• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Public key based bidirectional shadow image authentication without pixel expansion in image secret sharing*

    2023-02-06 09:43:48XuehuYANLonglongLIJiaCHENLeiSUN

    Xuehu YAN,Longlong LI,Jia CHEN,Lei SUN

    National University of Defense Technology,Hefei 230037,China

    Abstract:Image secret sharing(ISS)is gaining popularity due to the importance of digital images and its wide application to cloud-based distributed storage and multiparty secure computing.Shadow image authentication generally includes shadow image detection and identification,and plays an important role in ISS.However,traditional dealer-participatory methods,which suffer from significant pixel expansion or storing auxiliary information,authenticate the shadow image mainly during the decoding phase,also known as unidirectional authentication.The authentication of the shadow image in the distributing(encoding)phase is also important for the participant.In this study,we introduce a public key based bidirectional shadow image authentication method in ISS without pixel expansion for a(k,n)threshold.When the dealer distributes each shadow image to a corresponding participant,the participant can authenticate the received shadow image with his/her private key.In the decoding phase,the dealer can authenticate each received shadow image with a secret key;in addition,the dealer can losslessly decode the secret image with any k or more shadow images.The proposed method is validated using theoretical analyses,illustrations,and comparisons.

    Key words:Image secret sharing;Shadow image authentication;Public key;Pixel expansion;Lossless decoding

    1 Introduction

    Using image secret sharing(ISS)for a(k,n)threshold,the dealer encodes a secret image to outputnshadow images,also known as shadows or shares,which are then distributed to the correspondingnparticipants.The dealer can decode the secret image with anykor more shadow images(i.e.,at mostn-kshadow images are lost),which is known as the loss-tolerant property of ISS.Hence,ISS is currently used in several applications,such as access control(Yan et al.,2017;Beugnon et al.,2019),key management(Cheng et al.,2018),blockchain(Fukumitsu et al.,2017;Shen J et al.,2019),password transmission(Wang W et al.,2017),digital watermarking(El-Latif et al.,2018),identity authentication(Chavan et al.,2014;Li YN and Guo,2018),and distributive storage in a cloud(Komargodski et al.,2017).The value of each binary pixel can be represented by 1 bit,and the value of each grayscale pixel can be represented by 1 byte;therefore,ISS is easily extended to secret sharing.Among many sharing principles of traditional ISS technologies(Wang GY et al.,2016;Shivani and Agarwal,2018;Yan et al.,2018,2020b;Meng et al.,2021;Harn et al.,2022),the use of polynomials(Pilaram and Eghlidos,2017)is widely studied.

    Shamir(1979)designed the first polynomialbased secret sharing for a(k,n)threshold by randomly building a(k-1)-degree polynomial.Inspired by Shamir’s work,some follow-up works(Thien and Lin,2002;Liu YX and Yang,2017;Liu YX et al.,2018a,2019;Yan et al.,2021)investigated several improved polynomial-based ISS schemes to obtain significant properties.Polynomial-based ISS is advantageous because the decoded secret image has high quality and does not exhibit pixel expansion.The dealer can encode a secret image tonshadow images using polynomial-based ISS.The dealer normally distributes the shadow images toncorresponding participants(Fig.1).When anykor more shadow images are collected during the normal dealer-participatory decoding phase,the secret is decoded with high quality using the Lagrange interpolation(Fig.1).

    Fig.1 Normal dealer-participatory shadow image distributing(a)and secret image decoding(b)

    However,the above-mentioned polynomialbased ISS schemes cannot authenticate shadow images.The authentication plays an important role in ISS(Fig.2).If a watch dog tampers with the shadow image during abnormal dealer participatory shadow image distribution,a participant cannot authenticate the received shadow image without authentication.Here,a watch dog represents an eavesdropper in cryptography or a third party on the network in communication security.In an abnormal secret image decoding phase,the dealer cannot successfully decode the original secret image or even distinguish the fake one if there is a fake shadow image among thekcollected ones.

    Fig.2 Distribution of an abnormal shadow image(a)and decoding of a secret image without authentication(b)

    In contrast,in the distribution of an abnormal shadow image and the decoding of a secret image as shown in Fig.3,authentication allows a participant to judge whether the received shadow image is fake or tampered with when receiving each shadow image from the corresponding participant;the dealer can also judge it based on the result of shadow image authentication,stop the decoding phase if a fake shadow image is detected and identified,and broadcast the fake one to all the other participants to avoid further deception.

    Fig.3 Distribution of an abnormal shadow image(a)and decoding of a secret image with authentication(b),illustrating the motivation of this paper

    Shadow image authentication is critical and ISS with shadow image authentication ability is gaining popularity.Most existing ISS schemes that support shadow image authentication can be classified into two categories.The first category uses information hiding(or fragile watermark)(Lin and Tsai,2004;Chang et al.,2008;Liu YJ and Chang,2018;Liao et al.,2022).A typical work is Liu YJ and Chang(2018),in which the authors realized shadow image authentication using turtle shell based information hiding.This type of scheme embeds the shadow images in the cover images using existing information hiding techniques,resulting in a possible high pixel expansion(Fig.4a).The other category uses auxiliary information(Li P et al.,2010;Ulutas et al.,2013;Du et al.,2020),such as hash.This type of scheme uses the auxiliary information to achieve authentication,which also results in possible pixel expansion or increase in the required storage space(Fig.4b).

    Fig.4 Analyses of traditional image secret sharing schemes with shadow authentication ability:(a)using information hiding;(b)using auxiliary information

    Liu YX et al.(2018b)proposed polynomialbased ISS for a(k,n)threshold with shadow image authentication based on improved polynomialbased ISS.They embed an authentication value into a polynomial coefficient.However,this scheme can authenticate the shadow image only in the decoding phase,also known as unidirectional authentication,and it cannot authenticate the shadow image during the shadow image distribution phase.It also has flaws in fake participant identification,auxiliary encryption,and lossy decoding.

    Yan et al.(2020a)proposed a separate shadow authentication method using a fusing(2,2)-threshold visual cryptographic scheme(VCS)(Shen G et al.,2017)and polynomial-based ISS.In the encoding phase,the shadow image bit generated using VCS is embedded in the most significant bit(MSB)of each shadow image pixel.However,their method is used only for shadow image authentication during the secret image decoding phase.Following Yan et al.(2020a),Jiang et al.(2020)developed an authentication using a(2,n+1)-threshold VCS and the least significant bit instead of the MSB.However,it cannot authenticate a shadow image during the distribution phase.

    This study introduces a bidirectional shadow image authentication method without pixel expansion in ISS for a(k,n)threshold based on ISS rather than on information hiding(Fig.3).Here“bidirectional shadow image authentication”shows that shadow image authentication in the shadow image distributing and secret image decoding(sending)phases(Fig.3)achieves stronger authentication than“unidirectional shadow image authentication.”

    The following is the key challenge.The encoding and decoding methods usually entail the use of mathematical functions in ISS,such as polynomial and interpolation,which are sensitive to slight changes;thus,achieving bidirectional shadow image authentication is a key challenge.

    In this study,we introduce a public key based bidirectional shadow image authentication method without pixel expansion in ISS for a(k,n)threshold.

    In the encoding phase,the dealer first uses a random number generator with his/her secret key to generate two coordinates for each participant.Second,a hash of the pixels between the two coordinates is generated for the authentication of each shadow image.Third,the two coordinates are encrypted with the public key of each participant to obtain two encrypted coordinates.Finally,the encrypted coordinates and the hash value are fused into each shadow image to avoid any pixel expansion using a screening operation in the process of polynomial-based ISS.Here,a“screening operation”denotes an operation that can screen the polynomial coefficients to satisfy some requirements.When the dealer distributes each shadow image to a corresponding participant,the participant can authenticate the received shadow image with his/her private key.

    In the decoding phase,the dealer can authenticate each received shadow image with a secret key,i.e.,achieving a separate shadow image authentication ability;in addition,the dealer can losslessly decode the secret image with anykor more shadow images.The proposed scheme has no pixel expansion with a separate shadow image authentication ability.In addition,it achieves lossless decoding without auxiliary encryption.The proposed method is validated using theoretical analyses,illustrations,and comparisons.

    2 Preliminaries

    We describe some preliminaries for our introduced method in this section,including the principle of polynomial-based ISS,public key encryption,and hash function.We use bidirectional authentication in polynomial-based ISS,public key encryption,and a hash function to authenticate a separate shadow image.

    First,notations used in this study are presented in Table 1.

    Table 1 Chief notations in the paper

    2.1 Polynomial-based ISS scheme

    To encode a grayscale secret image,Shamir’s original polynomial-based ISS scheme splits any secret pixel valuesintonvalues,which are then assigned toncorresponding pixels in shadow images.We present Shamir’s original polynomial-based scheme in Algorithm 1.

    In the decoding phase,given anykpairs of thenpairs{(i,SCi)}ni=1,we can obtain the coefficients off(i)using Lagrange interpolation and obtains=f(0).However,secretscannot be solved with fewer thankshadow images.Finally,an ISS for a(k,n)threshold is achieved.

    In addition,when the original polynomial-based secret sharing is applied to the ISS,we conduct the following analysis:Because 0≤SCi(h,w)≤255,fori=0,1,2,···,k-1,Pcannot be any prime greater thana0.The primes closest to 255 are 251 and 257.If 257 is used,we cannot store theithshadow pixel when SCi(h,w)=256;if 251 is used,we cannot reconstruct the secret pixela0when 251≤a0≤255.Finally,traditional polynomial-based ISS selectsP=251 for a slight loss.

    2.2 Public key encryption

    The basic idea behind public key encryption is that a cryptosystem with two distinct keys may be possible.A public key is used to encode the plaintext and a private key is used to decode the ciphertext,where the public key can be public,i.e.,known to everyone,and the private key is private,i.e.,known to only one person.In this way,a public key encryption system allows everyone to encode a plaintext to be sent to one person,and only that person can decode the ciphertext.

    Algorithm 1 Shamir’s polynomial-based ISS Input:a grayscale secret image S of size H×W and the threshold parameters(k,n).Output:n shadow images SC1,SC2,···,SCn.Step 1:Select P=251.At each position(h,w)∈{(h,w)|1≤h≤H,1≤w≤W},repeat steps 2 and 3.Step 2:For s=S(h,w),if s≥P,fix s=P-1.To split s into pieces SC1(h,w),SC2(h,w),···,SCn(h,w),construct a(k-1)-degree polynomial as follows:f(x)=(a0+a1x+···+ak-1xk-1)mod P, (1)in which a0=s,and ai is random in[0,P-1],for i=1,2,···,k-1.Step 3:Calculate SC1(h,w)=f(1),SC2(h,w)=f(2),···,SCn(h,w)=f(n), (2)where i can be used for an identifying index or an order label for the ith participant.Step 4:Output n shadow images SC1,SC2,···,SCn.

    A public key encryption system is suitable for shadow image authentication in ISS,which is further analyzed as follows.If each participant has his/her public key and private key,the dealer can use the public key to generate an authenticating message and only the participant with the private key can authenticate the shadow image.It is a significant challenge to achieve bidirectional shadow image authentication using a public key encryption system with the condition of no pixel expansion.

    The RSA cryptosystem is the best-known example of a public key encryption system,and it is used in our introduced method.Note that other public key encryption systems can also be used with our method.

    2.3 Hash function

    A hash function is used to compress a plaintext of arbitrary length to a random-looking and short plaintext digest with a fixed length,which is a public function known to all.A hash function has the property that it is computationally infeasible to yield collisions;i.e.,it is difficult to decode the plaintext given digest.Additionally,if the plaintext is altered even a bit,the digest will no longer be valid.In this way,a hash function can achieve data authentication and integrity.

    The hash function is suitable for detecting shadow images in ISS,which is further analyzed as follows.The dealer can compress a shadow image to a digest and send it to the participant along with the shadow image.The participant can use the digest to determine whether the shadow image has been altered.It is a significant challenge to achieve bidirectional shadow image authentication using a hash function without pixel expansion.

    SHA-256 is a well-known hash function,and is used in our introduced method.Note that other hash functions can also be used in our method.

    Above all,the difficult point is how to achieve bidirectional shadow image authentication by fusing the advantages of a public key encryption system and a hash function without pixel expansion.

    3 Proposed public key based bidirectional shadow image authentication without pixel expansion

    3.1 Proposed method

    3.1.1 Framework

    Fig.5 shows the framework of the proposed public key based bidirectional shadow image authentication method without pixel expansion.The key modules in the framework are as follows:The dealer generates the coordinates using his/her secret key so that he/she knows the concentrated positions to be hashed to authenticate the shadow image when receiving each shadow image during the decoding phase.The dealer encrypts the coordinates using each participant’s public key so that the true participant with the private key can authenticate the shadow image when receiving each shadow image during the shadow image distribution phase.The dealer embeds the encrypted coordinates and hash values into the firstnand lastnlines of each shadow image to avoid storing auxiliary information.In this way,no pixel expansion can be achieved.

    Fig.5 Framework of the proposed public key based bidirectional shadow image authentication method

    The design idea of the proposed public key based bidirectional shadow image authentication method without pixel expansion is shown in Fig.6.

    3.1.2 Algorithms

    Algorithm 2 is the proposed detailed encoding algorithm,and the decoding method is given in Algorithm 3.Fig.6 is the overview of the proposed method only for the current position(h,w),which must be combined with Algorithm 2 to better understand our method.

    Fig.6 Design concept of the proposed public key based bidirectional shadow image authentication method

    Regarding Algorithm 2,we comment as follows:

    1.In step 1,kDserves as a seed.Security and coordinate ranges are considered in the generation of.As in Table 1,anddenote the starting and ending plain coordinates for theithparticipant to be hashed,respectively.Through the corresponding length of the binary bits,we can generate temporary random numbers,denoted byand,to further satisfy thatandusing simple shift operations,i.e.,andHere,the length of the binary form ofandisand that ofandis

    2.In step 1,the dealer uses his/her secret key,kD,by a random number generator to generateand.Therefore,the dealer knows the concentrated positions to be hashed in step 7 and he/she can authenticate the shadow image when receiving each shadow image during the decoding phase.Them-sequence is selected as the random number generator.Some other enhanced random number generators can also be used to obtain better quality randomness.

    3.In step 1,the dealer uses each participant’s public key to encryptto obtain cipherand furtherand.Thus,only the participant with his/her private key can decryptto obtain,i.e.,the concentrated positions to be hashed in step 8.Thus,during the shadow image distribution phase,the participant with the private key can authenticate the shadow image when receiving each shadow image.

    4.To avoid supplementary bits,we handle value 256 in our scheme as follows.In step 2,we select a prime numberP=257 rather than 251 and in steps 5,7,and 10,we use a screening operation,SCi(h,w)<P-1 to achieve a value of the shadow image pixel ranging from 0 to 255 and lossless decoding.Here,a“screening operation”denotes an operation that will screen the polynomial coefficients to satisfy some requirements.

    Algorithm 2 Encoding phase of the proposed public key based method Input:any grayscale secret image S with size of H×W;kD,kip,and kis,i=1,2,···,n;threshold parameters(k,n).Output:shadow images SCi,i=1,2,···,n.Step 1:The dealer uses his/her secret key kD to generate■Zih1,Ziw1■■■Zih2,Ziw2 using a random number generator,for i=1,2,···,n,where Zih1∈(n,H 2],Zih2∈(H 2,H-n]and Ziw1∈[1,W],Ziw2∈[1,W].kip is used to encode plain Zix to obtain cipher Z'ix.Z'ix is then converted to its binary form,denoted by bZ'ix,for x=h1,w1,h2,w2 and i=1,2,···,n.Expand bZ'ix by adding 0 at the beginning to obtain 0bZ'ix with length of W/4.Step 2:P=257 is selected.At each position(h,w)∈{(h,w)|1≤h≤H,1≤w≤W},repeat steps 3-10.Step 3:If h≤n,go to step 4;else if n<h≤H-n,go to step 6;else go to step 8.Step 4:Construct a(k-1)-degree polynomial as follows:f(x)=(a0+a1x+···+ak-1xk-1)mod P, (3)where a0=S(h,w),and ai is random,for i=1,2,···,k-1.Calculate SCi(h,w)=f(i),for i=1,2,···,n.Step 5:If SCi(h,w)<P-1 and XOR4LBs(SCi(h,w))=and■■ ■0bZ'ix■,when w mod W 4/=0,0bZ'ix w mod W 4■■W 4■,when w mod W 4=0,go to the next position(step 2),for i=1,2,···,n,where x=h1 when w≤W/4,x=w1 when W/4<w≤W/2,x=h2 when W/2<w≤3W/4,and x=w2 when 3W/4<w≤W;otherwise,go to step 4.Step 6:Construct a(k-1)-degree polynomial as follows:f(x)=(a0+a1x+···+ak-1xk-1)mod P, (4)where a0=S(h,w),and ai is random,for i=1,2,···,k-1.Calculate SCi(h,w)=f(i),for i=1,2,···,n.Step 7:If SCi(h,w)<P-1,go to the next position(step 2),for i=1,2,···,n;otherwise,go to step 6.Step 8:Concentrate SCi(Zih1,Ziw1),SCi(Zih1,Ziw1+1),···,SCi(Zih2,Ziw2),and then the concentration result is compressed using a hash function on a digest,denoted by HVi,for i=1,2,···,n.Step 9:Construct a(k-1)-degree polynomial as follows:f(x)=(a0+a1x+···+ak-1xk-1)mod P, (5)where a0=S(h,w),and ai is random,for i=1,2,···,k-1.Calculate SCi(h,w)=f(i),for i=1,2,···,n.Step 10: If SCi(h,w)<P-1 and XOR4LBs(SCi(h,w))=HVi(w),where i=H-h+1,go to the next position(step 2),for i=1,2,···,n;otherwise,go to step 9.Step 11:Output n grayscale shadow images SC1,SC2,···,SCn.

    5.In step 3,our information embedding and processing order for theithshadow image is further illustrated in Fig.7.

    Fig.7 Information embedding and processing order for the ith shadow image

    6.Steps 4,6,and 9 are used to achieve a(k,n)threshold using the polynomial without pixel expansion.

    Algorithm 3 Authentication and decoding in the proposed public key based bidirectional shadow image authentication without pixel expansion Input:grayscale shadow images SC1,SC2,···,SCn;kD,kip,and kis,i=1,2,···,n.Output:decoded grayscale secret image S'with a size of H×W and authentication result of SCi,for i=1,2,···,n.Step 1:In the shadow image distribution phase,when the ith participant receives SCi,extract Z'ix through the XOR4LBs operation on the ith line of SCi,for x=h1,w1,h2,w2.Use kis to decrypt Z'ix to obtain Zix.Concentrate SCi■Zih1,Ziw1■■Zih1,Ziw1+1■,···,SCi■,SCi Zih2,Ziw2■,and then the concentration result is compressed by the hash function to HVi.Perform the XOR4LBs operation on the last ith line of SCi.If the result is equal to HVi,pass the authentication;otherwise,identify the fake one,denoted by i*,and broadcast the fake one.Step 2:In the secret image decoding phase,when the dealer receives SCi,use his/her secret key kD by the random number generator to generate■■■■■Zih1,Ziw1■and ■Zih2,Ziw2. Concentrate SCi ■■■Zih1,Ziw1,,and then the concentration result is compressed by the hash function to HVi.Perform the XOR4LBs operation on the last ith line of SCi.If the result is equal to HVi,pass the authentication,and go to step 3;otherwise,identify the fake one,denoted by i*,and broadcast the fake one.Step 3:When collecting any k grayscale shadow images SCq1,SCq2,···,SCqk,for each position(h,w)∈{(h,w)|1≤h≤H,1≤w≤W},repeat steps 4 and 5.Step 4:Solve Eq.(6)by Lagrange interpolation to obtain a0:SCi Zih1,Ziw1+1,···,SCi Zih2,Ziw2■■■■■■■■■■■■ ■■■■■■■■■■■SCq1(h,w)=(a0+a1q1+···+ak-1q1k-1)mod P,SCq2(h,w)=(a0+a1q2+···+ak-1q2k-1)mod P,...SCqk-1(h,w)=(a0+a1qk-1+···+ak-1qk-1k-1)mod P,SCqk(h,w)=(a0+a1qk+···+ak-1qkk-1)mod P.(6)Step 5:Compute S'(h,w)=a0.Step 6:Output the decoded grayscale secret image S'with a size of H×W and the authentication result of SCi,for i=1,2,···,n.

    7.Step 5 embeds 0bZ'ixinto theithline of theithshadow image.Step 10 embeds hash code into the lastithline of theithshadow image.Finally,no pixel expansion occurs.However,0bZ'ih1,0bZ'iw1,0bZ'ih2,0bZ'iw2are inserted only in linei(Fig.6);HViis inserted only in lineH-i+1.The probability of hash collisions is decided by the adopted hash function;thus,it is not discussed.

    8.In steps 5,7,and 10,we can screena1,a2,···,ak-1to satisfy the embedding and lossless decoding requirements because grayscalesa1,a2,···,ak-1are random,whenn-kis small.

    9.Although it is possible to fake then-1 lines of the first and lastnlines in each shadow image,the influence on the secret image is minimal.

    10.The authentication will not be broken if the attackers or cheaters attempt to modify the higher four bits of each generated shadow image SCi(h,w)because the grayscale pixel value(eight bits)is compressed in step 8.

    Regarding Algorithm 3,we comment as follows:

    1.Step 1 focuses on the authentication in the shadow image distribution phase,step 2 focuses on the authentication before decoding the secret image,and steps 3-5 focus on the secret image decoding during the secret image decoding phase.The dealers and participants are involved in different phases.

    2.In step 1,the distributed shadow image is authenticated by the participant in the shadow image distribution phase to check whether the hash code is altered;thus,our method achieves the authentication of each distributed shadow image.

    3.In step 2,each collected shadow image is authenticated by the dealer in the secret image decoding phase to check whether the hash code is altered;thus,our method achieves the ability of a separate shadow image authentication.

    4.In step 4,at each position(h,w),to obtainS'(h,w)we must construct a polynomial to solvea0.

    5.In this way,our method achieves bidirectional shadow image authentication without pixel expansion.

    6.The decoding process is just like Shamir’s approach except for the authentication phase.

    7.Because the ISS algorithm complexity generally considers time complexity in the decoding phase,we analyze the time complexity of Algorithm 3.The decoding phase contains authentication and decoding.The main authentication operations are XOR and the hash function,and thus the main time complexity isO(k)because the hash function is computed once and XOR is the key factor.The main decoding operation is an interpolation,so the main time complexity isO(k(log2k)2).

    3.2 Security and performance analyses

    Here,we give the performance analyses and security proof of the proposed authentication method.Without loss of generality,the collectedkgrayscale shadow image pixels are denoted by scq1,scq2,···,scqkin the decoding phase.sindicatesS(h,w).

    Lemma 1sand scican range from 0 to 255,fori=1,2,···,n.

    ProofBecauseP=257,scan range from 0 to 255.Because SCi(h,w)<P-1,scican range from 0 to 255,fori=1,2,···,n.

    Lemma 2sis losslessly decoded with scq1,scq2,···,scqk.

    ProofFrom Eq.(6)and by Lagrange interpolation,a0andaiare uniquely determined fori=1,2,···k-1.According to Lemma 1 ands=a0<P,sis losslessly decoded with scq1,scq2,···,scqk.

    Theorem 1Using SCiandkD,the dealer can authenticate whether SCiis fake fori=1,2,···,n.Using SCiandkis,theithparticipant can authenticate whether SCiis fake.

    ProofIn step 8 of Algorithm 2,if an attacker intends to guessand,i.e.,the starting and ending plain coordinates for theithparticipant to be hashed,there arepossible coordinates;i.e.,the probability of brute-force guessing the coordinates isThe security essentially depends on the adopted random number generator,whose result is indistinguishable from a random number.The dealer withkDcan generateand,i.e.,the starting and ending plain coordinates for theithparticipant to be hashed.

    However,the result of the XOR4LBs operation on the lastithline of SCihas 2Wpossible values;i.e.,the probability of brute-force guessing the hash code is 1/2W,whose security depends on the adopted hash function.However,the dealer receiving SCican extract the hash code.

    In this way,using SCiandkD,the dealer can authenticate whether SCiis fake fori=1,2,···,n.

    Similarly,theithparticipant can decryptbZ'ixwith his/her private key to obtainandto authenticate whether SCiis fake,whose security essentially depends on the adopted public key encryption system.

    Therefore,our method achieves public key based bidirectional shadow image authentication without pixel expansion.

    Lemma 3The secret imageScannot be decoded with anyk-1 or fewer shadow images.

    ProofIf anyk-1 equations are constructed in Eq.(6),there are a total ofPsolutions rather than only one for anyk-1 equations in Eq.(6).Finally,the secret imageScannot be decoded with anyk-1 or fewer shadow images.

    Note that,although results from Lemma 3 are well known and are the property of a secret-sharing scheme,we provide the proof of their integrity here.

    Theorem 2Our method is a valid ISS for a(k,n)threshold with lossless decoding whenn-kis small.

    ProofBased on Lemmas 2 and 3,the mentioned conditions for a(k,n)threshold are satisfied.

    Because whenkis fixed,nincreases,more requirements must be satisfied,which is further analyzed as follows.LetNRdenote the number of available random values ofa1,a2,···,ak-1in our method.

    For each line of the first or lastnlines,;for the other lines,.Thus,the weightedNR=There are enough available random values to guarantee searchability.

    Note that the inherent information-theoretic property of secret sharing may be compromised as we introduce our method,which is shown in Theorem 2.

    Note that there is one possible security risk.If an attacker only modifies the pixels beyond the two random coordinates,it does not cause the decoding stage authentication to fail because the coordinates and the pixel values between the coordinates in the decoding stage are the same as those in the encoding stage;however,the received shadow image has been altered,in which case it is possible to bypass the encoding stage authentication and complete the modification of the shadow image.We call the possible risk the“beyond-coordinates-issue.”If the attacker modifies too many pixels,it will be detected.If the attacker modifies fewer pixels,it is possible to bypass the authentication although it has little effect on the image.One possible solution to the risk is to take the coordinates to both ends as much as possible;however,there will be a trade-offproblem of brute force guessing.At present,we have not thought of a more suitable solution,so we will continue to study it in the future work.

    4 Experimental results and comparisons

    In this section,we perform experiments to validate the effectiveness of the proposed public key based bidirectional shadow image authentication method without pixel expansion.Some discussions on our parameters are also provided.Finally,a comparison of illustrations and features with the most related schemes is provided to describe the features of our scheme.

    4.1 Experimental settings

    In our experiments,all the test images are of the same size,256×256,because there is no pixel expansion in the proposed ISS.More experiments are required to show that our scheme is suitable for general thresholds and different secret images.

    RSA-1024 is used as the public key encryption system,SHA-256 is used as the hash function,andmsequence is used for the random number generator.Note that other functions can also be applied to our method.kD=[1 1 0 0 1 0 1 0 1 0 1 0 1 0].

    4.2 Image illustration

    Fig.8 presents the results of the proposed(k,n)threshold ISS scheme with bidirectional shadow image authentication without pixel expansion,wherek=2,n=2,k1s={36 296 023,42 414 499},k2s={6 980 681,34 960 501},k1p={7,42 414 499},k2p={5,34 960 501},and the input grayscale secret imageSis displayed in Fig.8a.Figs.8b and 8c illustrate the output two shadow images SC1and SC2,respectively.Fig.8d shows the secret image decoded with the two shadow images by Lagrange interpolation,where the secret image is losslessly decoded;i.e.,Fig.8d is the same as the secret image in Fig.8a.A randomly generated fake shadow image,denoted by SC'1,is shown in Fig.8e.Fig.8f shows the secret image decoded with SC'1and SC2using Lagrange interpolation,which reveals no information on the secret image and thus fails to decode the secret.

    Fig.8 Experimental results of the proposed(k,n)threshold ISS scheme with bidirectional shadow image authentication without pixel expansion,where k=2 and n=2:(a)grayscale secret image S;(bc)two grayscale shadow images SC1 and SC2;(d)grayscale secret image S'decoded with SC1 and SC2;(e)fake shadow image SC'1;(f)grayscale secret image S'decoded with SC'1 and SC2

    We will provide a detailed numerical encoding and authentication process of SC1.The detailed parameters are given in Table 2.

    Table 2 Some parameters and their values in Fig.8

    The result of the XOR4LBs operation on the lastithline of SCiis equal to HVi,fori=1,2,and thus SC1and SC2are real images.Finally,the real shadow images,i.e.,SC1and SC2,can be authenticated.However,the coordinate extraction offails and thusis fake.In the following experiments,we will omit the detailed parameters to save space.

    Fig.9 presents the results of the proposed(k,n)threshold ISS scheme with bidirectional shadow image authentication without pixel expansion,wherek=3,n=4,k1s={5 999 297,30 045 641},k2s={10 558 901,52 880 551},k3s={24 523 229,30 704 257},k4s={37 471 565,46 915 867},k1p={5,30 045 641},k2p={5,52 880 551},k3p={5,30 704 257},k4p={5,46 915 867},and the input grayscale secret imageSis displayed in Fig.9a.Figs.9b-9e present the four shadow images.Figs.9f-9i illustrate the secret images decoded with two or more shadow images using Lagrange interpolation,where almost only the firsttthshadow images are used to save space.From Figs.9f-9i,the secret image decoded with any three or more shadow images is lossless,while no part of the secret image with two or fewer shadow images is recognized.A randomly generated fake shadow image,denoted by SC'1,is illustrated in Fig.9j.Figs.9k-9n illustrate the secret imagesS'decoded with SC'1and another one or more shadow images using Lagrange interpolation,which reveals no information on the secret image and thus fails to decode the secret.

    Fig.9 More experimental results of the proposed(k,n)threshold ISS scheme with bidirectional shadow image authentication without pixel expansion,where k=3 and n=4:(a)grayscale secret image S;(b-e)grayscale shadow images SC1,SC2,SC3,and SC4;(f-i)grayscale secret image S'decoded with two or more shadow images;(j)fake shadow image SC'1;(k-n)grayscale secret image S'decoded with SC'1 and the other one or more shadow images

    Based on the above-mentioned experimental results,we conclude the following:

    1.Each shadow image has no pixel expansion or cross-interference with the secret image.

    2.No secret information is leaked with fewer thankshadow images,demonstrating the security of the proposed ISS.

    3.The secret image is losslessly decoded with anykor more shadow images.

    4.A separate shadow image is provided to achieve authentication.

    5.An ISS scheme with bidirectional shadow image authentication without pixel expansion for a general(k,n)threshold is achieved,where 2≤k≤nandn-kis small.

    4.3 Parameter analyses

    We discuss the values of entropy,encoding time,andNRforkandnbecausekandnare important in our method,where the entropy of SC1is given as follows:

    whereymeans a pixel value,and its statistical probability in an imageYis denoted by Prob(y).

    Here,xindicates that the lowxbits of the shadow image is XORed,where in our introduced methodx=4.We also state why we setx=4.

    The grayscale secret image shown in Fig.8 is used in our study.

    Fig.10 presents the entropy,encoding time,andNRcurves fornwhenk=3,where we set the theoretical entropy 8,from which we know the following:

    Fig.10 Entropy(a),encoding time(b),and NR(c)curves for n when x=4,k=3

    1.The entropy is almost the same asnincreases and the experimental entropy fits well with the perfect theoretical value.This demonstrates that the shadow image is almost random,that our method is secure,and that our analyses are effective.

    2.The encoding time is a monotonically increasing function ofn.Asnincreases,the number of screening operations increases,and thus the encoding time increases.

    3.NRis a monotonically decreasing function ofn.Asnincreases,the number of screening requirements increases,and hence the available random values ofa1,a2,···,ak-1decrease.

    Fig.11 shows the entropy,encoding time,andNRcurves forkwhenn=8,from which we know the following:

    Fig.11 Entropy(a),encoding time(b),and NR(c)curves for k when x=4,n=8

    1.The entropy is almost the same askincreases,and the experimental entropy fits well with the perfect theoretical value.This demonstrates that the shadow image is almost random,that our method is secure,and that our analyses are effective.

    2.The encoding time has a close value askincreases.There are enough available random values ofa1,a2,···,ak-1,and thus it is easy to screen the available values.

    3.NRis a monotonically increasing function ofkand increases dramatically whenk≥7.The space of available random values ofa1,a2,···,ak-1increases,askincreases.

    Figs.12 and 13 show why we setx=4,wherek=2.

    Fig.12 Entropy(a)and encoding time(b)curves for x when k=2,n=4,NR=249

    Fig.13 Entropy(a)and encoding time(b)curves for x when k=2,n=6,NR=245

    1.The values 3,4,and 5 are the alternative candidates ofxbecause their entropy is larger.

    2.Considering the encoding time,x=4 represents an acceptable time.

    3.In our method,we setx=4 to balance security and efficiency.

    4.4 Comparison with related schemes

    We compare our method with that of Yan et al.(2020a)using experiments and features in which the same secret image as shown in Fig.9a and the(2,3)threshold can be used.We choose the scheme of Yan et al.(2020a)for comparison because their scheme has a separate shadow authentication ability for a(k,n)threshold,which is also based on a polynomial.

    Fig.14 displays the results of Yan et al.(2020a),wherek=2 andn=3,and the grayscale secret imageSis shown in Fig.14a.Fig.14b is a binary authentication image.Figs.14c-14e illustrate the three shadow images SC1,SC2,and SC3.Fig.14f is the output additional binary image preserved by the dealer for authentication.Fig.14g presents the authentication result of SC1by the dealer.Fig.14h presents the secret image decoded with the first two shadow images using Lagrange interpolation.Fig.14h shows that the decoded secret image with any two or more shadow images is lossless.

    Fig.14 Experimental results of Yan et al.(2020a),where k=2 and n=3:(a)grayscale secret image S;(b)binary authentication image;(c-e)shadow images SC1,SC2,and SC3;(f)additional binary image preserved by the dealer for authentication;(g)authentication result of SC1 by the dealer;(h)grayscale secret image S'decoded with SC1 and SC2

    Fig.15 shows the results of our method with the same parameters.

    Fig.15 Our experimental results,where k=2 and n=3:(a)grayscale secret image S;(b-d)shadow images SC1,SC2,and SC3;(e)grayscale secret image S'decoded with SC1 and SC2

    According to Figs.14 and 15,the schemes of Yan et al.(2020a)and ours are compared as follows:

    1.Both our scheme and the scheme of Yan et al.(2020a)have the features of no pixel expansion,dealer-participatory separate shadow image authentication ability,(k,n)threshold,lossless decoding,and the use of a polynomial.

    2.The scheme of Yan et al.(2020a)can authenticate the shadow image only in the decoding phase,i.e.,unidirectional authentication,whereas our method can authenticate the shadow image in both distributing and decoding phases,i.e.,bidirectional authentication.

    3.The scheme of Yan et al.(2020a)requires an additional image preserved by the dealer to achieve authentication,whereas our method does not.

    4.A little information leakage may appear in the shadow image in the scheme of Yan et al.(2020a)because they use only the MSB in their scheme,whereas no information leakage appears in our method because we setx=4 to balance security and efficiency.

    5.Only a binarization operation is used to achieve authentication in the scheme of Yan et al.(2020a).Thus,their scheme has lower computational cost than ours.

    We compare the proposed method with more related studies(Liu YJ and Chang,2018;Liu YX et al.,2018b;Jiang et al.,2020;Yan et al.,2020a)in terms of features.

    Feature comparisons between the proposed method and related methods are presented in Table 3.

    Table 3 Feature comparisons with related methods

    Compared with conventional schemes,the proposed method with bidirectional shadow image authentication without pixel expansion achieves bidirectional separate shadow image authentication,lossless decoding,no pixel expansion,and no auxiliary information,and thus outperforms traditional schemes.

    5 Conclusions

    The main contribution of this study is the introduction of an image secret sharing(ISS)scheme with bidirectional shadow image authentication with no pixel expansion,lossless decoding,and no auxiliary information.The public key system and hash function were first introduced into the ISS to achieve admirable bidirectional shadow image authentication without pixel expansion or additional information,except for the secret key of the dealer and the public/private keys of participants.Theoretical analyses and experimental examples demonstrated the effectiveness of our method.The proposed ISS can losslessly decode secret images with bidirectional shadow image authentication without pixel expansion.We performed experiments and feature comparisons with related competitive schemes to show the advantages of our method.In the future,we willfocus on the use of other ISS principles,public key systems,and hash functions in our method to obtain more admirable features.In addition,we will study the ISS security analysis methods and consider the“beyond-coordinates-issue.”

    Contributors

    Xuehu YAN designed the research.Longlong LI processed the data.Jia CHEN drafted the paper.Lei SUN revised and finalized the paper.

    Compliance with ethics guidelines

    Xuehu YAN,Longlong LI,Jia CHEN,and Lei SUN declare that they have no conflict of interest.

    Data availability

    The data that support the findings of this study are available from the corresponding author upon reasonable request.

    日韩三级视频一区二区三区| 人人妻人人添人人爽欧美一区卜| 亚洲三区欧美一区| 久久精品国产清高在天天线| 亚洲av熟女| x7x7x7水蜜桃| 久久久久久久久免费视频了| 精品少妇久久久久久888优播| 超色免费av| 村上凉子中文字幕在线| 久久人人97超碰香蕉20202| 午夜影院日韩av| 美女高潮喷水抽搐中文字幕| 如日韩欧美国产精品一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 精品一区二区三区av网在线观看| 在线观看www视频免费| 一进一出好大好爽视频| 一边摸一边抽搐一进一小说 | 天堂动漫精品| 操出白浆在线播放| 亚洲中文日韩欧美视频| 极品少妇高潮喷水抽搐| 久久中文字幕一级| 三级毛片av免费| 窝窝影院91人妻| 欧美日韩黄片免| a级片在线免费高清观看视频| 一级,二级,三级黄色视频| 熟女少妇亚洲综合色aaa.| 超碰成人久久| 午夜福利乱码中文字幕| 亚洲精华国产精华精| 久久久国产一区二区| 老司机深夜福利视频在线观看| 成年人黄色毛片网站| 高清av免费在线| 欧美性长视频在线观看| 亚洲美女黄片视频| 欧美日韩亚洲综合一区二区三区_| 久久久精品国产亚洲av高清涩受| 美女福利国产在线| 新久久久久国产一级毛片| 一个人免费在线观看的高清视频| aaaaa片日本免费| 色综合婷婷激情| ponron亚洲| 亚洲久久久国产精品| 天堂中文最新版在线下载| 精品乱码久久久久久99久播| 欧美日韩亚洲高清精品| 久热这里只有精品99| 91麻豆精品激情在线观看国产 | 国产深夜福利视频在线观看| 人妻 亚洲 视频| 90打野战视频偷拍视频| 丝袜美腿诱惑在线| 亚洲精品中文字幕一二三四区| 国产黄色免费在线视频| 欧美日韩一级在线毛片| 最新在线观看一区二区三区| 人妻久久中文字幕网| 丰满迷人的少妇在线观看| 久久国产亚洲av麻豆专区| 在线观看免费高清a一片| 免费在线观看视频国产中文字幕亚洲| 9热在线视频观看99| 国产99白浆流出| 色在线成人网| 亚洲av美国av| 色精品久久人妻99蜜桃| 人妻丰满熟妇av一区二区三区 | 日韩人妻精品一区2区三区| 午夜成年电影在线免费观看| 久久久精品区二区三区| 91成年电影在线观看| 久久这里只有精品19| 精品国产国语对白av| 精品人妻1区二区| 黑丝袜美女国产一区| 99热网站在线观看| 免费日韩欧美在线观看| 久久天堂一区二区三区四区| 一级作爱视频免费观看| 又黄又粗又硬又大视频| 精品人妻在线不人妻| 天天操日日干夜夜撸| 午夜久久久在线观看| 国产精品一区二区精品视频观看| 99国产精品免费福利视频| 久久久国产成人免费| 中文字幕av电影在线播放| 丝瓜视频免费看黄片| 99精国产麻豆久久婷婷| 欧美丝袜亚洲另类 | 精品熟女少妇八av免费久了| 最近最新免费中文字幕在线| tocl精华| 首页视频小说图片口味搜索| 国产精品欧美亚洲77777| 热re99久久国产66热| 97人妻天天添夜夜摸| 美女视频免费永久观看网站| 亚洲成人免费av在线播放| 宅男免费午夜| 久久中文字幕一级| 欧美日韩视频精品一区| 可以免费在线观看a视频的电影网站| 国产精品一区二区在线不卡| 日韩免费av在线播放| 国产精品av久久久久免费| 久久草成人影院| 老熟妇乱子伦视频在线观看| 天堂√8在线中文| 国产国语露脸激情在线看| 91九色精品人成在线观看| 国产一区在线观看成人免费| 18禁裸乳无遮挡免费网站照片 | 国产成人系列免费观看| 欧美在线黄色| www.精华液| 丰满迷人的少妇在线观看| 午夜91福利影院| 欧美不卡视频在线免费观看 | 啦啦啦视频在线资源免费观看| 九色亚洲精品在线播放| 欧美+亚洲+日韩+国产| 热99久久久久精品小说推荐| 欧美日韩亚洲综合一区二区三区_| 免费观看a级毛片全部| 成人18禁在线播放| 老司机深夜福利视频在线观看| 91字幕亚洲| avwww免费| 国产高清视频在线播放一区| 精品人妻熟女毛片av久久网站| 视频在线观看一区二区三区| 国产成人啪精品午夜网站| 亚洲色图av天堂| 精品国产一区二区三区四区第35| 中文字幕人妻丝袜制服| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲一区二区三区不卡视频| 国产男靠女视频免费网站| 99在线人妻在线中文字幕 | 99国产精品免费福利视频| 91av网站免费观看| 久久久久久亚洲精品国产蜜桃av| 久久热在线av| 色尼玛亚洲综合影院| 精品久久久精品久久久| 亚洲午夜精品一区,二区,三区| 精品一区二区三卡| 人成视频在线观看免费观看| 91麻豆av在线| 欧美激情久久久久久爽电影 | 国产成人啪精品午夜网站| av免费在线观看网站| 精品一品国产午夜福利视频| 在线观看午夜福利视频| 欧美国产精品一级二级三级| 一本大道久久a久久精品| av天堂在线播放| 黄色视频,在线免费观看| 99热网站在线观看| netflix在线观看网站| av天堂在线播放| 亚洲精品美女久久av网站| 一级,二级,三级黄色视频| 欧美黄色淫秽网站| 久久 成人 亚洲| 天堂俺去俺来也www色官网| 精品一品国产午夜福利视频| 久久人妻福利社区极品人妻图片| bbb黄色大片| 看免费av毛片| 午夜两性在线视频| 久热这里只有精品99| 亚洲国产精品一区二区三区在线| 美女 人体艺术 gogo| 精品久久久久久久久久免费视频 | 脱女人内裤的视频| 一本综合久久免费| 十分钟在线观看高清视频www| 看片在线看免费视频| 男人舔女人的私密视频| 欧美激情极品国产一区二区三区| 日本一区二区免费在线视频| 免费观看精品视频网站| 国产欧美日韩一区二区三区在线| 黄色视频,在线免费观看| 少妇的丰满在线观看| 国产精品国产高清国产av | 免费在线观看亚洲国产| 色综合婷婷激情| 男女午夜视频在线观看| 国产免费现黄频在线看| 国产精品偷伦视频观看了| 欧美一级毛片孕妇| 亚洲一区二区三区不卡视频| 成年人免费黄色播放视频| 18禁裸乳无遮挡动漫免费视频| 女同久久另类99精品国产91| 久久精品国产亚洲av高清一级| 亚洲在线自拍视频| 久热这里只有精品99| 午夜精品在线福利| 免费久久久久久久精品成人欧美视频| 别揉我奶头~嗯~啊~动态视频| 丝袜美腿诱惑在线| 黄片大片在线免费观看| 久久久国产一区二区| 757午夜福利合集在线观看| 天天影视国产精品| 黄色视频,在线免费观看| 日本vs欧美在线观看视频| 看黄色毛片网站| 老熟妇仑乱视频hdxx| 久久精品国产清高在天天线| 欧美日韩乱码在线| 中文字幕色久视频| 亚洲自偷自拍图片 自拍| 91成人精品电影| 免费高清在线观看日韩| 老司机午夜十八禁免费视频| 激情在线观看视频在线高清 | 国产日韩一区二区三区精品不卡| 国产精品久久久av美女十八| 99热国产这里只有精品6| 亚洲精品一卡2卡三卡4卡5卡| 露出奶头的视频| 丰满人妻熟妇乱又伦精品不卡| 黑人巨大精品欧美一区二区蜜桃| 日韩大码丰满熟妇| 老熟妇乱子伦视频在线观看| 91av网站免费观看| 亚洲国产欧美网| 亚洲精品久久成人aⅴ小说| 电影成人av| 久久久精品国产亚洲av高清涩受| 国产精品av久久久久免费| 午夜精品在线福利| 50天的宝宝边吃奶边哭怎么回事| 国产精品免费视频内射| 80岁老熟妇乱子伦牲交| 亚洲国产精品一区二区三区在线| 大码成人一级视频| 国产乱人伦免费视频| 日韩欧美一区视频在线观看| 午夜福利在线观看吧| 国产精品一区二区免费欧美| 飞空精品影院首页| 亚洲av成人av| 亚洲熟女精品中文字幕| 黄色毛片三级朝国网站| 精品人妻1区二区| 国产一区二区三区在线臀色熟女 | 后天国语完整版免费观看| 人妻丰满熟妇av一区二区三区 | 久久香蕉国产精品| 久久影院123| 久久国产乱子伦精品免费另类| 青草久久国产| 黄色成人免费大全| 国产成人精品无人区| 国产成人免费无遮挡视频| 80岁老熟妇乱子伦牲交| 午夜久久久在线观看| 国产日韩欧美亚洲二区| 18禁黄网站禁片午夜丰满| 国产亚洲精品久久久久久毛片 | 久久人妻熟女aⅴ| 久久国产精品人妻蜜桃| 成年动漫av网址| 很黄的视频免费| 亚洲三区欧美一区| 18在线观看网站| 高清欧美精品videossex| 国产欧美日韩一区二区三| 精品久久蜜臀av无| 侵犯人妻中文字幕一二三四区| a级片在线免费高清观看视频| 日韩视频一区二区在线观看| 人妻 亚洲 视频| 亚洲七黄色美女视频| 亚洲免费av在线视频| 热re99久久国产66热| 午夜福利视频在线观看免费| 中亚洲国语对白在线视频| 日韩欧美在线二视频 | 久久精品熟女亚洲av麻豆精品| 亚洲av欧美aⅴ国产| 熟女少妇亚洲综合色aaa.| 国产精品久久久久成人av| 一级黄色大片毛片| avwww免费| 亚洲国产精品一区二区三区在线| 色尼玛亚洲综合影院| 咕卡用的链子| 国产xxxxx性猛交| 欧美成狂野欧美在线观看| 精品少妇久久久久久888优播| 成年版毛片免费区| 国产精品香港三级国产av潘金莲| 亚洲五月天丁香| 黑人欧美特级aaaaaa片| 欧美日韩亚洲高清精品| 国产成人精品在线电影| 欧美日韩亚洲国产一区二区在线观看 | 又黄又粗又硬又大视频| 国产欧美日韩一区二区三区在线| 国产又色又爽无遮挡免费看| 五月开心婷婷网| 99热网站在线观看| 欧美日韩精品网址| 亚洲片人在线观看| 91国产中文字幕| 黄片播放在线免费| 成人国产一区最新在线观看| 日韩视频一区二区在线观看| 精品熟女少妇八av免费久了| 日日爽夜夜爽网站| 色老头精品视频在线观看| 亚洲精品粉嫩美女一区| 亚洲黑人精品在线| 欧美精品av麻豆av| 精品国产国语对白av| 午夜视频精品福利| 日韩熟女老妇一区二区性免费视频| 69精品国产乱码久久久| 在线观看免费高清a一片| 亚洲国产毛片av蜜桃av| 中文字幕人妻丝袜制服| 夫妻午夜视频| 久久人人97超碰香蕉20202| 叶爱在线成人免费视频播放| 大片电影免费在线观看免费| 亚洲中文字幕日韩| 99国产精品免费福利视频| 操出白浆在线播放| 亚洲午夜精品一区,二区,三区| 午夜影院日韩av| 亚洲熟女精品中文字幕| 久久久久久久久免费视频了| 久久国产乱子伦精品免费另类| 18禁裸乳无遮挡免费网站照片 | 久久国产精品人妻蜜桃| 12—13女人毛片做爰片一| 99国产精品一区二区蜜桃av | 亚洲精品一二三| x7x7x7水蜜桃| 午夜激情av网站| av有码第一页| 久久久久国产一级毛片高清牌| 亚洲欧美激情在线| 国产精品九九99| 国产成人一区二区三区免费视频网站| 91在线观看av| 免费在线观看影片大全网站| 中文字幕另类日韩欧美亚洲嫩草| 免费久久久久久久精品成人欧美视频| 亚洲中文字幕日韩| 久久久精品免费免费高清| 欧美日韩亚洲综合一区二区三区_| 久久影院123| 丁香欧美五月| 亚洲七黄色美女视频| 免费观看精品视频网站| 国产无遮挡羞羞视频在线观看| 一本一本久久a久久精品综合妖精| 国产麻豆69| 一级a爱视频在线免费观看| 老司机影院毛片| 法律面前人人平等表现在哪些方面| 三上悠亚av全集在线观看| 久久人妻福利社区极品人妻图片| 国产精品一区二区免费欧美| 亚洲国产精品sss在线观看 | 国产午夜精品久久久久久| 高清av免费在线| 国产亚洲一区二区精品| 免费观看人在逋| 男女高潮啪啪啪动态图| 老熟妇仑乱视频hdxx| 高清毛片免费观看视频网站 | 99精品在免费线老司机午夜| 精品人妻在线不人妻| 中文字幕人妻丝袜制服| 黄片大片在线免费观看| 国产成人免费无遮挡视频| 在线观看一区二区三区激情| 18在线观看网站| 一区二区三区国产精品乱码| 国产xxxxx性猛交| 成人黄色视频免费在线看| 免费在线观看视频国产中文字幕亚洲| 国产三级黄色录像| 成人手机av| 777久久人妻少妇嫩草av网站| 亚洲av第一区精品v没综合| 中文字幕高清在线视频| 国产在线观看jvid| 麻豆国产av国片精品| 国产精品免费视频内射| 久久99一区二区三区| 高清欧美精品videossex| 精品久久久久久久毛片微露脸| 久久青草综合色| 日本精品一区二区三区蜜桃| www.熟女人妻精品国产| 久久久精品免费免费高清| 免费在线观看亚洲国产| 亚洲精品国产区一区二| 嫁个100分男人电影在线观看| 美国免费a级毛片| 亚洲男人天堂网一区| 少妇的丰满在线观看| 日韩制服丝袜自拍偷拍| 在线观看免费午夜福利视频| 国产精品98久久久久久宅男小说| 91成年电影在线观看| 久久影院123| 黑人巨大精品欧美一区二区蜜桃| 国产熟女午夜一区二区三区| 久久久久久免费高清国产稀缺| 精品国产乱码久久久久久男人| 欧美大码av| tube8黄色片| tocl精华| 岛国在线观看网站| 老汉色av国产亚洲站长工具| 男女高潮啪啪啪动态图| av天堂在线播放| 久久精品成人免费网站| 欧美日韩国产mv在线观看视频| 天堂动漫精品| 国产男女内射视频| 亚洲专区中文字幕在线| 这个男人来自地球电影免费观看| av电影中文网址| 国产一区二区三区综合在线观看| 国产亚洲欧美精品永久| 丝瓜视频免费看黄片| 中文欧美无线码| 黄网站色视频无遮挡免费观看| 免费在线观看黄色视频的| 国产欧美日韩一区二区三区在线| 99久久精品国产亚洲精品| 巨乳人妻的诱惑在线观看| 国产成人啪精品午夜网站| 国产一卡二卡三卡精品| 一级毛片精品| 久久中文字幕人妻熟女| 国产精品免费视频内射| 如日韩欧美国产精品一区二区三区| 久久久久久久国产电影| 亚洲成a人片在线一区二区| 国产一区在线观看成人免费| 欧美大码av| 捣出白浆h1v1| 99久久99久久久精品蜜桃| 久久99一区二区三区| 一级黄色大片毛片| 国产极品粉嫩免费观看在线| 国产成人系列免费观看| 国产aⅴ精品一区二区三区波| 老汉色av国产亚洲站长工具| 国产在视频线精品| 亚洲av欧美aⅴ国产| 国产99白浆流出| 精品国产一区二区久久| 在线观看免费视频网站a站| 欧美大码av| 成人免费观看视频高清| 欧美日韩瑟瑟在线播放| 91国产中文字幕| 伊人久久大香线蕉亚洲五| 狂野欧美激情性xxxx| av视频免费观看在线观看| 久久青草综合色| 国产av精品麻豆| 国产精品99久久99久久久不卡| 十八禁人妻一区二区| 好男人电影高清在线观看| 国产97色在线日韩免费| 两个人免费观看高清视频| 91老司机精品| 国产av精品麻豆| 一二三四在线观看免费中文在| 久久精品亚洲av国产电影网| 韩国精品一区二区三区| www.精华液| 99国产精品免费福利视频| 美国免费a级毛片| av超薄肉色丝袜交足视频| 亚洲精品在线美女| 在线av久久热| 精品国产美女av久久久久小说| 啦啦啦视频在线资源免费观看| 91av网站免费观看| 丰满饥渴人妻一区二区三| 免费在线观看亚洲国产| 国产主播在线观看一区二区| 国产激情欧美一区二区| 性色av乱码一区二区三区2| 亚洲欧美激情在线| 很黄的视频免费| 久久精品国产亚洲av香蕉五月 | 亚洲精品国产精品久久久不卡| 高清欧美精品videossex| 桃红色精品国产亚洲av| 99久久人妻综合| 免费av中文字幕在线| 一二三四社区在线视频社区8| 精品久久久精品久久久| 一边摸一边抽搐一进一小说 | 午夜成年电影在线免费观看| 久久久水蜜桃国产精品网| 亚洲一区二区三区不卡视频| 国产精华一区二区三区| 久久精品国产a三级三级三级| √禁漫天堂资源中文www| 久久久久精品人妻al黑| 岛国在线观看网站| 国产欧美日韩一区二区精品| 日韩 欧美 亚洲 中文字幕| 91老司机精品| 精品免费久久久久久久清纯 | 99久久精品国产亚洲精品| 一区二区日韩欧美中文字幕| 男男h啪啪无遮挡| 满18在线观看网站| 亚洲国产欧美日韩在线播放| 大码成人一级视频| 99在线人妻在线中文字幕 | 波多野结衣一区麻豆| 亚洲美女黄片视频| 丰满迷人的少妇在线观看| 国内毛片毛片毛片毛片毛片| 麻豆成人av在线观看| aaaaa片日本免费| 在线永久观看黄色视频| 91在线观看av| 久久久久国内视频| 女人高潮潮喷娇喘18禁视频| 国产高清国产精品国产三级| 精品国产一区二区三区久久久樱花| 又紧又爽又黄一区二区| av片东京热男人的天堂| 久久精品国产清高在天天线| 91九色精品人成在线观看| 国产成人影院久久av| 男女午夜视频在线观看| 黄色a级毛片大全视频| 国产亚洲精品久久久久5区| 亚洲精品中文字幕在线视频| 精品久久蜜臀av无| 亚洲精品粉嫩美女一区| 手机成人av网站| 女警被强在线播放| 久热这里只有精品99| 亚洲午夜理论影院| 丝袜人妻中文字幕| 无遮挡黄片免费观看| 人妻丰满熟妇av一区二区三区 | 99国产精品99久久久久| 日韩人妻精品一区2区三区| 久久精品国产a三级三级三级| 久久久久精品国产欧美久久久| 国产av精品麻豆| 一区二区三区激情视频| 精品久久蜜臀av无| 成年人免费黄色播放视频| 水蜜桃什么品种好| 亚洲人成伊人成综合网2020| 99热只有精品国产| av不卡在线播放| 成人黄色视频免费在线看| 亚洲片人在线观看| 色播在线永久视频| 国产色视频综合| 免费少妇av软件| 91精品国产国语对白视频| 久久天躁狠狠躁夜夜2o2o| 女人高潮潮喷娇喘18禁视频| 黄色a级毛片大全视频| 亚洲一码二码三码区别大吗| 大型黄色视频在线免费观看| svipshipincom国产片| 国产av精品麻豆| 久久久久久免费高清国产稀缺| 久久久国产一区二区| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲五月婷婷丁香| 国产在线观看jvid| 国产激情欧美一区二区| 免费看十八禁软件| 久久国产乱子伦精品免费另类| 国产精品电影一区二区三区 | 好男人电影高清在线观看| 最新美女视频免费是黄的| 一夜夜www| 91字幕亚洲| 欧美大码av| 亚洲国产欧美一区二区综合| 十八禁高潮呻吟视频| 久久久久久久久免费视频了| 国产成人精品久久二区二区91| 日韩制服丝袜自拍偷拍| 人人澡人人妻人| 男女下面插进去视频免费观看| 婷婷精品国产亚洲av在线 | 久久人妻福利社区极品人妻图片| 999精品在线视频| 男女高潮啪啪啪动态图|