• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Acoustic localization with multi-layer isogradient sound speed profile using TDOA and FDOA*

    2023-02-06 09:44:34DongzhouZHANSitianWANGShouguiCAIHuarongZHENGWenXU

    Dongzhou ZHAN,Sitian WANG,Shougui CAI,Huarong ZHENG,Wen XU

    1College of Information Science and Electronic Engineering,Zhejiang University,Hangzhou 310027,China

    2Key Laboratory of Ocean Observation-Imaging Testbed of Zhejiang Province,Ocean College,Zhejiang University,Zhoushan 316021,China

    1 Introduction

    The emergence of underwater acoustic sensor networks(UASNs)has greatly improved the effi-ciency of marine environmental monitoring(Kong et al.,2005).In most UASN applications,precise node localization is fundamental and important.The node location information is the key to accomplishing other underwater tasks(Pompili and Akyildiz,2009;Fan et al.,2011).In location-dependent data acquisition tasks,the data is useful only when the location information is correct(Ferguson et al.,2005;Li et al.,2018).Because the speed of sound underwater varies with water depth,salinity,and temperature,acoustic localization methods based on the assumption of straight-line sound propagation have inherent biases.More accurate localization algorithms with realistic sound speed profiles(SSPs)need to be developed.

    Various methods have been proposed to solve the underwater localization problem.Basically,these methods can be divided into two major classes,range-free and range-based methods(Erol-Kantarci et al.,2011;Han et al.,2012).Range-free methods localize the target node according to the connectivity and topology of UASN without the range and bearing information(Chen et al.,2018).The accuracy of the range-free localization methods is not high and is limited by the number of sensor nodes.Range-based localization methods include time of arrival(TOA)(Luo et al.,2018),time difference of arrival(TDOA)(Liang et al.,2013),angle of arrival(AOA)(Huang and Zheng,2018),frequency difference of arrival(FDOA)(Zhang et al.,2018),and received signal strength indicator(RSSI)(Sun et al.,2019).These methods first estimate the ranges or angles between the target node and the sensor nodes.Trilateration,triangulation,or multilateration methods are then used to localize the target node.Beaudeau et al.(2015)proposed a new RSSIbased multi-target tracking approach,and demonstrated the effectiveness of the approach in tracking a relatively large number of targets.However,the RSSI method performs terribly for long-range localization in an underwater environment.Huang and Zheng(2018)proposed a new multi-hop localization algorithm with AOA,which outperforms the conventional algorithms,even if the AOA measurement error is large.

    However,accurate time synchronization is required between the sensors and the target,remaining a challenging task in UASNs.Although the TOA-based methods are simple to implement,a time synchronization problem exists.For unsynchronized UASNs,TDOA and FDOA are used commonly,especially for localization of moving sources(Ho et al.,2007;Tan et al.,2011).

    All the range-based methods that use the straight-line propagation model ignore the soundray bending phenomenon.To mitigate the influence of the varying sound speed on localization,different sound models have been proposed.The effective sound velocity(ESV)model(Vincent and Hu,1997)was proposed to compensate for the error caused by the bending of sound ray.However,ESV works well only in the deep-sea environment.Ameer and Jacob(2010)proposed that when the target depth is known,the TOA between the target node and each sensor node can be transformed into a constant range surfaces using an SSP.The position of the target is then derived as the point whose sum of the squared distances from all these surfaces is minimum.Although this method has a high localization accuracy,the main drawback is the significant computational complexity.In the case of the isogradient SSP,Ramezani et al.(2013)used geometric relationships to establish path equations among the nodes.The computational complexity is acceptable,because it is analytic.However,this method cannot be applied to more complex SSP scenarios.

    In most applications of underwater localization using the TDOA and FDOA methods,the localization problem is nonlinear(Ho and Xu,2004;Jiang et al.,2020).Therefore,various nonlinear methods have been proposed to localize the target node.Some of them are implemented iteratively based on maximum likelihood methods(Vankayalapati et al.,2014),such as the Gauss-Newton algorithm(GNA)(Doˇgan?ay and Hashemi-Sakhtsari,2005).Ho et al.(2007)introduced closed-form solutions that require low computation capability.Linearization methods can be implemented in localization.Ho and Xu(2004)employed several weighted least-square minimizations to transform the nonlinear problem into a linear one.Furthermore,closed-form solutions of the nonlinear measurement equations were constructed step by step in Jia et al.(2019).However,considering the multi-layer isogradient SSP,the scenario we discuss in this paper is relatively complicated,and cannot be solved using linear methods or easily transformed into a linear one.

    In this study,we first propose an analytical multi-layer isogradient SSP model for the sound ray path between nodes.We then propose a method to calculate the gradient of the frequency shift of the arrival signals.On this basis,we propose an FDOAbased node localization algorithm,and a location and velocity joint estimation algorithm based on TDOA and FDOA.The proposed algorithm tracks the sound ray effectively.Results from the simulations prove the effectiveness of the proposed algorithms.More accurate and reliable node localization can be attained,compared with the straight-line propagation method.

    2 Multi-layer isogradient sound speed profile model and sound ray tracking

    In this section,the mathematical multi-layer isogradient SSP model is described in detail.

    As shown in Fig.1,the green line represents the true SSP,and the red line represents the multi-layer isogradient SSP.The multi-layer model segments the true SSP into multiple layers with a piecewise linear function of water depth.Each layer has a constant gradient.There are a total ofPsegmented lines to approximate the true SSP(Fig.1).Then,the sound speedcp(z)in thepthsound ray layer can be expressed as

    Fig.1 A true sound speed profile(SSP)and a multilayer isogradient SSP(References to color refer to the online version of this figure)

    wherezis the water depth ranging fromzp-1tozp,apis the gradient,andbpis the horizontal-axis intercept.Bothapandbpare determined by the true SSP.As the number of layers becomes larger,the difference between the true SSP and the multilayer SSP decreases.

    According to Snell’s law(Shirley,1951)and the geometric relationship of the sound ray,the starting pointSp=(xSp,ySp,zSp)Tand the ending pointEp=(xEp,yEp,zEp)Tin a single layer are related as(Cai,2019)wheredpis the horizontal distance between the starting and ending points of the sound ray,Lpis a constant determined by the characteristics of SSP,XpandYpare the defined auxiliary variables,αpis the angle between the actual acoustic ray path and the straight-line path,βpis the angle between the straight-line path and the horizontal direction,andθSpandθEpare the glancing angles at the starting and ending points of the sound ray,respectively.The anglesαp,βp,θSp,andθEpare illustrated directly in Fig.2.The description of linetype is the same as in Fig.1.The traveling time fromSptoEpis denoted astp.

    Fig.2 Glancing angles of θEp and θSp+1(References to color refer to the online version of this figure)

    Regardless of the reflection of the seabed and sea surface(Fig.2),the glancing angles at the ending point of thepthlayer and the starting point of the(p+1)thlayer are related as

    Using Eqs.(3)-(11)and the properties of trigonometric functions,we can obtain

    Eq.(12)is a high-order polynomial ofXp(ordp).The calculated value ofXpis substituted into Eqs.(5)-(9)to find theθSpandθEpof each layer,thereby realizing sound ray tracking.Therefore,with the multi-layer model,the sound ray tracking is equivalent to determining the roots of thep-1 polynomials.

    3 Moving target node localization

    This section introduces two algorithms in detail,i.e.,the FDOA localization algorithm and the joint estimation algorithm based on the TDOA(Cai,2019),and FDOA for localization and velocity estimation of a moving target node.To fulfill either of the two algorithms,we need to know the gradient of certain spatial positions first.

    3.1 Frequency gradient calculation

    Assume that the velocities of the target and sensor nodes are not zero,and define the target position asx=[x,y,z]T,the target velocity at positionxasvx=[vx,vy,vz]T,the sensor position asa=[xa,ya,za]T,and the sensor velocity asva=[vax,vay,vaz]T.With the multi-layer isogradient SSP model,the analytical expression of the frequency of arrival(FOA)from the transmitter to the receiver is

    wheref1is the shifted signal frequency related to the movement of the transmitter andfDis the Doppler frequency shift produced by the movement of the receiver(Bogushevich,1999):

    wheref0is the carrier frequency,csandcrare the speed of sound at the depths of the target and sensor nodes,respectively,andv⊥sandv⊥rare the radial velocities of the target and sensor nodes,respectively.Moreover,v⊥sandv⊥rare given by

    DenoteAT'as the line that connects the target’s projectionT'and sensorA.φis the angle betweenAT'and thex-axis,andvs=[vsx,vsy,vsz]Tandvr=[vrx,vry,vrz]Tare the velocity of the transmitter and receiver nodes,respectively(Fig.3).

    Fig.3 Decomposition of speed vs

    When the target is the transmitter,the partial derivative of FOA to the target position can be obtained from Eq.(13)as

    where the partial derivatives are

    wherevh=vxcosφ+vysinφ,andvah=vaxcosφ+vaysinφ(a refers to the sensor node related parameters).Similarly,the partial derivatives offwith respect to the target’sy-andz-axis coordinates can be obtained.

    The partial derivative of FOA to the target velocity can also be obtained from Eq.(13)as

    Similarly,the partial derivatives offwith respect to the target’s velocity components of theyandz-axis can be obtained.

    3.2 Frequency difference of the arrival localization algorithm

    Consider a three-dimensional UASN withNsensor nodes.The positions and velocities of all the sensor nodes are known based on the global positioning system(GPS).Meanwhile,the velocity of the target node is assumed to be known for the FDOA localization algorithm for four sensor nodes.Recall that the position of the target node isx;FOAs of the positioning signals received by the sensor node can then be modeled as

    where the actual signal arrival frequencyg(·)=[g1(·),g2(·),...,gN(·)]Tis a function of the target positionx=[x,y,z]Trepresented by Eq.(13),ff=[ff1,ff2,...,ffN]Tis the measured FOAs between the target and the individual sensors,andN-dimensional column vectornis the measurement noise,obeying the Gaussian distribution with a mean value of zero and a variance of.The corresponding measurement noises of individual sensor nodes are independent of each other.

    Taking the first sensor node as the reference node,and subtracting the arrival frequencies of the reference node from the arrival frequencies of the otherN-1 nodes,the FDOA measurement model is

    whereΔf=[Δf21,Δf31,...,ΔfN1]T,g'(·)=[g21'(·),g31'(·),...,gN1'(·)]T,ζ=[ζ21,ζ31,...,ζN1]T,and

    The covariance matrix of the noise vector can be obtained from Eq.(31)as

    where diag(σ2f2,σ2f3,...,σ2fN)stands for a diagonal matrix,whose diagonal values areσ2f2,σ2f3,...,σ2fN.

    Because it is assumed that the measurement noise is Gaussian,the maximum likelihood estimate of target positionxcan be derived as

    Obviously,the solution represented by Eq.(33)is nonlinear,and GNA(Cai,2019)can be used to find the solution.The GNA method uses Taylor series approximation to minimize Eq.(33),through multiple iterations.Thekthiteration can be expressed as

    whereJf=?g'(x(k)),rf=g'(x(k))-Δf,and

    According to Eq.(18)and the solution methods proposed by Cai(2019),it can be obtained that(i=2,3,...,N).The pseudocode of this algorithm is listed in Algorithm 1.

    Note that the target velocity is assumed to be known in the scenario of four sensor nodes for the FDOA localization algorithm.This assumption is actually not necessary if more(at least seven)sensor nodes are available,because both position and velocity information can be estimated from FDOAs.In other words,the considered four-sensor-node scenario cannot provide velocity information.Instead of using more sensor nodes,we propose a joint FDOA and TDOA method to estimate both the position and velocity information in the following subsections.

    3.3 Joint estimation using both TDOA and FDOA

    When the TDOA and FDOA measurements are combined to estimate the position and velocity of the moving target,the estimation can be achieved by increasing the dimension of the matrices mentioned above.The variable to be estimated isΦ=[x,y,z,vx,vy,vz]T,and GNA is again used to solve the problem.First,the TOAs of the positioning signals received by the sensor node can be modeled as

    where the actual signal arrival timeh(·)=[h1(·),h2(·),...,hN(·)]Tis a function ofΦ,t=[t1,t2,...,tN]Tis the measured TOAs between the target and the individual sensors,andN-dimensional column vectorntis the measurement noise,obeying the Gaussian distribution with a mean value of zero and a variance of.The corresponding measurement noises of individual sensor nodes are independent of each other.Each item ofh(·)can be described in detail as

    wherePis the number of the total layers through which the sound ray travels.

    Taking the first sensor node as the reference node,and subtracting the arrival times of the reference node from otherN-1 nodes,the TDOA measurement model is

    whereΔt=[Δt21,Δt31,...,ΔtN1]T,h'(·)=[h21'(·),h31'(·),...,hN1'(·)]T,ρ=[ρ21,ρ31,...,ρN1]T,and

    The covariance matrix of the noise vector can be obtained from Eq.(43)as

    Following the same procedure as mentioned in the FDOA localization algorithm,the maximum likelihood estimate ofΦcan be derived as and thekthiteration of the GNA method can be expressed as

    where

    久久精品国产鲁丝片午夜精品| 亚洲欧美清纯卡通| 最近2019中文字幕mv第一页| 欧美精品高潮呻吟av久久| 日日摸夜夜添夜夜添av毛片| 九九在线视频观看精品| 一区在线观看完整版| 国产成人精品婷婷| 啦啦啦视频在线资源免费观看| 最近的中文字幕免费完整| 欧美精品高潮呻吟av久久| 欧美日韩综合久久久久久| 久久国产乱子免费精品| 精品少妇久久久久久888优播| 国产黄色视频一区二区在线观看| 国产伦精品一区二区三区四那| 中文字幕人妻丝袜制服| 亚洲欧美成人综合另类久久久| 天堂8中文在线网| 免费黄色在线免费观看| 久久毛片免费看一区二区三区| 大话2 男鬼变身卡| 精品一区二区免费观看| 最后的刺客免费高清国语| 亚洲精品国产av蜜桃| 国产成人一区二区在线| 蜜臀久久99精品久久宅男| 午夜久久久在线观看| 最后的刺客免费高清国语| 国产视频内射| 国产亚洲一区二区精品| 亚洲成人手机| 亚洲精品日本国产第一区| 特大巨黑吊av在线直播| 麻豆精品久久久久久蜜桃| 秋霞在线观看毛片| 亚洲精品中文字幕在线视频 | 国产成人免费无遮挡视频| 精品人妻偷拍中文字幕| 国产欧美日韩精品一区二区| 欧美最新免费一区二区三区| 国产精品偷伦视频观看了| 中国三级夫妇交换| 搡老乐熟女国产| 夜夜骑夜夜射夜夜干| 99热全是精品| 最近2019中文字幕mv第一页| 亚洲熟女精品中文字幕| 91午夜精品亚洲一区二区三区| 美女大奶头黄色视频| 日韩av不卡免费在线播放| 国产有黄有色有爽视频| 欧美精品人与动牲交sv欧美| 91午夜精品亚洲一区二区三区| 婷婷色麻豆天堂久久| 亚洲美女视频黄频| 多毛熟女@视频| 高清不卡的av网站| 高清在线视频一区二区三区| 久久人妻熟女aⅴ| 女人精品久久久久毛片| 日韩欧美精品免费久久| 日本欧美视频一区| 久久99一区二区三区| 国产精品秋霞免费鲁丝片| 中国三级夫妇交换| 成人无遮挡网站| 男人爽女人下面视频在线观看| 成年av动漫网址| 成年人免费黄色播放视频 | 亚洲欧美日韩卡通动漫| 久久久久久久国产电影| 九九在线视频观看精品| 国产精品欧美亚洲77777| 国产 精品1| 夜夜爽夜夜爽视频| 亚洲精品自拍成人| 搡老乐熟女国产| 国产69精品久久久久777片| 日日摸夜夜添夜夜添av毛片| 免费播放大片免费观看视频在线观看| 日本欧美国产在线视频| 赤兔流量卡办理| 日韩欧美 国产精品| 国产国拍精品亚洲av在线观看| 久久国内精品自在自线图片| 欧美精品高潮呻吟av久久| 亚洲第一av免费看| 大话2 男鬼变身卡| 一级二级三级毛片免费看| 久久99热6这里只有精品| 国产伦理片在线播放av一区| 久久精品国产自在天天线| 黄色毛片三级朝国网站 | 精品人妻偷拍中文字幕| 亚洲情色 制服丝袜| 国产精品一二三区在线看| 欧美+日韩+精品| 亚洲天堂av无毛| 最近中文字幕高清免费大全6| 晚上一个人看的免费电影| 在线播放无遮挡| 自拍偷自拍亚洲精品老妇| 综合色丁香网| 91成人精品电影| 亚洲欧美一区二区三区黑人 | 中文资源天堂在线| 最新的欧美精品一区二区| 国产精品女同一区二区软件| 三级国产精品片| 欧美人与善性xxx| 99热国产这里只有精品6| 男男h啪啪无遮挡| 精品人妻一区二区三区麻豆| 国产av码专区亚洲av| 午夜激情久久久久久久| 久久99热6这里只有精品| 亚洲无线观看免费| 男女免费视频国产| 如日韩欧美国产精品一区二区三区 | av在线app专区| 成年女人在线观看亚洲视频| 看免费成人av毛片| 边亲边吃奶的免费视频| 日韩中文字幕视频在线看片| 99久久综合免费| 99热6这里只有精品| av在线老鸭窝| 狠狠精品人妻久久久久久综合| 精品久久久噜噜| 秋霞伦理黄片| 人人妻人人澡人人爽人人夜夜| 国产精品一区二区三区四区免费观看| 制服丝袜香蕉在线| 日本wwww免费看| 国产综合精华液| 亚洲国产精品成人久久小说| 中文乱码字字幕精品一区二区三区| 一区二区av电影网| 大码成人一级视频| 啦啦啦视频在线资源免费观看| av女优亚洲男人天堂| 日韩大片免费观看网站| 亚洲av.av天堂| www.色视频.com| 国产成人91sexporn| xxx大片免费视频| 免费大片18禁| 国内精品宾馆在线| 人妻系列 视频| 免费黄频网站在线观看国产| 欧美+日韩+精品| 美女大奶头黄色视频| 欧美日韩视频精品一区| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲欧美精品永久| 成人无遮挡网站| 香蕉精品网在线| 国产男女超爽视频在线观看| av一本久久久久| 亚洲成人一二三区av| 成人免费观看视频高清| 国产亚洲欧美精品永久| 亚洲人成网站在线播| 中文字幕人妻丝袜制服| 校园人妻丝袜中文字幕| 亚洲av.av天堂| 最近2019中文字幕mv第一页| 夫妻性生交免费视频一级片| 国产男女内射视频| 黑人巨大精品欧美一区二区蜜桃 | 国产成人精品一,二区| 免费高清在线观看视频在线观看| 国语对白做爰xxxⅹ性视频网站| 国产淫语在线视频| 欧美bdsm另类| 在现免费观看毛片| 99re6热这里在线精品视频| 日本wwww免费看| a 毛片基地| 国产欧美亚洲国产| 国产男人的电影天堂91| 国产精品蜜桃在线观看| 男女啪啪激烈高潮av片| 91精品伊人久久大香线蕉| 男女无遮挡免费网站观看| 国产亚洲5aaaaa淫片| 一二三四中文在线观看免费高清| 成年女人在线观看亚洲视频| 亚洲av成人精品一二三区| 日韩亚洲欧美综合| 欧美激情极品国产一区二区三区 | 美女国产视频在线观看| 麻豆乱淫一区二区| 一级毛片黄色毛片免费观看视频| 免费大片18禁| 国产色婷婷99| 国产极品粉嫩免费观看在线 | 欧美3d第一页| 亚洲第一区二区三区不卡| 亚洲av电影在线观看一区二区三区| 自线自在国产av| 三级国产精品欧美在线观看| 毛片一级片免费看久久久久| 久久毛片免费看一区二区三区| 亚洲美女视频黄频| 国产无遮挡羞羞视频在线观看| 欧美日韩一区二区视频在线观看视频在线| 免费观看性生交大片5| 国产亚洲av片在线观看秒播厂| 亚洲精品亚洲一区二区| 一区二区三区乱码不卡18| 午夜免费男女啪啪视频观看| 亚洲精品色激情综合| 国产精品一二三区在线看| 国产精品久久久久久久电影| 91精品国产国语对白视频| 美女中出高潮动态图| 亚洲天堂av无毛| 成年人午夜在线观看视频| 内射极品少妇av片p| 日韩大片免费观看网站| 熟妇人妻不卡中文字幕| 亚洲精品自拍成人| 国产精品熟女久久久久浪| 欧美日本中文国产一区发布| 午夜激情久久久久久久| 精品亚洲乱码少妇综合久久| av播播在线观看一区| 一本一本综合久久| av福利片在线观看| 国产综合精华液| 日本欧美视频一区| 视频区图区小说| 水蜜桃什么品种好| av.在线天堂| 久久97久久精品| 精品视频人人做人人爽| 99热网站在线观看| 香蕉精品网在线| 在线观看av片永久免费下载| 久久韩国三级中文字幕| 亚洲无线观看免费| 国产精品人妻久久久影院| 男人狂女人下面高潮的视频| 纵有疾风起免费观看全集完整版| 亚洲高清免费不卡视频| 十八禁网站网址无遮挡 | 精品人妻熟女毛片av久久网站| 免费不卡的大黄色大毛片视频在线观看| 日韩一区二区三区影片| 日韩人妻高清精品专区| 夜夜骑夜夜射夜夜干| 国产在线视频一区二区| 亚洲情色 制服丝袜| 黄色欧美视频在线观看| 少妇丰满av| 狂野欧美白嫩少妇大欣赏| 插逼视频在线观看| 免费观看性生交大片5| 午夜视频国产福利| av免费观看日本| 18禁在线无遮挡免费观看视频| 欧美成人精品欧美一级黄| 精品国产露脸久久av麻豆| 亚洲欧洲日产国产| 黄色视频在线播放观看不卡| 亚洲人与动物交配视频| 免费人成在线观看视频色| 在线观看av片永久免费下载| 丰满乱子伦码专区| 一级av片app| 伊人久久精品亚洲午夜| 菩萨蛮人人尽说江南好唐韦庄| 久久6这里有精品| 亚洲国产欧美日韩在线播放 | 啦啦啦中文免费视频观看日本| 99热这里只有精品一区| 国产伦精品一区二区三区四那| 免费高清在线观看视频在线观看| 在线观看国产h片| 啦啦啦啦在线视频资源| 人人妻人人看人人澡| 久久久午夜欧美精品| 少妇裸体淫交视频免费看高清| 99热这里只有是精品在线观看| 日日摸夜夜添夜夜添av毛片| 一区在线观看完整版| 一级二级三级毛片免费看| 国产淫片久久久久久久久| 免费黄频网站在线观看国产| 人人妻人人澡人人爽人人夜夜| 搡女人真爽免费视频火全软件| 好男人视频免费观看在线| 大又大粗又爽又黄少妇毛片口| 汤姆久久久久久久影院中文字幕| 国产成人免费无遮挡视频| 熟女av电影| 精品久久国产蜜桃| av专区在线播放| 日韩三级伦理在线观看| tube8黄色片| 国产精品秋霞免费鲁丝片| 久热久热在线精品观看| 欧美精品一区二区免费开放| 在线 av 中文字幕| 肉色欧美久久久久久久蜜桃| 一区二区三区免费毛片| 久久久久久久久久久免费av| 国产精品久久久久久av不卡| 黄色配什么色好看| 最近中文字幕高清免费大全6| 亚洲精品一二三| 又粗又硬又长又爽又黄的视频| av线在线观看网站| 精品久久久久久久久亚洲| 99热6这里只有精品| 亚洲第一区二区三区不卡| 亚洲高清免费不卡视频| 老司机影院毛片| 日本爱情动作片www.在线观看| 中文资源天堂在线| 青青草视频在线视频观看| 少妇的逼水好多| 有码 亚洲区| 成人综合一区亚洲| 国产精品人妻久久久影院| 乱码一卡2卡4卡精品| 少妇丰满av| 嘟嘟电影网在线观看| 这个男人来自地球电影免费观看 | 一级毛片aaaaaa免费看小| 亚洲av.av天堂| av线在线观看网站| 桃花免费在线播放| 又爽又黄a免费视频| 精品国产乱码久久久久久小说| 男人狂女人下面高潮的视频| 汤姆久久久久久久影院中文字幕| 日韩 亚洲 欧美在线| 91久久精品电影网| 欧美xxxx性猛交bbbb| 久久热精品热| 秋霞在线观看毛片| av播播在线观看一区| 国产精品一二三区在线看| freevideosex欧美| 热re99久久精品国产66热6| 亚洲精品视频女| 久久久久国产精品人妻一区二区| 日韩人妻高清精品专区| 麻豆乱淫一区二区| freevideosex欧美| 久久99热6这里只有精品| av在线观看视频网站免费| 51国产日韩欧美| 纵有疾风起免费观看全集完整版| 亚洲欧美一区二区三区国产| 91午夜精品亚洲一区二区三区| 亚洲人与动物交配视频| 欧美亚洲 丝袜 人妻 在线| 一级黄片播放器| 这个男人来自地球电影免费观看 | 高清视频免费观看一区二区| 久久99热这里只频精品6学生| 国产精品不卡视频一区二区| av天堂久久9| a级片在线免费高清观看视频| 成人特级av手机在线观看| 一级毛片aaaaaa免费看小| 国产精品免费大片| 两个人免费观看高清视频 | 亚洲国产日韩一区二区| 久久6这里有精品| 亚洲中文av在线| av在线播放精品| 伊人久久精品亚洲午夜| 国产精品久久久久久av不卡| 99视频精品全部免费 在线| 少妇猛男粗大的猛烈进出视频| 国产av一区二区精品久久| 精品亚洲成国产av| 久久久午夜欧美精品| 亚洲成人手机| 国产av一区二区精品久久| 一级毛片 在线播放| 成人二区视频| 久久热精品热| 嫩草影院入口| 精品人妻熟女毛片av久久网站| 97超视频在线观看视频| 性色av一级| 国产在线免费精品| 国产精品国产三级国产av玫瑰| 韩国av在线不卡| 中文字幕人妻丝袜制服| 久久综合国产亚洲精品| 欧美精品高潮呻吟av久久| 如日韩欧美国产精品一区二区三区 | 在线精品无人区一区二区三| 九九久久精品国产亚洲av麻豆| 国产中年淑女户外野战色| 黄色日韩在线| 激情五月婷婷亚洲| 久久精品国产鲁丝片午夜精品| 亚洲精品aⅴ在线观看| 中文字幕av电影在线播放| 午夜免费观看性视频| 人人妻人人澡人人看| 亚洲精品第二区| 最近中文字幕2019免费版| 亚洲欧洲精品一区二区精品久久久 | 日韩电影二区| 久久久久久久久大av| 中文字幕亚洲精品专区| 国产熟女欧美一区二区| av国产精品久久久久影院| 成人午夜精彩视频在线观看| 国产成人91sexporn| 亚洲人成网站在线播| 又大又黄又爽视频免费| 亚洲精品456在线播放app| 国产精品国产三级专区第一集| 欧美日韩国产mv在线观看视频| 久久精品国产亚洲av涩爱| 国国产精品蜜臀av免费| 中文字幕免费在线视频6| 免费观看a级毛片全部| 久久人人爽人人片av| 久久久久国产网址| 久久久久久久精品精品| 国产精品99久久久久久久久| 一本久久精品| 日韩av不卡免费在线播放| 亚洲精品亚洲一区二区| 久久99热这里只频精品6学生| 亚洲国产成人一精品久久久| 日韩一本色道免费dvd| 啦啦啦中文免费视频观看日本| 伦精品一区二区三区| av天堂久久9| 人妻 亚洲 视频| 王馨瑶露胸无遮挡在线观看| 国产av一区二区精品久久| 亚洲精品日韩在线中文字幕| 亚洲国产精品成人久久小说| 九草在线视频观看| 午夜福利网站1000一区二区三区| 精品一区在线观看国产| 美女中出高潮动态图| 啦啦啦在线观看免费高清www| 伊人久久国产一区二区| 日韩制服骚丝袜av| 黄色毛片三级朝国网站 | 丝袜喷水一区| 日本与韩国留学比较| 插阴视频在线观看视频| 人妻一区二区av| 多毛熟女@视频| 99久久精品一区二区三区| 一级a做视频免费观看| 大片免费播放器 马上看| 人妻 亚洲 视频| 久久这里有精品视频免费| 少妇人妻久久综合中文| 纯流量卡能插随身wifi吗| 精品国产一区二区久久| 国产无遮挡羞羞视频在线观看| 一区二区三区精品91| 麻豆精品久久久久久蜜桃| 亚洲精品自拍成人| 国产日韩欧美视频二区| 久久99精品国语久久久| 久久99热6这里只有精品| 亚洲激情五月婷婷啪啪| 丝袜脚勾引网站| av天堂中文字幕网| 精品国产国语对白av| 国产熟女欧美一区二区| 久久国内精品自在自线图片| 亚洲av日韩在线播放| 国产 精品1| 最新的欧美精品一区二区| 麻豆精品久久久久久蜜桃| 欧美精品一区二区免费开放| 亚洲国产欧美日韩在线播放 | av女优亚洲男人天堂| 亚洲激情五月婷婷啪啪| 国产视频内射| 亚洲美女黄色视频免费看| 如何舔出高潮| 亚洲美女视频黄频| 日日啪夜夜爽| 国产精品成人在线| 免费看av在线观看网站| 久久精品久久久久久噜噜老黄| 高清毛片免费看| 桃花免费在线播放| 国产乱来视频区| 日本午夜av视频| 久久久久久久大尺度免费视频| 日本午夜av视频| 狠狠精品人妻久久久久久综合| 人人妻人人澡人人看| 十八禁高潮呻吟视频 | 极品少妇高潮喷水抽搐| 久久久久精品久久久久真实原创| 国产日韩欧美亚洲二区| 久久久久视频综合| 18禁动态无遮挡网站| 人人妻人人澡人人看| 极品少妇高潮喷水抽搐| 亚洲国产欧美在线一区| 国产伦精品一区二区三区四那| 久久ye,这里只有精品| 伊人久久精品亚洲午夜| 少妇猛男粗大的猛烈进出视频| 尾随美女入室| 色视频在线一区二区三区| 色5月婷婷丁香| 亚洲,一卡二卡三卡| 国产成人freesex在线| 水蜜桃什么品种好| 久久99一区二区三区| 曰老女人黄片| 日本黄大片高清| 亚洲精品国产av成人精品| 成人毛片60女人毛片免费| 免费黄色在线免费观看| 如日韩欧美国产精品一区二区三区 | 日韩中文字幕视频在线看片| 三上悠亚av全集在线观看 | 国产一级毛片在线| 久久99蜜桃精品久久| 国产精品99久久99久久久不卡 | 日韩一本色道免费dvd| 91精品伊人久久大香线蕉| 国产毛片在线视频| 噜噜噜噜噜久久久久久91| 中文字幕久久专区| 在线观看免费日韩欧美大片 | 十八禁高潮呻吟视频 | 色5月婷婷丁香| 热re99久久国产66热| 国产白丝娇喘喷水9色精品| 久久女婷五月综合色啪小说| 久久97久久精品| 久久久国产精品麻豆| av在线播放精品| 日韩熟女老妇一区二区性免费视频| 大片免费播放器 马上看| 国产av码专区亚洲av| 色婷婷久久久亚洲欧美| 精品人妻偷拍中文字幕| 秋霞在线观看毛片| 国产 一区精品| 国产深夜福利视频在线观看| 十分钟在线观看高清视频www | 国产有黄有色有爽视频| 热re99久久精品国产66热6| 一本—道久久a久久精品蜜桃钙片| 欧美+日韩+精品| 在线 av 中文字幕| 欧美精品一区二区大全| 亚洲精品国产av蜜桃| 有码 亚洲区| 夫妻性生交免费视频一级片| 黄色视频在线播放观看不卡| 26uuu在线亚洲综合色| 另类亚洲欧美激情| 亚洲欧美清纯卡通| 婷婷色综合大香蕉| 国产在线男女| 精品少妇内射三级| 久久99蜜桃精品久久| 国产色婷婷99| 热re99久久国产66热| 国产精品国产三级专区第一集| 丝袜喷水一区| 免费观看无遮挡的男女| 午夜日本视频在线| 国产精品麻豆人妻色哟哟久久| 国产高清有码在线观看视频| 91午夜精品亚洲一区二区三区| 亚洲av在线观看美女高潮| 亚洲情色 制服丝袜| 永久免费av网站大全| 18禁动态无遮挡网站| 又粗又硬又长又爽又黄的视频| 久久av网站| 王馨瑶露胸无遮挡在线观看| 国产成人精品无人区| 人妻系列 视频| 国产极品粉嫩免费观看在线 | av天堂久久9| 精品少妇黑人巨大在线播放| 99九九线精品视频在线观看视频| 国产成人精品福利久久| 毛片一级片免费看久久久久| 精品熟女少妇av免费看| av女优亚洲男人天堂| 只有这里有精品99| 丝瓜视频免费看黄片| 97超视频在线观看视频| 日韩在线高清观看一区二区三区| 狂野欧美激情性xxxx在线观看| 在线播放无遮挡| 美女福利国产在线| 国产精品久久久久久久电影| 国产黄色视频一区二区在线观看| 免费高清在线观看视频在线观看| 中文字幕免费在线视频6| 爱豆传媒免费全集在线观看| 97超碰精品成人国产| 一区二区三区四区激情视频|