• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Modifications of the Optimal Auxiliary Function Method to Fractional Order Fornberg-Whitham Equations

    2023-02-17 03:12:16HakeemUllahMehreenFizaIlyasKhanAbdAllahMosaSaeedIslamandAbdullahMohammed

    Hakeem Ullah,Mehreen Fiza,*,Ilyas Khan,Abd Allah A.Mosa,Saeed Islam and Abdullah Mohammed

    1Department of Mathematics,Abdul Wali Khan University,Mardan,23200,Pakistan

    2Department of Mathematics,College of Science Al-Zulfi Majmmah University,Al-Majmmah,11952,Saudi Arabia

    3Department of Mathematics and Statistics,College of Science,Taif University,Taif,21944,Saudi Arabia

    4University Research Centre,Future University in Egypt,New Cairo,11745,Egypt

    ABSTRACT In this paper,we present a new modification of the newly developed semi-analytical method named the Optimal Auxilary Function Method (OAFM) for fractional-order equations using the Caputo operator, which is named FOAFM.The mathematical theory of FOAFM is presented and the effectiveness of this method is proven by using it with well-known Fornberg-Whitham Equations(FWE).The FOAFM results are compared with other method results along with their exact solutions with the help of tables and plots to prove the validity of FOAFM.A rapidly convergent series solution is obtained from FOAFM and is validated by comparison with other results.The analysis proves that our method is simply applicable,contains less computational work,and is rapidly convergent to the exact solution at the first iteration.A series solution to the problem is obtained with the help of FOAFM.The validity of FOAFM results is validated by comparing its results with the results available in the literature. It is observed that FOAFM is simply applicable,contains less computational work,and is fastly convergent.The convergence and stability are obtained with the help of optimal constants.FOAFM is very easy in applicability and provides excellent results at the first iteration for complex nonlinear initial/boundary value problems.FOAFM contains the optimal auxiliary constants through which we can control the convergence as FOAFM contains the auxiliary functions D1,D2,D3...in which the optimal constants G1,G2,...and the control convergence parameters exist to play an important role in getting the convergent solution which is obtained rigorously.The computational work in FOAFM is less when compared to other methods and even a low-specification computer can do the computational work easily.

    KEYWORDS FOAFM;exact solutions;FWE;Caputo operator;HPM

    1 Introduction

    Fractional calculus deals with the operation of integer order calculus.Earlier fractional calculus has assumed to have no physical applications, but later scientists proved that fractional calculus has many applications in real-world problems such as sound waves propagation in rigid porous material [1], ultrasonic wave propagation in human bone [2], viscoelastic properties in biological tissues[3],and tracking in automobiles[4].Recently fractional calculus has attracted the attention of researchers due to its vast applications in the field of electromagnetic,physics,viscoelasticity,material science,fluid mechanics,and applied sciences[5-9].The exact solution has an important role in the solution of fractional calculus.Since most of the Partial Differential Equations(PDEs)have no exact solutions, therefore, the scientist strives for various methods like transformation base methods [10-13],Vibrational iteration method VIM[14],Adomian decomposition method(ADM)[15],Homotopy Perturbation Method (HPM) [16], Differential Transform Method (DTM) [17] to treat the PDEs with no exact solutions. This method required a small assumed parameter or the initial guess. The improper selection of these choices affects the accuracy. The idea of homotopy was introduced in the Perturbation Method(PMs)to develop the Homotopy Perturbation Method(HPM)[18-20]and Homotopy Analysis Methods(HAM)[21]to fix the issue of a small parameter.These methods require the initial guess and have larger flexibility to control the convergence region. To overcome the issue of initial guess,Marinca and Heri?sanu et al.introduced the Optimal Homotopy Asymptotic Method(OHAM)[22-26].This method contains the optimal auxiliary function and does not require the initial guess and is hence extended by Ullah et al.[27-31]to more complex models.Herisanu 2019 introduced the Optimal Auxilary Function Method(OAFM)[32]to handle the nonlinear problem.This method is introduced for less computational work and an accurate solution is obtained at the first iteration.Abbas bandy used the HAM for the nonlinear model[33].Kumar et al.used fractional derivative with Mittag-Leffler-type kernel for the FEW problems[34].Lu used the VIM for the solution of FEW[35]whereas FEW is solved by Group invariant solutions and conservation laws by Heshemi et al. [36].Ramadan et al.[37]used the new iterative method and compared its results with HPM results for the FEW models.Merdan et al.[38]used numerical simulations to handle FEW problems.Wang et al.[39]used the modified fractional homotopy analysis transform method for obtaining the FEW solutions.Abidi et al.[40]used the numerical procedure for the solution of the FEW models.The researchers used the semi-analytical methods and numerical methods equally. The numerical methods required large computational memory and processing time for getting the solutions of nonlinear fractional PDEs.The numerical methods required the linearization and discretization procedure and these procedures sometimes affect the accuracy of the methods that is why the scientists used the analytical method to solve the nonlinear fractional PDEs.The applications of these methods can be seen in[41-53].

    The purpose of this paper is to modify the OAFM for fractional-order PDEs.FOAFM has been proven effective and is a reliable method to treat complex fractional-order PDEs.

    The paper is organized into six sections.Section 1 is dedicated to the introduction.Basic concept and definitions are given in Section 2.The mathematical theory of FOAFM is given in Section 3,the applications of FOAFM to FWEs are given in Section 4.The results,discussion and conclusion are presented in Sections 5 and 6,respectively.

    2 Some Basic Definitions

    Definition 1.A real valued functionf(η),η?0 is in space ifBη,η∈R, for a real numberη?p,f(η)=ηpf1(η),wheref1(η)∈B(0,∞)and is in space iff n(η)∈Bη,n∈N

    Definition 2.The Reiman-Liouville fractional integral operator

    Definition 3.The fractional derivative of the function,f(u),in the Caputo sense

    Definition 4:Ifn-1 ?α≤n,n∈N and f∈Bnη,η≥-1,then

    3 Analysis of OAFM for Fractional Order PDEs

    Let us see the OAFM to nonlinear ODE

    The initial conditions are

    Selecting

    Using Eq.(6)in Eq.(4),we obtain

    The zeroth approximation is determined as

    The first approximation is obtained as

    since Eqs.(7) and (8) contain the time fractional derivatives, hence by applyingIαthe operator, we obtain

    and

    The nonlinear term is expressed as

    Eq.(11)can be written as

    Convergence of the Method:The optimal constants are obtained by using the Method of Least Squares:

    whereIis the equation domain.

    The unknown constants are established as

    Using the values of Es,we find the approximated solution as

    4 Implementation of the Method

    In this section,we implement the mathematical formulation of OAFM to FWE models.

    Problem 1:Consider the FEW of the form

    with

    wheref (η,t)represents the fluid velocity,η,trepresents the spatial time respectively andαis the order of the fractional.

    The exact solution of Eq.(16)is given by[36]

    where A is an arbitrary constant.

    We consider

    Zeroth Order System:

    with initial conditions

    Its solution is

    First Order System:

    with

    Using Eqs.(19)and(23)in Eq.(24),its solution is given by

    The final solution is given by

    Applying the method of least square as discussed in Eqs.(13) and(14),we get the values of the optimal constants

    We get

    Problem 2:Consider the FEW of the form

    with

    The exact solution of Eq.(16)is given by[39]

    We consider

    Zeroth Order System:

    with initial conditions

    Its solution is

    First Order System:

    Using Eqs.(32)and(36)in Eq.(37),we get

    The final solution is given by

    Applying the method of the least square as discussed in Eqs.(13) and(14), we get the values of the optimal constants

    5 Results Analysis and Discussion

    The mathematical theory of FOAFM provides highly accurate solutions for the fractional order Fornberg-Whitham equation as presented in Section 3.We have used Mathematica 11 for our computational work. The results obtained by FOAFM are compared with other methods available in the literature as given in Tables 1 and 2 for both the problems along with the exact solution revealing that FOAFM is valid and more accurate than other analytical methods as FOAFM provides nearly identical results to exact solutions.The absolute errors AEs for both problems are obtained in comparison with exact solutions for different values of fractional orderαas given in Tables 3 and 4.It is clear from Tables 3 and 4 that when the valueαapproaches to unity,then FOAFM solution rapidly converges to exact a solution which again validates our method.The optimal constants for the problem 1 is achieved by using the method of least square and is given as G1= -5.847118213776651, G2= -14.401838452215966, G3=12.988279917065954, G4=6.390562426483602, whereas the optimal constants of the problem 2 are again achieved by the method of least square and are given as C1= -0.176020345315655812, C2= -0.04833000998550175, C3= -1.0800781345410362, C4=0.17868188928874937.

    Table 1: Comparison of solutions

    Table 2: Comparison of solutions

    Table 3: AE =

    Table 3: AE =

    ?

    ?

    Table 4:

    Table 4:

    ?

    The solution is again validated by comparing the solutions with exact solutions in 3D and 2D forms for problems 1-2 as given in Figs.1-3 and 4-6.The residual plots in 3D and 2D form are given in Figs.7, 8, 9 and 10 for problems 1 and 2, respectively, while the variation of fractional orderαis checked for accuracy in comparison with the exact solution for both the problems in Figs.11 and 12 consecutively.From Tables 3 and 4 and Figs.11 and 12,it is evident that when the value ofαis closer to 1,then the absolute error decreases andα=1 when used in the FOAFM.We get the closest result to the exact solution validating the accuracy of our method.

    Figure 1: 3D plot ofη,t)

    Figure 2: 3D exact solution of f (η,t)

    Figure 3: 2D plot of comparison of exact and FOAFM solutions

    Figure 4:3D plot of (η,t)

    Figure 5: 3D exact solution of f (η,t)

    Figure 6: 2D plot of comparison of exact and FOAFM solutions

    Figure 7:3D plot of residual

    Figure 8:2D plot of residual

    Figure 9: 3D plot of residual

    Figure 10: 2D plot of residual

    Figure 11: 2D plot of approximate solution for α

    Figure 12: 2D plot of approximate solution for α

    6 Conclusion

    In this study, a new analytical method is suggested for the solution of the Fornberg-Whitham equation.We obtained the first order series solution for the Fornberg-Whitham equation and achieved the first-order solution with high accuracy.For the accuracy and validity of our method,we compared the FOAFM results with the results available in the literature and the exact results. From the comparison, it is concluded that the suggested method is very accurate and good agreement of our results with the numerical results proves the validity of our method. FOAFM is simply applicable to linear and nonlinear initial and boundary value problems. In comparison with other analytical methods, FOAFM is very easy in applicability and provides us with good results for more complex nonlinear initial/boundary value problems.FOAFM contains the optimal auxiliary constants through which we can control the convergence as FOAFM contains the auxiliary functionsD1,D2,D3...in which the optimal constantsG1,G2,...and the control convergence parameters exist to play an important role in getting the convergent solution that is obtained rigorously.The computational work in FOAFM is less when compared to other methods and even a low specification computer can do the computational work easily. The less computational work and rapid convergent solution at the first iteration enable us to implement this efficient method in our future work for more complex models arising from real-world problems.The numerical method required maximum space and time as compared to FOAFM which is a short method and very rapidly convergent.Numerical methods are required to have large computational work and require the latest computer for computational work.

    Funding Statement:The authors received no specific funding for this study.

    Conflicts of Interest:The authors declare that they have no conflicts of interest to report regarding the present study.

    亚洲在线自拍视频| 最近最新中文字幕大全电影3| 久久草成人影院| 成人国语在线视频| 日本一区二区免费在线视频| 这个男人来自地球电影免费观看| 麻豆av在线久日| 亚洲av第一区精品v没综合| 国产精品精品国产色婷婷| videosex国产| 麻豆国产av国片精品| 国产又黄又爽又无遮挡在线| 精品国产超薄肉色丝袜足j| 国产一区二区在线观看日韩 | 成人av在线播放网站| 国产真实乱freesex| 国产av一区在线观看免费| 色老头精品视频在线观看| 亚洲成人精品中文字幕电影| 狠狠狠狠99中文字幕| 亚洲成a人片在线一区二区| 久久 成人 亚洲| 午夜两性在线视频| 他把我摸到了高潮在线观看| 桃红色精品国产亚洲av| 两个人看的免费小视频| 精品国产超薄肉色丝袜足j| 国产精品,欧美在线| 国产精品久久久久久人妻精品电影| 欧美中文日本在线观看视频| 国产精品乱码一区二三区的特点| 色在线成人网| 国产精品久久久人人做人人爽| 中文字幕人妻丝袜一区二区| 亚洲精品美女久久久久99蜜臀| 天堂√8在线中文| 亚洲国产欧美人成| 女人被狂操c到高潮| 欧美一级毛片孕妇| 国产精品久久电影中文字幕| 亚洲男人的天堂狠狠| 级片在线观看| 人妻丰满熟妇av一区二区三区| 中文字幕av在线有码专区| 天堂av国产一区二区熟女人妻 | ponron亚洲| 黄片小视频在线播放| 性色av乱码一区二区三区2| 亚洲免费av在线视频| 99国产精品99久久久久| av中文乱码字幕在线| 一个人免费在线观看的高清视频| 女人被狂操c到高潮| 两性午夜刺激爽爽歪歪视频在线观看 | 日本a在线网址| 亚洲人与动物交配视频| 99国产精品99久久久久| 美女大奶头视频| 国产亚洲精品久久久久5区| 欧美3d第一页| 亚洲av五月六月丁香网| 久久99热这里只有精品18| 亚洲aⅴ乱码一区二区在线播放 | 午夜福利免费观看在线| 桃色一区二区三区在线观看| 曰老女人黄片| 精品国产美女av久久久久小说| av超薄肉色丝袜交足视频| 热99re8久久精品国产| 91麻豆av在线| 老司机福利观看| 亚洲一卡2卡3卡4卡5卡精品中文| 黄色片一级片一级黄色片| 免费在线观看亚洲国产| 成人亚洲精品av一区二区| 黑人欧美特级aaaaaa片| 中文资源天堂在线| 国产精品98久久久久久宅男小说| 亚洲成人免费电影在线观看| 天天躁夜夜躁狠狠躁躁| 国产一区二区在线观看日韩 | 日韩欧美国产在线观看| 免费在线观看日本一区| 又黄又粗又硬又大视频| 日本黄色视频三级网站网址| 巨乳人妻的诱惑在线观看| 十八禁网站免费在线| 欧美在线一区亚洲| 欧美3d第一页| www日本在线高清视频| 美女午夜性视频免费| 母亲3免费完整高清在线观看| 法律面前人人平等表现在哪些方面| 欧美精品亚洲一区二区| 一二三四社区在线视频社区8| 久久九九热精品免费| 看免费av毛片| 久久久国产欧美日韩av| 一边摸一边抽搐一进一小说| 国产精品一区二区免费欧美| 又粗又爽又猛毛片免费看| 精品久久久久久久毛片微露脸| 亚洲人成伊人成综合网2020| 国产精品国产高清国产av| 两个人免费观看高清视频| 日韩大码丰满熟妇| 精品国内亚洲2022精品成人| 久久国产乱子伦精品免费另类| 欧美成人性av电影在线观看| 国产成人啪精品午夜网站| av免费在线观看网站| 国产野战对白在线观看| 一进一出抽搐动态| 不卡av一区二区三区| 日韩 欧美 亚洲 中文字幕| 色播亚洲综合网| 熟女少妇亚洲综合色aaa.| 国产精品免费视频内射| 亚洲无线在线观看| 亚洲精品国产一区二区精华液| 国产精品一区二区精品视频观看| 99热只有精品国产| 很黄的视频免费| 一本大道久久a久久精品| 在线观看一区二区三区| 国产亚洲av嫩草精品影院| 精品国内亚洲2022精品成人| 久久久久亚洲av毛片大全| 我要搜黄色片| 成人18禁高潮啪啪吃奶动态图| 久久久久久人人人人人| 免费人成视频x8x8入口观看| 91老司机精品| 亚洲欧美日韩无卡精品| 日本一二三区视频观看| 国产伦在线观看视频一区| avwww免费| 俺也久久电影网| 国产精品电影一区二区三区| 少妇人妻一区二区三区视频| 亚洲成av人片免费观看| 国产99久久九九免费精品| 欧美+亚洲+日韩+国产| 国产伦人伦偷精品视频| 精品第一国产精品| 欧美又色又爽又黄视频| 久久天躁狠狠躁夜夜2o2o| 91老司机精品| 午夜福利欧美成人| 国产成人影院久久av| 国内精品久久久久精免费| 97碰自拍视频| 老鸭窝网址在线观看| 日本一本二区三区精品| 在线视频色国产色| 1024手机看黄色片| 白带黄色成豆腐渣| 国产精品,欧美在线| 无人区码免费观看不卡| 在线a可以看的网站| 亚洲熟妇熟女久久| 欧洲精品卡2卡3卡4卡5卡区| www.自偷自拍.com| 亚洲aⅴ乱码一区二区在线播放 | av视频在线观看入口| www.熟女人妻精品国产| 此物有八面人人有两片| 久久久久国内视频| 亚洲av片天天在线观看| 久久精品国产亚洲av香蕉五月| 一本一本综合久久| 成年版毛片免费区| 午夜福利免费观看在线| 久久人妻av系列| 久久欧美精品欧美久久欧美| 一边摸一边抽搐一进一小说| 熟妇人妻久久中文字幕3abv| 亚洲熟妇熟女久久| 校园春色视频在线观看| 999精品在线视频| 久久中文字幕一级| 成人一区二区视频在线观看| 国产精品av视频在线免费观看| 99在线视频只有这里精品首页| 成人永久免费在线观看视频| 美女黄网站色视频| 久久久国产成人精品二区| 黄色成人免费大全| 亚洲精品粉嫩美女一区| 精品久久久久久久久久久久久| 天天躁夜夜躁狠狠躁躁| 国产精品 国内视频| 黄色毛片三级朝国网站| 精品国产美女av久久久久小说| 国产麻豆成人av免费视频| 曰老女人黄片| 极品教师在线免费播放| 亚洲欧美日韩高清在线视频| avwww免费| 99精品久久久久人妻精品| 无限看片的www在线观看| 国产欧美日韩一区二区三| bbb黄色大片| 国产精品一区二区三区四区免费观看| 欧美一区二区国产精品久久精品| 最近最新中文字幕大全电影3| 最好的美女福利视频网| 毛片女人毛片| 国产黄片美女视频| 少妇的逼好多水| 欧美极品一区二区三区四区| 午夜福利在线在线| 亚洲精品久久国产高清桃花| 日日摸夜夜添夜夜添av毛片| 97超视频在线观看视频| 麻豆精品久久久久久蜜桃| 亚洲成人av在线免费| 乱人视频在线观看| 成人一区二区视频在线观看| 99久久中文字幕三级久久日本| 99热全是精品| av.在线天堂| 青青草视频在线视频观看| 老师上课跳d突然被开到最大视频| 亚洲真实伦在线观看| 欧美xxxx黑人xx丫x性爽| 午夜视频国产福利| 国产精品一区二区三区四区久久| 国产乱人偷精品视频| 亚洲精品日韩在线中文字幕 | 国产三级中文精品| 久久6这里有精品| 女的被弄到高潮叫床怎么办| 国产在线精品亚洲第一网站| 成人欧美大片| 国语自产精品视频在线第100页| 黄片wwwwww| 欧美性猛交╳xxx乱大交人| 日韩 亚洲 欧美在线| 精品国内亚洲2022精品成人| 91久久精品电影网| 国产高清视频在线观看网站| 久久精品国产亚洲网站| 99热精品在线国产| 一进一出抽搐gif免费好疼| 中文精品一卡2卡3卡4更新| 午夜精品在线福利| 国产精品电影一区二区三区| av.在线天堂| 亚洲自偷自拍三级| 亚洲av免费高清在线观看| 国产大屁股一区二区在线视频| 亚洲国产高清在线一区二区三| 99热只有精品国产| 乱系列少妇在线播放| 伦精品一区二区三区| 国产精品人妻久久久影院| 蜜桃亚洲精品一区二区三区| 12—13女人毛片做爰片一| 夜夜爽天天搞| 国内精品一区二区在线观看| 激情 狠狠 欧美| 22中文网久久字幕| 成人无遮挡网站| 伦精品一区二区三区| 国产精品一区二区三区四区久久| 99久久成人亚洲精品观看| 国产三级在线视频| 久久国内精品自在自线图片| 国产激情偷乱视频一区二区| 久久久国产成人免费| 99久久精品国产国产毛片| 日本一本二区三区精品| 91久久精品电影网| av在线天堂中文字幕| 久久久色成人| 成年av动漫网址| 日韩,欧美,国产一区二区三区 | 高清毛片免费看| 日本熟妇午夜| 日韩欧美精品v在线| 中国国产av一级| 国产69精品久久久久777片| 看免费成人av毛片| 黄片wwwwww| 能在线免费看毛片的网站| 真实男女啪啪啪动态图| 大型黄色视频在线免费观看| 免费大片18禁| 精品99又大又爽又粗少妇毛片| 美女脱内裤让男人舔精品视频 | 亚洲欧美成人综合另类久久久 | 亚洲在线观看片| 日本-黄色视频高清免费观看| 有码 亚洲区| 人妻系列 视频| 欧美人与善性xxx| 亚洲乱码一区二区免费版| 超碰av人人做人人爽久久| 亚洲美女搞黄在线观看| 欧美最新免费一区二区三区| 亚洲自拍偷在线| 嫩草影院精品99| 午夜精品国产一区二区电影 | 变态另类成人亚洲欧美熟女| 国产私拍福利视频在线观看| 麻豆精品久久久久久蜜桃| 亚洲色图av天堂| 亚洲一级一片aⅴ在线观看| 日韩亚洲欧美综合| 日韩成人伦理影院| 97人妻精品一区二区三区麻豆| 欧美成人a在线观看| 欧美极品一区二区三区四区| 黄色一级大片看看| av免费在线看不卡| 91久久精品国产一区二区成人| 最近最新中文字幕大全电影3| 久久热精品热| 超碰av人人做人人爽久久| 欧美极品一区二区三区四区| 老熟妇乱子伦视频在线观看| 哪个播放器可以免费观看大片| 一边摸一边抽搐一进一小说| 国产亚洲精品av在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲国产欧洲综合997久久,| 热99re8久久精品国产| 99视频精品全部免费 在线| 亚洲精品色激情综合| 熟女人妻精品中文字幕| 尾随美女入室| 国产精品av视频在线免费观看| 亚洲欧美中文字幕日韩二区| 成人特级黄色片久久久久久久| 国产精品精品国产色婷婷| 麻豆乱淫一区二区| 国产精品乱码一区二三区的特点| 亚洲欧美成人综合另类久久久 | 高清毛片免费看| 波野结衣二区三区在线| 99在线人妻在线中文字幕| 老司机福利观看| 国产老妇女一区| 国产免费一级a男人的天堂| 久久久成人免费电影| 美女cb高潮喷水在线观看| 亚洲三级黄色毛片| 亚洲欧美精品自产自拍| 观看美女的网站| 国产色爽女视频免费观看| 国产爱豆传媒在线观看| 久久人人爽人人爽人人片va| 毛片女人毛片| 精品免费久久久久久久清纯| 久99久视频精品免费| 国产精品乱码一区二三区的特点| 久久精品影院6| 免费看av在线观看网站| 欧美日韩国产亚洲二区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 菩萨蛮人人尽说江南好唐韦庄 | 日本欧美国产在线视频| 欧美+日韩+精品| 久久人人爽人人爽人人片va| а√天堂www在线а√下载| 麻豆国产av国片精品| 国产精品美女特级片免费视频播放器| 能在线免费看毛片的网站| 国产日本99.免费观看| 国产91av在线免费观看| 小蜜桃在线观看免费完整版高清| 岛国毛片在线播放| 2022亚洲国产成人精品| 免费不卡的大黄色大毛片视频在线观看 | 在线国产一区二区在线| 99视频精品全部免费 在线| 久久亚洲精品不卡| 欧美精品国产亚洲| 免费搜索国产男女视频| 日韩欧美精品免费久久| 一卡2卡三卡四卡精品乱码亚洲| 国产在线男女| 熟女电影av网| 草草在线视频免费看| 69av精品久久久久久| 一级av片app| 色5月婷婷丁香| 国产精品福利在线免费观看| 亚洲国产欧美人成| 亚洲婷婷狠狠爱综合网| 欧美另类亚洲清纯唯美| 国产精品一区二区性色av| 舔av片在线| 亚洲国产精品国产精品| 国产亚洲精品久久久久久毛片| 亚洲内射少妇av| 久久久久性生活片| 天天一区二区日本电影三级| 午夜a级毛片| 最近手机中文字幕大全| 校园春色视频在线观看| 夜夜看夜夜爽夜夜摸| 精品久久久久久久久av| av女优亚洲男人天堂| 在线国产一区二区在线| eeuss影院久久| 好男人视频免费观看在线| av在线老鸭窝| 91久久精品电影网| 18禁在线播放成人免费| 国产乱人偷精品视频| 国产精品一区二区性色av| 欧美性感艳星| 欧洲精品卡2卡3卡4卡5卡区| 亚洲国产高清在线一区二区三| АⅤ资源中文在线天堂| 免费在线观看成人毛片| 看十八女毛片水多多多| 国产成人91sexporn| 国内精品宾馆在线| 小蜜桃在线观看免费完整版高清| 国产精品无大码| 岛国在线免费视频观看| 国产大屁股一区二区在线视频| 免费av不卡在线播放| 亚洲av中文av极速乱| 色哟哟·www| 国产一级毛片在线| 九九在线视频观看精品| 国产黄a三级三级三级人| 又爽又黄无遮挡网站| 欧美日韩综合久久久久久| 床上黄色一级片| 日本撒尿小便嘘嘘汇集6| 夜夜看夜夜爽夜夜摸| а√天堂www在线а√下载| 亚洲人成网站在线观看播放| 99热网站在线观看| 精品99又大又爽又粗少妇毛片| 男女啪啪激烈高潮av片| 免费观看的影片在线观看| 欧美丝袜亚洲另类| 国产探花在线观看一区二区| 久久欧美精品欧美久久欧美| av视频在线观看入口| 国产 一区 欧美 日韩| 大型黄色视频在线免费观看| 日本爱情动作片www.在线观看| 又爽又黄a免费视频| 欧美+亚洲+日韩+国产| 久久韩国三级中文字幕| 亚洲三级黄色毛片| 国产精品无大码| 免费观看的影片在线观看| 久久亚洲国产成人精品v| 国产伦精品一区二区三区视频9| 麻豆成人午夜福利视频| 搞女人的毛片| 国产成年人精品一区二区| 精品无人区乱码1区二区| 黄色日韩在线| a级毛片a级免费在线| 亚洲第一电影网av| 午夜福利在线在线| 美女内射精品一级片tv| 日韩一区二区视频免费看| 国产一区二区在线观看日韩| 一本一本综合久久| 欧美激情国产日韩精品一区| 久久中文看片网| 亚洲成a人片在线一区二区| 欧美一区二区精品小视频在线| 女人十人毛片免费观看3o分钟| 午夜视频国产福利| 精品久久久久久久久亚洲| 亚洲最大成人手机在线| 人妻制服诱惑在线中文字幕| 精品午夜福利在线看| 99久国产av精品| 91久久精品电影网| 好男人视频免费观看在线| 欧美高清成人免费视频www| 国产精品一及| 久久久国产成人精品二区| 夜夜看夜夜爽夜夜摸| 国产高清有码在线观看视频| 日韩大尺度精品在线看网址| 婷婷色综合大香蕉| 国产69精品久久久久777片| 亚洲av二区三区四区| 亚洲内射少妇av| 成熟少妇高潮喷水视频| 国产精品一区二区性色av| 一个人免费在线观看电影| 亚洲不卡免费看| 一区二区三区高清视频在线| av在线天堂中文字幕| 在线播放国产精品三级| 亚洲第一区二区三区不卡| 青青草视频在线视频观看| 天堂影院成人在线观看| 亚洲第一区二区三区不卡| 亚洲最大成人av| 亚洲国产精品久久男人天堂| 成人毛片a级毛片在线播放| 亚洲av第一区精品v没综合| 国产综合懂色| 91aial.com中文字幕在线观看| 最近2019中文字幕mv第一页| 欧美三级亚洲精品| 六月丁香七月| 国产精品99久久久久久久久| 精品久久久久久久久av| 亚洲天堂国产精品一区在线| 五月伊人婷婷丁香| 午夜激情福利司机影院| 日本黄大片高清| 丝袜美腿在线中文| 亚洲成av人片在线播放无| 日韩三级伦理在线观看| 99久国产av精品| 国产极品天堂在线| 国产老妇伦熟女老妇高清| 久久精品91蜜桃| 99久久无色码亚洲精品果冻| 大香蕉久久网| 久久6这里有精品| 免费看光身美女| 免费看美女性在线毛片视频| 日韩欧美国产在线观看| 亚洲欧美成人综合另类久久久 | 一个人观看的视频www高清免费观看| 熟妇人妻久久中文字幕3abv| 久久精品综合一区二区三区| 天堂影院成人在线观看| 国产精品av视频在线免费观看| 国产精品久久久久久久久免| 国产三级中文精品| 99久久精品国产国产毛片| 看十八女毛片水多多多| 亚洲av第一区精品v没综合| 国产午夜精品论理片| 久久久精品94久久精品| 国产成人精品一,二区 | 如何舔出高潮| 日产精品乱码卡一卡2卡三| 午夜激情福利司机影院| 在线观看av片永久免费下载| 麻豆成人午夜福利视频| av在线蜜桃| 久久久色成人| 欧美日韩一区二区视频在线观看视频在线 | 欧美高清成人免费视频www| 国产精品日韩av在线免费观看| 丝袜喷水一区| 日韩欧美三级三区| 又爽又黄a免费视频| 久久婷婷人人爽人人干人人爱| 中文字幕制服av| 26uuu在线亚洲综合色| 欧美极品一区二区三区四区| 国产 一区精品| 免费看日本二区| 国产成人影院久久av| 白带黄色成豆腐渣| 91久久精品国产一区二区成人| 99久久九九国产精品国产免费| 淫秽高清视频在线观看| 亚洲成av人片在线播放无| 久久综合国产亚洲精品| 天天一区二区日本电影三级| 亚洲欧美日韩卡通动漫| 亚洲最大成人中文| 在线观看午夜福利视频| 成年女人看的毛片在线观看| 免费观看的影片在线观看| 日本-黄色视频高清免费观看| 久久久久九九精品影院| 你懂的网址亚洲精品在线观看 | 天天躁日日操中文字幕| 国内精品一区二区在线观看| 国产高清有码在线观看视频| 国产精品乱码一区二三区的特点| 偷拍熟女少妇极品色| 91狼人影院| 日韩成人av中文字幕在线观看| 中文资源天堂在线| 听说在线观看完整版免费高清| 亚洲国产日韩欧美精品在线观看| 亚洲精品国产成人久久av| 久久久久久久久中文| 99九九线精品视频在线观看视频| 国产成人午夜福利电影在线观看| 久久久久久国产a免费观看| 真实男女啪啪啪动态图| 亚洲av免费在线观看| 国内精品久久久久精免费| av又黄又爽大尺度在线免费看 | 欧美成人a在线观看| 人人妻人人澡人人爽人人夜夜 | 最近最新中文字幕大全电影3| 深夜精品福利| 可以在线观看毛片的网站| 国产av不卡久久| 亚洲人成网站在线观看播放| 国产一区二区三区在线臀色熟女| 国产伦理片在线播放av一区 | 久久久色成人| 精品人妻偷拍中文字幕| 国产中年淑女户外野战色| 日本与韩国留学比较| 国产精品伦人一区二区| 亚洲成人中文字幕在线播放| 亚洲欧美精品综合久久99|