• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Ru@Zeolite Catalyst for Highly Selective Synthesis of Primary Amines fromAlcohol Amination

    2023-01-31 04:48:48HUANGLiangMElHuaqianLlSongbaiYANZhenSTRElFFStephaneSHENWeiXUHualong

    HUANG Liang ,MEl Huaqian ,Ll Songbai ,YAN Zhen ,STRElFF Stephane ,SHEN Wei ,XU Hualong

    (1.Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,Department of Chemistry,Fudan University,Shanghai 200438,China;2.Laboratory of Advanced Materials,Fudan University,Shanghai 200438,China;3.Collaborative Innovation Center of Chemistry for Energy Materials,Shanghai 200438,China;4.Eco-Efficient Products and Processes Laboratory,UMI 3464 CNRS-Solvay,Shanghai 201108,China)

    Abstract:The direct amination of aliphatic alcohols with ammonia is an environment-friendly route for the synthesis of primary amines.In this work,LTA zeolite-encapsulated Ru nanoparticles(Ru@LTA)were successfully synthesized and employed for the direct amination of 1-octanol with NH3 into octylamine at low NH3/alcohol ratios(2.1-2.4).A 76% selectivity to octylamine was obtained over a 5Ru@KA zeolite catalyst.The positive effect of Ru@LTA zeolite catalysts on primary amine selectivity stems from the steric hindrance.

    Keywords:alcohols;amination;shape-selectivity;zeolite

    Primary amines are extensively used in the production of agrochemicals,pharmaceuticals,organic dyes,and other fine chemicals[1].Up to now,many methods have been developed for the production of primary amines,including amination of alkyl halide compounds and ester compounds,direct reduction of nitriles,direct amination of aliphatic alcohols,and reductive amination of aldehydes or ketones[2].Among these processes,the direct amination of alcohols is an atom-efficient and environment-friendly route,and has brought widespread attention in recent years because a wide variety of biomass-based alcohols become available due to the development of green chemistry[3-5].The direct alcohol amination reactions operate via a “hydrogen borrowing”mechanism relying on metal catalysts,including Ni[6-9],Co[10-12],Ag[13],Ru[14],Pt[15],and Pd[16].The catalyst “borrows”H2from alcohols and“auto transfers”it to the intermediate imine to form primary amines.Because water is the only stoichiometric by-product,the route is more environment-friendly in comparison with the amination of alkyl or aryl halides[17].

    Compared with non-noble metal catalysts,noble metal catalysts,especially Ru catalysts,exhibited higher activity[18].Recently,great efforts have been paid to prepare Ru-based catalysts for alcohol amination reactions,including homogeneous and heterogeneous Ru catalysts.Hamid et al[19]reported a facile method for the alkylation of primary amines with primary alcohols using [Ru(p-cymene)Cl2]2.Luo et al[20]successfully synthesized unsymmetrically substituted tertiary amines from primary alcohols and aliphatic tertiary amines by hydrated RuCl3.Supported heterogeneous Ru catalysts have the potential to realize industrial catalytic processes in comparison with homogeneous Ru-based organometallic catalysts and attract more attention.Yamaguchi et al[21-22]investigated heterogeneous Ru catalysts(Ru(OH)x/Al2O3and Ru(OH)x/TiO2)for the N-alkylation of amines.The results showed that Ru(OH)x/Al2O3catalyzed the formation of secondary amines while Ru(OH)x/TiO2catalyzed the formation of tertiary amines.Cano et al[23]reported that the N-alkylation of amines with benzylic alcohols could be achieved by Ru/Fe3O4.

    For the synthesis of primary amines from the direct amination of alcohols with ammonia,the selectivity is always an issue due to the formation of secondary and tertiary amines,which are thermodynamically more favorable.Although relatively high selectivity can be obtained at high NH3/alcohol ratios(>4),it will result in high process pressures(>40 bar)which is not economic for the industry.Therefore,it is of interest to develop a mination catalysts which are selective at low NH3/alcohol ratios(<3).However,on conventional catalysts,the selectivity to primary amines drops sharply with the decrease in NH3/alcohol ratios,and poor selectivity to primary a mines(<30%)is often obtained at low NH3/alcohol ratios[24].Recently,a variety of efforts have been made to improve the selectivity.Liang et al[25]investigated the effect of the size of Ru nanoparticles on the octylamine selectivity in 1-octanol amination.The results showed that the self-coupling of octylamine was sensitive to the size of Ru nanoparticles,and a lower rate of self-coupling was obtained over smaller Ru nanoparticles.Ibá?ez et al[12]prepared a series of Co-based bimetallic catalysts and found that Ru and Ag had positive effects on both the activity and selectivity.Niemeier et al[26]studied the influence of catalyst support and solvent.No significant differences between inorganic supports and activated carbon were observed,while water is a suitable solvent for the catalytic amination of alcohols.Ho et al[27]adopted hydroxyapatite(HAP)supported Ni catalysts for propanol amination to propylamine.The superior activity of Ni/HAP was attributed to the basic sites on hydroxyapatite,which are responsible for suppressing the self-coupling of propylamine.

    Despite recent developments,the design of intrinsically selective catalysts for the synthesis of primary amines from alcohols at low NH3/alcohol ratios is still an unsolved challenge.In our previous work,we prepared carbon deposited Co catalysts and found that the positive effect on the primary amine selectivity stems from inhibiting the adsorption of bulky secondary imines due to steric hindrance[24].Zeolites are classical micro porous mineral materials,which have been widely used for shape-selective reactions.From the catalytic perspective,confinement of noble metal nanoparticles in a zeolite is a promising way to prepare shape-selective catalysts.Recently,methods of preparing metal@zeolite catalysts have been developed rapidly[28-31].These materials have zeolite micropores with different pore sizes to sterically control substrate molecule adsorption and diffusion on the external surface of metal nanoparticles.These features lead to a significant variation of product distributions in various metal-catalyzed reactions,outperforming traditional supported metal catalysts[32-34].

    Herein,we report the first example of controlling product distributions in alcohol amination by zeolite crystals.Ru nanoparticles encapsulated inside microporous LTA zeolites have been employed for the direct amination of 1-octanol with NH3into octylamine at low NH3/alcohol ratios(2.1-2.4).This approach can be further extended to the selective synthesis of other highly valuable primary amines.

    1 Experimental

    1.1 Catalyst preparation

    Ru@LTA zeolites were prepared as previously described[35].Typically,a mixture of NaAlO2(8.5 g)and Na2SiO3(28.1 g)were dissolved in 50 mL deionized water and stirred thoroughly for 2 h.Then,a predetermined amount of RuCl3in 25.0 mL of deionized water was added dropwise to the gel and stirred thoroughly for 2 h.After thorough homogenization,the gel was transferred into a 180 mL Teflon-lined stainless steel autoclave and heated at 120℃for 24 h.The resulting product was filtered off,washed with deionized water and dried before calcination at 400℃in air for 2 h.The 5Ru@KA and 5Ru@Ca A samples were prepared by ion-exchange of the 5Ru@Na A sample three times with KNO3and Ca(NO3)2solution,respectively.Then,the solids were washed and dried before calcination at 400℃in air for 2 h.

    To prepare 5Ru@Na A-HF,a certain amount of 5Ru@Na A sample was added to 5wt% HF solution.After stirring at room temperature for 30 min,the mixture was centrifuged,washed with a large amount of deionized water,and dried at 100℃overnight to obtain final product.

    Ru/Na A pre pared by traditional impregnation method(denoted as 5Ru/Na A)was employed as the reference catalyst .Commercial Ru/C and Ru/Al2O3catalysts were also employed as reference catalysts(denoted as 5Ru/C and 5Ru/Al2O3).

    1.2 Catalyst characterization

    The crystalline structures were analyzed by X-ray diffraction(XRD)on a Bruker D8 Advance diffractometer equipped with Cu Kαradiation(40 kV and 40 mA).The textural characteristics were determined by nitrogen adsorption-desorption using a Quantachrome AUTOSORB-IQ instrument.The morphology was obtained by field emission transmission electron microscope(TEM)on a JEOL JEM-2011 microscope,operating at an acceleration voltage of 200 kV.The chemical composition was determined by X-ray fluorescence(XRF)with a Bruker-AXS spectrometer.The X-ray photoelectron spectroscopy(XPS)measurements were recorded on KRATOS Axis Ultra DLD equipped with a monochromatic X-ray source.Prior to the above characterizations,the samples were pre-reduced in a H2flow at 350℃for 2 h.The redox properties were evaluated by H2temperature-programmed reduction(TPR)using a Micromeritics AutoChemⅡ2 920.The samples were heated from 50 to 900 ℃with a ramping rate of 10℃/min.O2titration was also performed on a Micromeritics AutoChemⅡ2 920.A 0.05 g sample was pre-reduced with a H2flow at 200℃for 1 h and then cooled to room temperature.The chemisorption of oxygen on the samples was performed by 0.5 mL pulses of 5% O2in He until full saturation was achieved.

    1.3 Catalytic reactions

    The catalytic tests were conducted in a stainless steel high-pressure autoclave(30 mL).The catalysts were pre-reduced under a flow of H2(30 mL/min)at 350 ℃for 2 h.Typically,100 mg of catalyst and 1.0 mL of 1-octanol were added to the autoclave.Afterward,the reactor was pressurized with 5 bar of NH3and 5 bar of H2.The reaction temperature was 180 ℃and the stirring rate was 800 rpm.The liquid products were analyzed on an Agilent 7 890 B gas chromatograph equipped with a HP-5 column and a FID detector using biphenyl as the external standard.The hydrogenation of 12-tricosanone was also conducted in a stainless steel high-pressure autoclave(30 mL).Typically,10 mg of catalyst and 339 mg of 12-tricosanone were added to the autoclave and then the reactor was pressurized with 40 bar of H2.The reaction was conducted at 140℃for 3 h.

    2 Results and Discussion

    Fig.1 shows the XRD patterns of Na A,5Ru/NaA and 5Ru@LTA(5Ru@Ca A,5Ru@NaA and 5Ru@KA)catalysts.The 5Ru@LTA and 5Ru/Na A exhibit XRD peaks associated with a typical LTA zeolite structure[36].5Ru@LTA catalysts exhibit lower crystallinity in comparison with Na A,which means the addition of RuCl3during crystallizing process has a negative effect on zeolite crystallinity.The 5Ru/Na A catalyst shows XRD patterns characteristic of metallic Ru at 2θ=38.4°and 44.0°.On the other hand,it is difficult to observe the same peaks over 5Ru@LTA zeolites,indicating that the Ru nanoparticles may be too small or encapsulated in the zeolites.

    Fig.1 XRD patterns of 5Ru@Na A,5Ru@KA,5Ru@Ca A,5Ru/Na A and Na A

    Fig.2 shows TEM images of 5Ru@NaA and 5Ru/Na A.In 5Ru@Na A,Ru nanoparticles were not observed on the external surface of zeolite crystals,suggesting that the Ru nanoparticles are probably encapsulated within the zeolite crystals as core-shell structures.By counting more than 100 nanoparticles(Fig.3),it was found that the size of Ru nanoparticles in 5Ru@Na A ranged from 1 nm to 6 nm.The narrow distribution of particle sizes could be reasonably assigned to the unique core-shell structure of 5Ru@LTA zeolites,where the zeolite shell prevents the aggregation and sintering of Ru nanoparticles.In the sectioned view of 5Ru/Na A,the Ru nanoparticles are found only on the external surface of LTA zeolite crystals and the size of most Ru nanoparticles is above 100 nm,indicating that the Ru nanoparticles are located on the external surface of the LTA zeolite crystals.

    Fig.2 TEM and STEM images of 5Ru@Na A(a,b)and 5Ru/Na A(c,d)

    Fig.3 Histograms of the Ru particle size in 5Ru@Na A

    The Ru 3p XPS spectra(Fig.4)of 5Ru/Na A and 5Ru/C clearly indicate the presence of metallic Ru.However,no obvious signal could be observed on 5Ru@Na A,5Ru@KA and 5Ru@Ca A,which have the same Ru loading as 5Ru/Na A and 5Ru/C.It proves indirectly that the Ru nanoparticles may be encapsulated in the zeolites.

    Fig.4 Ru 3p XPS spectra of 5Ru@Na A,5Ru@KA,5Ru@Ca A,5Ru/NaA and 5Ru/C

    Furthermore,the hydrogenation of 12-tricosanone was used as a probe reaction to assess the encapsulation of Ru nanoparticles.It was found that the conversion of 12-tricosanone was zero on 5Ru@Ca A,5Ru@Na A,and 5Ru@KA,but 32% on 5Ru/Na A under the same condition.The fact that 5Ru@LTA zeolites are completely inactive to 12-tricosanone hydrogenation is consistent with the encapsulation of Ru particles inside LTA zeolites,preventing bulky molecules such as 12-tricosanone from accessing the active metallic sites[35].On the contrary,5Ru/NaA is active for the hydrogenation of 12-tricosanone,because the Ru nano-particles on the external surface of LTA crystals can be easily accessed by 12-tricosanone molecules.The combined evidence from 12-tricosanone hydrogenation and TEM images indicate the successful fixing of Ru nanoparticles into the LTA crystals.

    The physiochemical properties of 5Ru@LTA zeolites and 5Ru/NaA are provided in Tab.1.The Ru loadings are 4.87%,4.75% and 4.67% for 5Ru@NaA,5Ru@KA and 5Ru@CaA,respectively.For comparison,5Ru/Na A shows a similar Ru loading of 5.13%.All the samples have high surface areas(380-425 m2/g)and large pore volumes(0.17-0.21 cm3/g),indicating the successful formation of LTA zeolite crystals,which is in good agreement with the XRD results in Fig.1.The H2-TPR profiles of 5Ru@LTA zeolites and 5Ru/Na A are presented in Fig.5.The 5Ru/Na A displays one characteristic peak in the temperature range of 150-250℃,which is attributed to the one-step reduction of Ru O2to metallic Ru.The reduction behavior of 5Ru@LTA zeolites shows a significant difference,with extra peaks at high temperature between 250℃and 650℃.The observed high-temperature peaks are most likely linked to the reduction of RuO2inside the zeolites,which was delayed to higher temperature due to the nature of RuO2with stronger interaction with zeolites(Ru silicates)[37-38].

    Fig.5 H2-TPR profiles of 5Ru@LTA zeolites and 5Ru/NaA

    Tab.1 Physiochemical properties of 5Ru@LTA zeolites and 5Ru/NaA

    The catalytic activity and product distribution for the direct amination of 1-octanol with NH3at low NH3/alcohol ratios(2.1-2.4)are shown in Fig.6.The main products include octylamine(OA),dioctylamine(DOA)and trioctylamine(TOA).The commercial catalysts(5Ru/C and 5Ru/Al2O3)are very active for alcohol amination,reaching a conversion of 56% and 59% in just two hours,respectively;however,the octylamine selectivity is quite low(32% and 37%,respectively)due to the formation of DOA.When the reaction was carried out over 5Ru@LTA zeolites at similar conversions,all of them show higher octylamine selectivity.The selectivity to octylamine on 5Ru@KA is 76%,much higher than those of commercial supported Ru catalysts.In contrast,the 5Ru/Na A shows similar conversion for the same reaction time,but very low octylamine selectivity(26%).When the NH3/alcohol ratio was increased from 2 to 4,the octylamine selectivity can reach 100% over 5Ru@KA at the expense of a lower conversion(~20%).

    Fig.6 Catalytic performances of all catalysts

    It is generally accepted that dioctylamine is produced by the self-coupling reaction of octylamine[25].Octylamine is first dehydrogenated to the corresponding imine,which reacts with another octylamine to form dioctylamine and release NH3.Dioctylamine could further react with the imine to form trioctylamine[39].According to the mechanism,these bulky molecules(dioctylamine and trioctylamine)could be formed on the exposed Ru surface of conventional supported Ru catalysts,and the selectivity to octylamine will be markedly reduced.However,it is difficult to form dioctylamine in the zeolite micropores with sizes of 0.3-0.5 nm over 5Ru@LTA zeolites.The positive effect on the octylamine selectivity stems from the steric hindrance in the hydrogenation of the bulky secondary imine.Considering that the 5Ru@LTA zeolites and supported Ru catalysts have similar Ru loadings,it is reasonable to believe that the high octylamine selectivity over the 5Ru@LTA zeolites is directly attributed to the coreshell structure.In order to demonstrate the importance of the LTA zeolite as a shell for controlling the product selectivity in alcohol amination over the Ru@LTA zeolites,5Ru@Na A-HF was tested.After partial destruction of the LTA zeolite framework in the 5Ru@NaA,an octylamine selectivity of 4% was obtained after 16 h,significantly lower than the 47% selectivity over the original 5Ru@Na A.

    In addition,5Ru@LTA zeolites show relatively low activity,which are due to the complexity of diffusion pathways,lower diffusion rate and fewer accessible Ru atoms[40].O2pulse titration was used to estimate accessible Ru atoms.Assuming that one Ru atom adsorbs one O atom,the accessible Ru values for 5Ru/Al2O3,5Ru/C,5Ru@Na A,5Ru@Ca A,5Ru@KA and 5Ru/Na A are 28%,27%,7%,5%,4% and 0.5%,respectively.All the Ru@LTA catalysts have fewer accessible Ru atoms due to zeolites coating.5Ru/Na A exhibits the minimum value,which is consistent with the large size of Ru particles(100-200 nm)in this catalyst.

    We report a novel strategy to control the selectivity to primary amines in the direct amination of 1-octanol with ammonia by encapsulating Ru nanoparticles inside LTA zeolites.The Ru@LTA zeolites exert excellent shape-selectivity of zeolite micropores,giving an octylamine selectivity as high as 76% at low NH3/alcohol ratios(2.1-2.4).The positive effect on the primary amine selectivity stems from the steric hindrance in the hydrogenation of bulky secondary imines,which are intermediates to secondary amines.This method provides a simple and atom-efficient method for the synthesis of primary amines.

    黑人猛操日本美女一级片| 日产精品乱码卡一卡2卡三| 久久久久国产网址| 国产av一区二区精品久久 | 久久久欧美国产精品| 亚洲av在线观看美女高潮| 妹子高潮喷水视频| 成人二区视频| 欧美丝袜亚洲另类| a级毛色黄片| 亚洲国产成人一精品久久久| 一个人免费看片子| 久久综合国产亚洲精品| 日本色播在线视频| 永久免费av网站大全| 国产精品久久久久久久电影| 亚洲国产日韩一区二区| 不卡视频在线观看欧美| 国产又色又爽无遮挡免| 免费少妇av软件| av在线app专区| 免费黄网站久久成人精品| 久久久久久久国产电影| 啦啦啦啦在线视频资源| 成人无遮挡网站| 色视频在线一区二区三区| 国产精品免费大片| 丰满迷人的少妇在线观看| 久久精品久久精品一区二区三区| 超碰97精品在线观看| 午夜免费男女啪啪视频观看| 这个男人来自地球电影免费观看 | 日本-黄色视频高清免费观看| 国内揄拍国产精品人妻在线| 成人无遮挡网站| 亚洲图色成人| 国产高清不卡午夜福利| 国产精品国产三级国产av玫瑰| 男男h啪啪无遮挡| 香蕉精品网在线| 亚洲性久久影院| 蜜臀久久99精品久久宅男| 国产精品三级大全| 免费在线观看成人毛片| 色5月婷婷丁香| 亚洲一区二区三区欧美精品| 18禁在线播放成人免费| 蜜桃亚洲精品一区二区三区| 久久女婷五月综合色啪小说| 亚洲欧美成人综合另类久久久| 亚洲色图综合在线观看| 亚洲av不卡在线观看| 18+在线观看网站| 亚洲精品视频女| 国产精品欧美亚洲77777| 亚洲欧美中文字幕日韩二区| 国产精品不卡视频一区二区| 日韩中字成人| 婷婷色综合www| 在线观看人妻少妇| 亚洲av欧美aⅴ国产| 国产精品免费大片| 妹子高潮喷水视频| .国产精品久久| www.色视频.com| 欧美成人a在线观看| 国产爽快片一区二区三区| 五月开心婷婷网| 99热国产这里只有精品6| 免费观看性生交大片5| 免费看日本二区| 久久精品国产亚洲av涩爱| 欧美精品一区二区免费开放| 日韩成人av中文字幕在线观看| 久久精品久久久久久久性| 人人妻人人爽人人添夜夜欢视频 | 男女下面进入的视频免费午夜| 啦啦啦中文免费视频观看日本| 亚洲精品中文字幕在线视频 | 人人妻人人澡人人爽人人夜夜| 日韩精品有码人妻一区| 欧美xxxx黑人xx丫x性爽| 蜜桃久久精品国产亚洲av| 国产成人精品福利久久| 日韩一本色道免费dvd| 成人国产麻豆网| 偷拍熟女少妇极品色| 啦啦啦视频在线资源免费观看| 狠狠精品人妻久久久久久综合| 成人高潮视频无遮挡免费网站| 精华霜和精华液先用哪个| 久久99热这里只频精品6学生| 国产一级毛片在线| 人体艺术视频欧美日本| 中文精品一卡2卡3卡4更新| 美女xxoo啪啪120秒动态图| 韩国高清视频一区二区三区| 黄色一级大片看看| 精品国产三级普通话版| 一本久久精品| 少妇的逼水好多| 亚洲精品aⅴ在线观看| 久久久国产一区二区| 黄色视频在线播放观看不卡| 黄色欧美视频在线观看| 国产在线视频一区二区| 国产免费视频播放在线视频| 国产欧美另类精品又又久久亚洲欧美| 一本色道久久久久久精品综合| 一区二区av电影网| 国产精品一及| 国产成人精品婷婷| 精品午夜福利在线看| 亚洲精品国产色婷婷电影| 一级毛片久久久久久久久女| av一本久久久久| 免费大片18禁| 六月丁香七月| 少妇 在线观看| 成年免费大片在线观看| 一区在线观看完整版| 男的添女的下面高潮视频| 国产免费一级a男人的天堂| 中文字幕av成人在线电影| 欧美日韩在线观看h| 少妇人妻 视频| 亚洲av.av天堂| 欧美另类一区| 一级二级三级毛片免费看| av卡一久久| 最近手机中文字幕大全| 国产 精品1| 在线亚洲精品国产二区图片欧美 | 在线观看免费高清a一片| 国产大屁股一区二区在线视频| 大话2 男鬼变身卡| 国产高清有码在线观看视频| 国产成人a区在线观看| 久久久久久九九精品二区国产| 舔av片在线| 纯流量卡能插随身wifi吗| 国产av精品麻豆| 午夜激情久久久久久久| 亚洲精品中文字幕在线视频 | 日本黄大片高清| 精品久久久久久久久av| 欧美3d第一页| 免费观看在线日韩| 少妇裸体淫交视频免费看高清| 18禁动态无遮挡网站| 老司机影院毛片| 亚洲av福利一区| 日韩一区二区三区影片| 国产高清不卡午夜福利| 久久久久人妻精品一区果冻| 国产大屁股一区二区在线视频| 成人毛片a级毛片在线播放| 一级二级三级毛片免费看| 高清毛片免费看| 在线看a的网站| 久久ye,这里只有精品| 91精品国产九色| 99视频精品全部免费 在线| 日本猛色少妇xxxxx猛交久久| 国产69精品久久久久777片| 女性生殖器流出的白浆| 精品一区在线观看国产| 伊人久久国产一区二区| 国产精品成人在线| av国产久精品久网站免费入址| 亚洲三级黄色毛片| 久久久久精品久久久久真实原创| 丝袜脚勾引网站| 欧美激情国产日韩精品一区| 97超视频在线观看视频| 国产视频内射| 久久国产精品大桥未久av | 国产精品久久久久久精品电影小说 | 久久久欧美国产精品| 男女下面进入的视频免费午夜| 2021少妇久久久久久久久久久| 亚洲人成网站在线观看播放| 菩萨蛮人人尽说江南好唐韦庄| 成年人午夜在线观看视频| 日韩成人伦理影院| 亚洲av福利一区| 妹子高潮喷水视频| 一级毛片黄色毛片免费观看视频| 青青草视频在线视频观看| 午夜福利在线观看免费完整高清在| 日本wwww免费看| 麻豆成人午夜福利视频| 免费大片黄手机在线观看| 日韩中文字幕视频在线看片 | 日韩中字成人| 少妇 在线观看| 亚洲色图av天堂| 久久久国产一区二区| 91精品国产九色| 亚洲成人av在线免费| 麻豆国产97在线/欧美| 国产一级毛片在线| 日韩av在线免费看完整版不卡| 啦啦啦中文免费视频观看日本| 国产日韩欧美在线精品| 26uuu在线亚洲综合色| 久久久色成人| 少妇高潮的动态图| 成人18禁高潮啪啪吃奶动态图 | 91精品国产国语对白视频| 亚洲第一av免费看| 日韩不卡一区二区三区视频在线| 最新中文字幕久久久久| 男女国产视频网站| 久久精品夜色国产| 精华霜和精华液先用哪个| 久久人人爽av亚洲精品天堂 | 免费av中文字幕在线| 欧美日韩亚洲高清精品| 日韩av不卡免费在线播放| 久久韩国三级中文字幕| 一个人免费看片子| 在线看a的网站| 国产精品一及| 在线观看美女被高潮喷水网站| 久久精品夜色国产| 99久久精品一区二区三区| 欧美xxⅹ黑人| 99九九线精品视频在线观看视频| 成人一区二区视频在线观看| 国产成人免费观看mmmm| 成年免费大片在线观看| 亚洲欧美一区二区三区黑人 | 美女cb高潮喷水在线观看| 亚洲av不卡在线观看| 国产午夜精品一二区理论片| 欧美最新免费一区二区三区| 街头女战士在线观看网站| 少妇的逼好多水| av国产精品久久久久影院| 一本一本综合久久| 美女视频免费永久观看网站| 久久毛片免费看一区二区三区| 日本黄大片高清| 亚洲国产精品专区欧美| 免费大片18禁| 99热这里只有是精品在线观看| 欧美日本视频| 最新中文字幕久久久久| 国产69精品久久久久777片| 国产免费福利视频在线观看| 日韩欧美精品免费久久| 五月开心婷婷网| 狂野欧美激情性xxxx在线观看| 中文在线观看免费www的网站| 91aial.com中文字幕在线观看| 日本欧美国产在线视频| 免费av不卡在线播放| 久久久久人妻精品一区果冻| 亚洲人成网站高清观看| 99热网站在线观看| 亚洲精品乱码久久久v下载方式| 国产精品久久久久久久电影| a级毛片免费高清观看在线播放| 又大又黄又爽视频免费| 亚洲美女黄色视频免费看| 丰满迷人的少妇在线观看| 麻豆精品久久久久久蜜桃| 中文资源天堂在线| 亚洲激情五月婷婷啪啪| 免费大片18禁| 亚洲婷婷狠狠爱综合网| 久久久久久久久久久丰满| 国产成人精品福利久久| 99热网站在线观看| 最后的刺客免费高清国语| 18禁动态无遮挡网站| 亚洲性久久影院| 欧美三级亚洲精品| 欧美亚洲 丝袜 人妻 在线| 激情五月婷婷亚洲| 国产精品一区www在线观看| 岛国毛片在线播放| 99九九线精品视频在线观看视频| h视频一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 国产精品国产三级国产专区5o| 国产精品久久久久久久电影| 99久久综合免费| 国产伦理片在线播放av一区| 精品久久国产蜜桃| 国产91av在线免费观看| 国产精品国产三级专区第一集| 久久国内精品自在自线图片| 国产黄片美女视频| av国产精品久久久久影院| a级一级毛片免费在线观看| 亚洲美女视频黄频| 成年免费大片在线观看| 两个人的视频大全免费| 亚洲高清免费不卡视频| 国产成人freesex在线| 日本猛色少妇xxxxx猛交久久| 精品亚洲乱码少妇综合久久| av国产免费在线观看| 最近的中文字幕免费完整| 国产av码专区亚洲av| 少妇裸体淫交视频免费看高清| 久久婷婷青草| av又黄又爽大尺度在线免费看| 在线亚洲精品国产二区图片欧美 | 中文字幕免费在线视频6| 男女啪啪激烈高潮av片| 亚洲精品日本国产第一区| 亚洲经典国产精华液单| 久久青草综合色| 午夜免费观看性视频| 亚洲综合色惰| 亚洲av在线观看美女高潮| 少妇人妻一区二区三区视频| 亚洲精品日本国产第一区| 黄色日韩在线| 免费观看无遮挡的男女| 国产探花极品一区二区| 激情五月婷婷亚洲| 国产伦精品一区二区三区四那| 一本—道久久a久久精品蜜桃钙片| 国产精品久久久久久久久免| 亚洲欧美精品专区久久| 国产精品国产三级国产专区5o| 国产免费一级a男人的天堂| 亚洲高清免费不卡视频| 亚洲经典国产精华液单| 午夜福利视频精品| 看免费成人av毛片| 久久久久久久精品精品| 国产精品国产av在线观看| 国产欧美另类精品又又久久亚洲欧美| 新久久久久国产一级毛片| 99热国产这里只有精品6| 欧美丝袜亚洲另类| 国产极品天堂在线| 99热全是精品| 亚洲一区二区三区欧美精品| 日韩 亚洲 欧美在线| 寂寞人妻少妇视频99o| 天天躁日日操中文字幕| 内射极品少妇av片p| 久久影院123| 欧美高清成人免费视频www| 国产精品免费大片| 欧美变态另类bdsm刘玥| 青春草亚洲视频在线观看| 日韩欧美一区视频在线观看 | av女优亚洲男人天堂| 国产精品久久久久久久电影| 大香蕉97超碰在线| 大话2 男鬼变身卡| 亚洲av免费高清在线观看| 肉色欧美久久久久久久蜜桃| 中文字幕精品免费在线观看视频 | www.av在线官网国产| 国产精品女同一区二区软件| 国产毛片在线视频| 啦啦啦中文免费视频观看日本| 在线精品无人区一区二区三 | 欧美日韩综合久久久久久| 王馨瑶露胸无遮挡在线观看| 大陆偷拍与自拍| 欧美日韩国产mv在线观看视频 | 国产成人aa在线观看| 男的添女的下面高潮视频| a 毛片基地| av网站免费在线观看视频| 亚洲欧美中文字幕日韩二区| 亚洲精品亚洲一区二区| 久久99热6这里只有精品| 国产黄频视频在线观看| 国产精品伦人一区二区| 五月伊人婷婷丁香| 国产精品久久久久久久久免| 视频区图区小说| 免费黄网站久久成人精品| 亚洲美女视频黄频| 国产色爽女视频免费观看| 久久99热这里只有精品18| 性色av一级| 两个人的视频大全免费| 亚洲国产欧美人成| 精品久久久久久电影网| 乱系列少妇在线播放| 国产在线免费精品| 丰满人妻一区二区三区视频av| 内地一区二区视频在线| 久久99热这里只有精品18| 日日啪夜夜爽| 在线观看三级黄色| 欧美变态另类bdsm刘玥| 偷拍熟女少妇极品色| 内射极品少妇av片p| 亚洲,一卡二卡三卡| 大香蕉久久网| 午夜福利影视在线免费观看| 亚洲av欧美aⅴ国产| 最近的中文字幕免费完整| 亚洲精品久久久久久婷婷小说| 国产乱来视频区| av在线观看视频网站免费| 美女高潮的动态| 亚洲熟女精品中文字幕| 久久精品国产a三级三级三级| 国产精品一及| 一级毛片aaaaaa免费看小| 成人特级av手机在线观看| 国产成人午夜福利电影在线观看| 久久久久久久精品精品| 国产男女超爽视频在线观看| 美女cb高潮喷水在线观看| 两个人的视频大全免费| a级毛色黄片| 一区在线观看完整版| 欧美高清性xxxxhd video| 国产成人免费观看mmmm| h视频一区二区三区| 亚州av有码| 蜜桃亚洲精品一区二区三区| av在线蜜桃| 18禁裸乳无遮挡免费网站照片| 夜夜看夜夜爽夜夜摸| 亚洲精品日本国产第一区| 男女边摸边吃奶| 欧美丝袜亚洲另类| 最新中文字幕久久久久| 97在线人人人人妻| 欧美精品国产亚洲| 国产又色又爽无遮挡免| 亚洲,一卡二卡三卡| 黑丝袜美女国产一区| 国产在视频线精品| 91久久精品电影网| 亚洲成人一二三区av| 又大又黄又爽视频免费| 国产成人a区在线观看| 多毛熟女@视频| 国产成人一区二区在线| 少妇猛男粗大的猛烈进出视频| 插逼视频在线观看| 狂野欧美激情性bbbbbb| 日本午夜av视频| 欧美xxxx性猛交bbbb| 亚洲美女黄色视频免费看| 亚洲人成网站在线播| 亚洲一级一片aⅴ在线观看| 亚洲丝袜综合中文字幕| 免费大片18禁| 欧美最新免费一区二区三区| 女性被躁到高潮视频| 男人舔奶头视频| 国产精品久久久久久精品古装| 国产精品av视频在线免费观看| 观看免费一级毛片| 国产精品爽爽va在线观看网站| 日日摸夜夜添夜夜添av毛片| 毛片一级片免费看久久久久| 亚洲第一区二区三区不卡| 国产黄色视频一区二区在线观看| 亚洲精品日韩av片在线观看| 新久久久久国产一级毛片| 亚洲内射少妇av| 亚洲性久久影院| 欧美成人a在线观看| 大话2 男鬼变身卡| 欧美3d第一页| 国产成人免费观看mmmm| 亚洲人成网站在线观看播放| 亚洲aⅴ乱码一区二区在线播放| 欧美日韩一区二区视频在线观看视频在线| 97精品久久久久久久久久精品| 精华霜和精华液先用哪个| 国产大屁股一区二区在线视频| 国产精品欧美亚洲77777| 不卡视频在线观看欧美| 高清欧美精品videossex| 亚洲精品日韩在线中文字幕| 国产91av在线免费观看| 久久久国产一区二区| 高清视频免费观看一区二区| 一区二区三区乱码不卡18| 交换朋友夫妻互换小说| 晚上一个人看的免费电影| 十分钟在线观看高清视频www | 涩涩av久久男人的天堂| 激情五月婷婷亚洲| 看十八女毛片水多多多| 色婷婷久久久亚洲欧美| 国产真实伦视频高清在线观看| 国产深夜福利视频在线观看| 免费久久久久久久精品成人欧美视频 | 黑丝袜美女国产一区| 乱系列少妇在线播放| av国产免费在线观看| 亚洲国产毛片av蜜桃av| 欧美一区二区亚洲| 全区人妻精品视频| 麻豆乱淫一区二区| 免费播放大片免费观看视频在线观看| 精品视频人人做人人爽| 国精品久久久久久国模美| av.在线天堂| 少妇人妻精品综合一区二区| 国产精品av视频在线免费观看| 精品一品国产午夜福利视频| av在线播放精品| 亚洲电影在线观看av| 天堂俺去俺来也www色官网| 国产成人91sexporn| 国产午夜精品一二区理论片| 亚洲婷婷狠狠爱综合网| 亚洲一区二区三区欧美精品| 久久精品国产a三级三级三级| 国产亚洲午夜精品一区二区久久| 伦理电影大哥的女人| 在线免费十八禁| av国产免费在线观看| 欧美一级a爱片免费观看看| 国产精品女同一区二区软件| 亚洲国产高清在线一区二区三| a级毛色黄片| 一级毛片 在线播放| 18+在线观看网站| 国产免费一区二区三区四区乱码| 亚洲av中文av极速乱| 国产在线一区二区三区精| a级毛片免费高清观看在线播放| 国产黄片美女视频| 在线免费观看不下载黄p国产| 在线观看一区二区三区| 成人午夜精彩视频在线观看| 卡戴珊不雅视频在线播放| 午夜福利网站1000一区二区三区| 中文字幕亚洲精品专区| 有码 亚洲区| 成人免费观看视频高清| 国产黄色视频一区二区在线观看| 九九久久精品国产亚洲av麻豆| 另类亚洲欧美激情| 能在线免费看毛片的网站| 日日啪夜夜撸| 一个人免费看片子| 日本av手机在线免费观看| 国产成人精品久久久久久| 极品教师在线视频| 麻豆国产97在线/欧美| 三级经典国产精品| 亚洲欧美日韩另类电影网站 | 亚洲国产最新在线播放| 欧美+日韩+精品| 国产成人免费无遮挡视频| 99国产精品免费福利视频| 黄色怎么调成土黄色| 日韩国内少妇激情av| 91久久精品国产一区二区成人| 性高湖久久久久久久久免费观看| 亚洲精品国产av成人精品| 久久久亚洲精品成人影院| 热re99久久精品国产66热6| 日本与韩国留学比较| 久久久久国产精品人妻一区二区| 亚洲精品视频女| 国产精品国产三级国产专区5o| 免费观看av网站的网址| 五月天丁香电影| 午夜福利高清视频| 三级国产精品片| 少妇丰满av| 涩涩av久久男人的天堂| 精品一区在线观看国产| 亚洲最大成人中文| 亚洲,一卡二卡三卡| 一级毛片黄色毛片免费观看视频| 国产黄色视频一区二区在线观看| 哪个播放器可以免费观看大片| 欧美 日韩 精品 国产| 一级毛片 在线播放| 久久久久久人妻| 一本色道久久久久久精品综合| 国产大屁股一区二区在线视频| 国产男人的电影天堂91| 久久这里有精品视频免费| 深爱激情五月婷婷| 国产精品一区二区三区四区免费观看| 国产精品熟女久久久久浪| 久久亚洲国产成人精品v| 久久人人爽av亚洲精品天堂 | 高清日韩中文字幕在线| 国产日韩欧美在线精品| 偷拍熟女少妇极品色| 99视频精品全部免费 在线| 少妇人妻精品综合一区二区| 国产午夜精品久久久久久一区二区三区| 久久久久久久国产电影| 99久久中文字幕三级久久日本| 大又大粗又爽又黄少妇毛片口| 91精品一卡2卡3卡4卡| 舔av片在线| 人妻制服诱惑在线中文字幕| 欧美zozozo另类| 在线天堂最新版资源| 最近的中文字幕免费完整| 免费播放大片免费观看视频在线观看| 成人综合一区亚洲| 校园人妻丝袜中文字幕| 永久网站在线| 美女高潮的动态| 亚州av有码|