98久久久久久宅男小说| 好男人电影高清在线观看| 亚州av有码| 午夜老司机福利剧场| 国产成人啪精品午夜网站| 内射极品少妇av片p| 欧美日本亚洲视频在线播放| 成人特级av手机在线观看| 毛片女人毛片| 亚洲avbb在线观看| 91九色精品人成在线观看| 91午夜精品亚洲一区二区三区 | 亚洲精品亚洲一区二区| 亚洲av成人av| 嫁个100分男人电影在线观看| 国产单亲对白刺激| 在线国产一区二区在线| 三级国产精品欧美在线观看| 亚洲av.av天堂| 亚洲黑人精品在线| 国产日本99.免费观看| 少妇的逼水好多| 国产极品精品免费视频能看的| 美女免费视频网站| 国产一区二区三区在线臀色熟女| 亚洲av免费高清在线观看| 精品久久久久久久久久免费视频| 成年版毛片免费区| 美女大奶头视频| 免费看美女性在线毛片视频| 欧美色欧美亚洲另类二区| 国产精品不卡视频一区二区 | 久久天躁狠狠躁夜夜2o2o| 国产单亲对白刺激| 国产精品99久久久久久久久| 国产野战对白在线观看| 神马国产精品三级电影在线观看| 久久精品国产清高在天天线| 中亚洲国语对白在线视频| 精品人妻一区二区三区麻豆 | 我要搜黄色片| 校园春色视频在线观看| 国产亚洲精品久久久久久毛片| www.色视频.com| 久久九九热精品免费| 脱女人内裤的视频| 成人国产一区最新在线观看| 少妇裸体淫交视频免费看高清| 亚洲欧美激情综合另类| 757午夜福利合集在线观看| 九九久久精品国产亚洲av麻豆| 免费搜索国产男女视频| 欧美潮喷喷水| 丁香欧美五月| 亚洲成av人片免费观看| 国产精品1区2区在线观看.| 偷拍熟女少妇极品色| 国产探花在线观看一区二区| 亚洲av免费在线观看| 亚洲av不卡在线观看| 人人妻,人人澡人人爽秒播| 成年人黄色毛片网站| 一个人看的www免费观看视频| a级毛片免费高清观看在线播放| 久久伊人香网站| 精品久久久久久,| 亚洲国产色片| 免费av不卡在线播放| 国产黄色小视频在线观看| 午夜视频国产福利| 成年女人永久免费观看视频| 高潮久久久久久久久久久不卡| 中文字幕人成人乱码亚洲影| 免费在线观看亚洲国产| 在线观看av片永久免费下载| 亚洲人成电影免费在线| 亚洲一区二区三区色噜噜| 欧美成人一区二区免费高清观看| 欧美精品啪啪一区二区三区| 日本免费a在线| 人人妻人人看人人澡| АⅤ资源中文在线天堂| 日本一本二区三区精品| 在线免费观看的www视频| 精品久久久久久成人av| avwww免费| 国产精品伦人一区二区| 精品久久久久久,| x7x7x7水蜜桃| 日本五十路高清| 久99久视频精品免费| 精品国产亚洲在线| 成年人黄色毛片网站| 精品不卡国产一区二区三区| 日本a在线网址| 中文资源天堂在线| 偷拍熟女少妇极品色| 成人精品一区二区免费| 哪里可以看免费的av片| 成人欧美大片| 欧美日韩中文字幕国产精品一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品日韩av片在线观看| 亚洲精品456在线播放app | 露出奶头的视频| 免费人成在线观看视频色| 欧美黑人欧美精品刺激| 亚洲在线自拍视频| 久久久久久久久久黄片| 国产色爽女视频免费观看| 3wmmmm亚洲av在线观看| 三级毛片av免费| 免费在线观看影片大全网站| 一边摸一边抽搐一进一小说| 在线天堂最新版资源| 成人无遮挡网站| 精品福利观看| 色精品久久人妻99蜜桃| 精品不卡国产一区二区三区| 俺也久久电影网| 波野结衣二区三区在线| 国模一区二区三区四区视频| 国产亚洲精品久久久久久毛片| 欧美日韩乱码在线| 人妻制服诱惑在线中文字幕| 91久久精品国产一区二区成人| 看片在线看免费视频| 一二三四社区在线视频社区8| 免费黄网站久久成人精品 | 国产 一区 欧美 日韩| 精品一区二区免费观看| 国产色爽女视频免费观看| 亚洲激情在线av| 内地一区二区视频在线| 免费av毛片视频| 又爽又黄a免费视频| 久久99热这里只有精品18| 久久伊人香网站| 男女做爰动态图高潮gif福利片| 欧美丝袜亚洲另类 | 有码 亚洲区| 99热精品在线国产| 欧美一区二区国产精品久久精品| 国产伦精品一区二区三区四那| 国产精品免费一区二区三区在线| 乱码一卡2卡4卡精品| 91麻豆精品激情在线观看国产| 精品久久久久久成人av| 国产主播在线观看一区二区| av黄色大香蕉| 色吧在线观看| 脱女人内裤的视频| 琪琪午夜伦伦电影理论片6080| 人妻丰满熟妇av一区二区三区| 国产精品一及| 99热这里只有是精品50| 十八禁网站免费在线| 精品久久久久久久久久免费视频| 亚洲自偷自拍三级| av在线老鸭窝| 麻豆国产97在线/欧美| 国产欧美日韩精品一区二区| a级毛片a级免费在线| 国产亚洲精品av在线| 欧美一区二区亚洲| 久久久久国产精品人妻aⅴ院| 少妇裸体淫交视频免费看高清| 国产亚洲精品综合一区在线观看| 久久久精品欧美日韩精品| 中文资源天堂在线| 亚洲av熟女| 亚洲av五月六月丁香网| 桃红色精品国产亚洲av| 每晚都被弄得嗷嗷叫到高潮| 老司机午夜十八禁免费视频| 亚洲精品日韩av片在线观看| 日本三级黄在线观看| 免费av毛片视频| 国产高清三级在线| 国产一区二区亚洲精品在线观看| 真人做人爱边吃奶动态| 久久久精品欧美日韩精品| 亚洲无线观看免费| 女人十人毛片免费观看3o分钟| 一个人看视频在线观看www免费| 偷拍熟女少妇极品色| 一个人看视频在线观看www免费| 日韩欧美免费精品| 老熟妇乱子伦视频在线观看| 桃红色精品国产亚洲av| 久久久久久九九精品二区国产| 好男人在线观看高清免费视频| 国产一区二区三区视频了| 一级作爱视频免费观看| 人人妻人人澡欧美一区二区| 老司机福利观看| 久久婷婷人人爽人人干人人爱| 欧美国产日韩亚洲一区| 亚洲国产欧洲综合997久久,| 成人精品一区二区免费| 性色av乱码一区二区三区2| 激情在线观看视频在线高清| 嫁个100分男人电影在线观看| 成人特级黄色片久久久久久久| 十八禁人妻一区二区| 国产一区二区三区视频了| 可以在线观看的亚洲视频| 日韩精品青青久久久久久| 成人鲁丝片一二三区免费| eeuss影院久久| 在线播放国产精品三级| 免费高清视频大片| 亚洲国产日韩欧美精品在线观看| 一夜夜www| 国产黄片美女视频| 在现免费观看毛片| 国产av在哪里看| 人妻久久中文字幕网| 欧美午夜高清在线| 国产伦精品一区二区三区四那| 自拍偷自拍亚洲精品老妇| 老司机午夜福利在线观看视频| 日韩欧美精品v在线| 老司机福利观看| 色综合亚洲欧美另类图片| 午夜精品一区二区三区免费看| 少妇的逼好多水| 色综合婷婷激情| 男女之事视频高清在线观看| 亚洲五月天丁香| 麻豆成人av在线观看| 欧美色视频一区免费| 午夜免费成人在线视频| 99热这里只有精品一区| 国产高清视频在线观看网站| 91九色精品人成在线观看| 69av精品久久久久久| 国产精品久久久久久久电影| 午夜激情欧美在线| 国产不卡一卡二| 久久国产精品人妻蜜桃| 一个人免费在线观看的高清视频| 中文字幕高清在线视频| 一区二区三区四区激情视频 | 成人av在线播放网站| 最好的美女福利视频网| 高清在线国产一区| 国产一区二区激情短视频| 91狼人影院| 久久午夜福利片| 国产一级毛片七仙女欲春2| 国内精品久久久久久久电影| 午夜福利欧美成人| 国内精品久久久久精免费| 听说在线观看完整版免费高清| 久久精品国产亚洲av涩爱 | 日本黄大片高清| 日韩 亚洲 欧美在线| 91av网一区二区| 国产又黄又爽又无遮挡在线| 欧美日韩中文字幕国产精品一区二区三区| 人人妻人人看人人澡| 久久久久久久精品吃奶| 亚洲电影在线观看av| 亚洲人成伊人成综合网2020| 草草在线视频免费看| 成人美女网站在线观看视频| 90打野战视频偷拍视频| 国语自产精品视频在线第100页| 天天躁日日操中文字幕| 成人毛片a级毛片在线播放| 国产单亲对白刺激| 久久中文看片网| 99久久99久久久精品蜜桃| 毛片一级片免费看久久久久 | 午夜免费成人在线视频| 久久伊人香网站| 色哟哟·www| 国内精品一区二区在线观看| 真人一进一出gif抽搐免费| 亚洲美女黄片视频| 高清在线国产一区| 色哟哟·www| 久久久久国产精品人妻aⅴ院| 性插视频无遮挡在线免费观看| 精品国产亚洲在线| 久久99热6这里只有精品| 免费av毛片视频| 中文字幕高清在线视频| 最近最新免费中文字幕在线| 嫩草影视91久久| 欧洲精品卡2卡3卡4卡5卡区| www.999成人在线观看| 特级一级黄色大片| 毛片女人毛片| 成人三级黄色视频| 久久久精品大字幕| 少妇裸体淫交视频免费看高清| 亚洲精品一卡2卡三卡4卡5卡| 午夜精品在线福利| 丁香欧美五月| 高潮久久久久久久久久久不卡| 最近视频中文字幕2019在线8| 亚洲欧美日韩东京热| 午夜福利视频1000在线观看| 亚洲自拍偷在线| 日韩欧美国产在线观看| 国产精品自产拍在线观看55亚洲| 一个人看视频在线观看www免费| 97热精品久久久久久| 国产精品久久久久久亚洲av鲁大| 亚洲欧美精品综合久久99| 亚洲精品色激情综合| 色5月婷婷丁香| 男人的好看免费观看在线视频| 一区二区三区高清视频在线| 蜜桃亚洲精品一区二区三区| АⅤ资源中文在线天堂| 老熟妇乱子伦视频在线观看| 亚洲成人久久爱视频| 日本 av在线| 中文字幕高清在线视频| 亚洲精品影视一区二区三区av| 国内精品美女久久久久久| 如何舔出高潮| 国产一区二区激情短视频| 成年版毛片免费区| 中文字幕精品亚洲无线码一区| 中文字幕av成人在线电影| 亚洲avbb在线观看| 国产亚洲欧美在线一区二区| 欧美不卡视频在线免费观看| 亚洲国产色片| 久久精品久久久久久噜噜老黄 | 国产精品98久久久久久宅男小说| 99精品久久久久人妻精品| 成人三级黄色视频| 99精品在免费线老司机午夜| 最近中文字幕高清免费大全6 | 久久久久亚洲av毛片大全| 在线播放国产精品三级| 听说在线观看完整版免费高清| 日韩精品中文字幕看吧| 午夜精品久久久久久毛片777| 美女大奶头视频| 日日夜夜操网爽| 欧美黑人巨大hd| 午夜免费成人在线视频| 又黄又爽又刺激的免费视频.| av在线天堂中文字幕| 精品一区二区三区视频在线观看免费| 久久99热6这里只有精品| 欧美黑人欧美精品刺激| 亚洲国产精品合色在线| 国产成人av教育| 国产精品,欧美在线| 国产免费男女视频| 简卡轻食公司| 免费av毛片视频| 国产精品99久久久久久久久| av女优亚洲男人天堂| 国产精品av视频在线免费观看| 精品国内亚洲2022精品成人| 性插视频无遮挡在线免费观看| 精品人妻偷拍中文字幕| 欧美国产日韩亚洲一区| 超碰av人人做人人爽久久| 精品一区二区三区人妻视频| 日韩欧美在线二视频| av在线天堂中文字幕| av在线蜜桃| 直男gayav资源| 在线观看美女被高潮喷水网站 | 亚洲精品影视一区二区三区av| 国产乱人视频| 真实男女啪啪啪动态图| 欧美激情在线99| 国产精品综合久久久久久久免费| 美女高潮的动态| 亚洲精品粉嫩美女一区| 小说图片视频综合网站| 99久国产av精品| 久久久久久大精品| 午夜福利在线观看免费完整高清在 | 亚洲在线观看片| 99久久无色码亚洲精品果冻| 免费看a级黄色片| 最近最新中文字幕大全电影3| 99国产综合亚洲精品| 一区二区三区高清视频在线| 国产在视频线在精品| 两个人视频免费观看高清| 亚洲精品在线观看二区| 亚洲人成网站高清观看|