• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electroluminescence devices from carbazole-containing dibenzothiophene sulfone derivatives hybrid fluorophores

    2023-01-12 04:25:28CHENShuoXUHui

    CHEN Shuo, XU Hui

    (School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China)

    Abstract:Three novel yellow emitters TD-xBPF (x=2, 3, 4) were synthesized by incorporating a dibenzothiophene sulfone acceptor core and arylamine (N-([1,1′-biphenyl]-4-yl)-9,9-dimethyl-N-phenyl-9H-fluoren-2-amine) donor moieties via D-A architecture. Three compounds feature maximum emission of 500~520 nm with the Commission International de L′ Eclairage (CIE) coordinates of (0.23, 0.56), (0.27, 0.60) and (0.19, 0.48) as well as high photoluminescence quantum yields of 0.53 in thin film. The doped devices fabricated by employing TD-xBPF as emitters obtained an external quantum efficiencies (EQE) of 3.3%, a maximum current efficiency (CE) of 10.28 cd·A-1 and a maximum power efficiency (PE) of 11.3 lm·W-1, respectively.

    Key words:electroluminescence devices; quantum efficiencies;yellow emitters

    0 Introduction

    Organic light emitting diodes (OLEDs) have attracted much attention in recent years due to their potential application in full-color flat-panel displays and solid-state lighting[1-3]. During the last two decades, numerous efforts have been employed to enrich the chemistry of full color devices by designing blue, green and red luminescent complexes[4-6].In order to obtain excellent efficiency, Ir, Au and Pt complexes based phosphorescent OLEDs (PhOLEDs) are more popular as they can utilize nonradiative triplet energy for emission[7-9],which are rather expensive and dependent on limited global resources. Thus, organic molecule with free heavy-metal containing seems meet to the long-term mass production[10-12].Therein, the D-A type π-conjugated emitters have been extensively investigated for their cost advantage and versatility in tuning of emission color. Simultaneously, such D-A materials are also beneficial for the injection, transportation and recombination of carriers because of the separated D-A functions, which resulting the improvement of the device performance[13-14].

    In this work, three D-A type yellow compounds TD-xBPF (x= 2, 3, 4) containing dibenzothiophene sulfone andN-([1,1′-biphenyl]-4-yl)-9,9-dimethyl-N-phenyl-9H-fluoren-2-amine-based with different linker site were designed and prepared (Scheme 1), in which arylamine serves as the electron donor and dibenzothiophene sulfone as the electron acceptor. Rigid π-conjugated electron-withdrawing cores with deep LUMOs are desired. planar rigid architecture dibenzothiophene sulfone is selected as the acceptor skeleton on the basis of their high electron affinity; optical, thermal, and chemical stabilities; promising electron-transporting properties, and tunable fluorescent properties. Furthermore, dibenzothiophene sulfone derivatives have proven to be promising because of their potential modification site as yellow chromophore. Arylamine can be functionalized at the dibenzothiophene sulfone nucleus with different substituents site, and this allows the photophysical and electronic properties of the targets to be fine-tuned. For TD-xBPF (x= 2, 3, 4), we demonstrate that the introduction of the arylamine has a different effect on the linker site of fluorescent nature. The HOMO and LUMO of TD-xBPF were almost complete separated, which is beneficial to give a good ability to transport charges. Employing TD-xBPF as a emitting layers, an yellow OLEDs with a CIE coordinates of (0.215 9, 0.579 9) and maximum EQE of 3.3% has been achieved. These results have motivated us to explore the utilization of dibenzothiophene sulfone derivatives for manufacturing and applications.

    Scheme 1 Synthetic pathways toward y ellow emtiters TD-xBPF

    1 Experimental sections

    1.1 Materials and instruments

    Unless otherwise noted, commercially available reagents empolying for the synthesis were purchased from Aldrich, J&K and TCI companies and used as received.1H magnetic resonance (NMR) spectra were recorded using a Bruker AVANCE III 400-MHz spectrometer, using CDCl3or DMSO[d6] as the solvent and tetramethylsilane (TMS) as the internal standard. High resolution mass spectra were recorded on AB SCIEX 5 800 matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF). Elemental analysis for C, H and N were performed on an Elementar Analysensysteme GmbH. All manipulations involving air-sensitive reagents were performed in an atmosphere of dry Ar. Absorption spectra of the target compounds were measured using a Perkin Elmer Lambda-750 UV-Vis-NIR spectrophotometer. Steady-state and transient-state emission spectra in both solution and solid were recorded with LS 55 fluorescence spectrometer. For the solid samples, the quantum yields for the compounds were determined at room temperature through an absolute method using an Edinburgh Instruments′ integrating sphere coupled to a modular Edinburgh FLS 920 fluorescence spectrophotometer. The absolute quantum yield was calculated using the following equation:

    In equation,Lemissionis the emission spectrum of the sample, collected using the sphere,Esampleis the spectrum of the incident light used to excite the sample, collected using the sphere, andEreferenceis the spectrum of the light used for excitation with only the reference in the sphere. The method is accurate to within 10%. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) were performed on Perkin Elmer TGA 4 000 and DSC 8 000 thermal analyzers under nitrogen atmosphere at a heating rate of 10 ℃·min-1. Cyclic voltammetric (CV) measurements were carried out in a conventional three electrode cell using a Pt button working electrode of 2 mm in diameter, a platinum wire counter electrode, and a saturated calomel electrode (SCE) reference electrode on a computer-controlled CHI660d electrochemical workstation at room temperature. Reduction CV of all compounds was performed in CH2Cl2containing teterabutylammonium hexafluorophosphate (Bu4NPF6, 0.1 M) as the supporting electrolyte. Ferrocene was used as an external standard. Electrochemistry was done at a scan rate of 100 mV·s-1.

    1.2 Computational method

    The theoretical investigation of geometry optimization was performed with theGaussian09program package. Density functional theory (DFT) was calculated at Beck′s three-parameter hybrid exchange functional and Lee, and Yang and Parr correlation functional B3LYP/6-31G (d). The spin density distributions were visualized usingGaussview5.0.8.

    1.3 Device fabrication and measurement

    PEDOT:PSS, TmPyPB and LiF were purchased from Lumtec Corp. (Taiwan, China). Prior to the device fabrication, the patterned ITO-coated glass substrates were scrubbed and sonicated consecutively with detergent water, deionized water, and acetone, dried in drying cabinet, and then exposed to a UV-ozone environment for 30 min. After these processes, the substrates were transferred into a vacuum chamber for sequential deposition of all the organic layers by thermally evaporation with a base pressure (~4.0×10-4Pa) at a rate of 0.1~0.2 nm·s-1monitored in situ with the quartz oscillator. LiF covered by Al is used as cathode without breaking the vacuum. All the samples were measured directly after fabrication without encapsulation at room temperature under ambient atmosphere. The electroluminescent spectra were recorded using an Ocean Optics spectrometer. The current-voltage-luminance characteristics were measured using a PR655 Spectrascan spectrometer and a Keithley 2400 programmable voltage-current source. The external quantum efficiency (EQE) and luminous efficiency (LE) were calculated assuming Lambertian distribution, and then calibrated to the efficiencies obtained at 1 000 cd·m-2in the integrating sphere (Jm-3200).

    1.4 Synthesis

    General Procedure of Oxidation for Sulphone. A sample of x-Bromodibenzothiophene (x=2, 3 or 4) (1 973.6 mg, 7.5 mmol) was dissolved into 20 mL of dichloromethane at room temperature, and then 75% 3-chlorobenzoperoxoic acid (6 471.4, 37.5 mmol) was added to the mixture and stirred for 6 h.

    For 2-Bromodibenzothiophene Sulfone (2TDSO):the crude was filtered under reduced pressure and washed using EtOH (3×10 mL). The product was used without further purification for next reaction.1H NMR (500 MHz, CDCl3, δ) 7.94 (s, 1H), 7.83~7.85 (d,J= 7.5, 1H), 7.77~7.78 (t,J=7.5 Hz, 1H), 7.66~7.70 (dd,J= 8.0 Hz, 3H), 7.56~7.59 (t,J= 7.5 Hz, 1H). EI-MS (m/z): calcd for C12H7BrO2S 293.94; found, 295.3 [M+].

    For 3-Bromodibenzothiophene Sulfone (3TDSO):the crude was filtered under reduced pressure and washed using EtOH (3×10 mL). The product was used without further purification for next reaction.

    For 4-Bromodibenzothiophene Sulfone (4TDSO): The precipitate was removed invacuoto afford the mother liqued. Then, the solution was stirred with sodium thiosulfate for 1 h and extracted with CH2Cl2/NaHCO3. The organic layer was combined and dried with anhydrous sodium sulfate. The solvent was removed invacuo, and then the residue was further purified by column chromatography with CH2Cl2as eluent to afford the white product.1H NMR (500 MHz, CDCl3, δ) 7.84~7.86 (d,J= 7.5 Hz, 1H), 7.78~7.80 (d,J= 7.5, 1H), 7.65~7.68 (t,J= 5.5 Hz, 1H), 7.60~7.63 (dd,J= 4.0 Hz, 1H), 7.56~7.58 (t,J= 7.5 Hz, 1H), 7.45~7.49 (t,J= 4.5 Hz, 1H). EI-MS (m/z): calcd for C12H7BrO2S 293.94; found, 295.3 [M+]

    Synthesis of BPFB:

    PdCl2(dppf)2(1,1′-Bis(diphenylphosphino)ferrocene-palladium(II)dichloride) (109.8 mg, 0.15 mmol) was added to a suspension ofN-([1,1′-Biphenyl]-4-yl)-N-(4-bromophenyl)-9,9-dimethyl-9H-fluoren-2-amine (1 549.4 mg, 3.0 mmol), bis(pinacolato)diboron (990.4 mg, 3.9 mmol), potassium acetate (588.8 mg, 6.0 mmol) in dioxane (20 mL) at room temperature. After stirred at room temperature for 20 min, the mixture was heated to 80 ℃ and stirred for 24 hours. The reaction mixture was extracted with DCM and further purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20:1, v/v) to attain a white solid (1 183.4 mg, 70%).1H NMR (500 MHz, CDCl3, δ) 7.76~7.80 (dd,J= 5.5 Hz, 2H), 7.66~7.67 (t,J= 7.0, 4H), 7.58~7.59 (d,J= 8.5 Hz, 2H), 7.51~7.53 (d,J= 7.0 Hz, 1H), 7.43~7.46 (t,J= 7.5, 2H), 7.27~7.35 (m, 4H), 7.15~7.16 (d,J= 8.5 Hz, 2H), 7.00~7.06 (m, 3H), 1.39 (s, 6H), 1.28 (s, 12H). EI-MS (m/z): calcd for C39H38BNO2563.299 011; found, 563.299 440 [M+].

    Synthesis of TD-2BPF:

    A mixture of 2TDSO (590.4 mg, 2 mmol), BPFB (1 127.2 mg, 2 mmol), tetrakis(triphenylphosphine)palladium (231.0 mg, 0.2 mmol), tetrabutylammonium bromide (66.4 mg, 0.2 mmol), and an aqueous solution of sodium hydroxide (2 mol·L-1, 12 mmol) in THF (25 mL) was stirred under argon at 80oC for 48 h. After quenching with an aqueous NH4Cl solution, the mixture was extracted with CH2Cl2. The combined organic extracts were washed with brine and dried over anhydrous MgSO4. After removing the solvent, the residue was purified using column chromatography on silica gel with petroleum ether/CH2Cl2= 1∶2, v/v as the eluent to give a white power. Yield: 58%. EI-MS (m/z): calcd for C45H33NO2S 651.222652; found, 651.224457 [M+].

    Synthesis of TD-3BPF and TD-4BPF:

    The procedure for TD-3BPF and TD-4BPF was similar to the preparation of TD-2BPF starting from 3TDSO and 4TDSO (310.2 mg, 1 mmol) instead of 2TDSO. Yield: 59%,65%.

    2 Results and discussion

    2.1 Synthesis and characterization

    The synthesis route of TD-xBPF (x=2, 3, 4) was outlined in Fig.1. By treatment with bromine substituted dibenzothiophene withm-CPBA under refluxing for 2 h, the initial compoundsxTDSO (x= 2, 3, 4) was obtained over 80% yield. Then, the target compounds TD-xBPF were prepared with coupling reaction in 70% yield. Herein, this synthesis method could conveniently construct dibenzothiophene sulfone derivatives with various structures. The target products is afforded through the typical Suzuki reaction between the bromide intermediate and boric acid ester derivatives.1H NMR and high-resolution mass (MALDI-TOF MS) characterization reveal the intermediates and the final products have the right structure and high purity. Both of the molecules have good solubility in common organic solvents such as THF, dichloromethane, chloroform and toluene. The detailed synthetic procedure and analysis were depicted in the experimental section.

    Fig.1 Synthesis route TADF emitters TD-xBPF (x = 2, 3, 4)

    2.2 Photo-physical properties

    The absorption spectra of theTD-xBPF in different solvents are presented in Fig.2. TD-2BPF and TD-4BPF have maximum absorption bands both at 350 nm, which could be assigned to the intramolecular charge transfer (CT) transition from the donor units to the acceptor moiety. In addition, the absorption thresholds of TD2-BPF and TD4-BPF reached 445 nm and 419 nm, respectively. The corresponding optical band gaps were estimated to be 2.79 eV and 2.96 eV on the basis of absorption edge, respectively.

    The photoluminescent emissions of TD-2BPF, TD-3BPF and TD-4BPF were observed at 570 nm and 515 nm in DCM, respectively in Fig.3. The huge bathochromic-shift of 145 nm is primarily due to the CT effect. High photoluminescence quantum yield (PLQY) is vital to evaluate the device performance of nondoped OLEDs. We measured the PLQYs of TD-xBPFviathe vacuum evaporated film (100 nm), giving the value of 0.53. High PLQY suggested that three emitters would be a promising candidate as high performance yellow OLEDs.

    Fig.2 Absorption spectra of TD-2BPF and TD-4BPF in different solvents at room temperature

    Fig.3 Photoluminescence spectra of TD-2BPF and TD-4BPF in different solvents at room temperature. Insert: photographs of TD-2BPF and TD-4BPF in different solvents under 365 nm hand-lamp irradiation

    2.3 Thermal properties

    The thermal properties of TD-xBPF were evaluated by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. As shown in Fig.4. TD-xBPF shows good thermal stability, which is indicated by high decomposition temperature (Td, corresponding to 5% weight loss) of 260~450 ℃. But the thermal stability of TD-3BPF is poor. TGA test suggests that the TD-4BPF exhibit thermal stabilities with decomposition temperatures of 450 ℃, which indicating that TD-4BPF can retain amorphous morphology in a wide range of temperature and be expected to decrease the phase separation rate of the guest-host system.

    Fig.4 TGA thermogram of TD-xBPF (at 10 ℃ min-1under notrogen atmosphere)

    2.4 Theoretical calculations

    Further insight into the molecular orbital distributions of both materials was gained by density functional theory (DFT) calculations, which was carried out at the level of Lee-Yang-Parr functional (B3LPY)/6-31(d) basis to investigate their ground states. Fig.5 shows the minimized energy structure of TD-xBPF in the gas phase. The distributions of frontier molecular orbital (FMO), electron exchange energy (Est) as well as the energy gap (Eg) between the HOMO and LUMO levels are depicted in Evidently, TD-xBPF exhibited a clear pattern of electron density-distribution separation between the HOMO and LUMO.

    For three emitters, the LUMO is located predominantly on the central dibenzothiophene sulfone acceptor, while the HOMO was mainly distributed over the entire arylamine donor and extended to the phenyl part of dibenzothiophene sulfone. The multiple twist architecture could prevent the formation of excimers and exciplexes in the solid state. Meanwhile, the twist structure contributes significantly to achieve an effective separation between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Showing similar distribution pattern, the HOMOs of TD-xBPF were distributed on electron-rich arylamine moiety. While, the electron distributions of corresponding LUMOs were dominantly localized on the electron-deficient dibenzothiophene sulfone. Therefore, typically observable extensive HOMO-LUMO separation and little HOMO-LUMO overlap at the dibenzothiophene sulfone segment were apparent in the molecular orbital diagram. The almost complete spatial separation of HOMO and LUMO energy level suggests that the HOMO-LUMO excitation would shift the electron density distribution from donor to acceptor. It is essential that such separation of electron cloud of HOMO and LUMO could afford the transporting channels between hole and electron, which may endow the molecules with the ability of bipolar charge transport.

    Fig.5 FMOs (HOMO and LUMO) of TD-xBPF calculated with DFT on a B3LYP/6-31G(d) level

    2.5 Electrochemical properties

    To study the electrochemical performance of TD-xBPF, cyclic voltammetry (CV) was carried to evaluated the optoelectronic applications. The ferrocene was used as a standard reference and the ferrocene/ferrocenium (Fc/Fc+) redox shows a half-wave potential (E1/2) at 0.47 V. The HOMO energy level can be calculated by the empirical equation HOMO = (Eox+ 4.40) eV, whereEoxis the onset potential of oxidation. The CV curves of TD-xBPF are shown in Fig.6. TheEoxare 0.65 eV, 0.63 eV and 0.64 eV for TD-2BPF, TD-3BPF and TD-4BPF, respectively. By calculation, the HOMO energies of TD-2BPF, TD-3BPF and TD-4BPF were 5.05 eV, 5.03 eV and 5.04 eV, respectively. The LUMO levels are calculated through subtraction of the optical energy gap (Eg= 2.79, 2.79 and 2.96 eV) from the HOMO energy levels. The Egis estimated by the wavelength of the ultraviolet absorption edge. By calculation, the LUMO levels of TD-2BPF, TD-3BPF and TD-4BPF were calculated to be 2.26 eV, 2.24 eV and 2.08 eV, respectively.

    Fig.6 Cyclic voltammogram of TD-xBPF, in each case, anodic scan was performed in CH2Cl2 at a scan rate of 5 mV s-1. Working electrode: platinum wire; the auxiliary electrode: platinum wire with a porous ceramic wick; the reference electrode: calomel electrode

    2.6 Electroluminescence properties

    In order to investigate the applications in OLEDs, we fabricated using the following configuration: indiumtin oxide (ITO) | PEDOT:PSS (10 nm) | TD-xBPF (40 nm) | TPBi(40 nm) | LiF (1 nm) | Al (100 nm). In this device structure, PEDOT:PSS and LiF were used as the hole-injection layer (HIL) and the electron-injection layer (EIL), respectively. TPBi (1,3,5-tris(phenyl-2-benzimidazolyl)-benzene) served as the hole-transporting layer (HTL) and the electron-transporting layer (ETL). TD-xBPF were used as the electroluminescent layer (EML) in this device. As displayed in Fig.7, the undoped device showed a yellow emit with the maximum emission of 507, 499 and 514 nm, respectively. The CIE coordinates of TD-2BPF, TD-3BPF and TD-4BPF were (0.215 9,0.579 9), (0.198 9,0.513 1) and (0.240 8,0.604 9), respectively. As the result shown in Fig.8, the devices based TD-2BPF has the maximum forward-viewing current efficiencies of 10.28 cd·A-1, power efficiencies of 11.3 lm·W-1and EQE values of 3.30%(Table 1).

    Fig.7 Electroluminescence spectra for devices based TD-xBPF

    Table 1 EL performances of the fabricated OLEDs

    Fig.8 (a) EL spectra of devices based TD-xBPF, inset: CIE coordinates;(b) Current density-voltage-luminance characteristics for devices;(c) Efficiency versus luminance curves of non-doped devices based on TD-xBPF

    3 Conclusions

    In summary, we have designed and synthesized three yellow emitters TD-xBPF, by incorporating arylamine donor and dibenzothiophene sulfone acceptor. OLED based on TD-2BPF exhibited a maximum EQE of 3.3% with emission at peak wavelength of 507 nm. More importantly, dibenzothiophene sulfone derivatives are demonstrated to be a quite promising yellow-green candidate to construct effective electroluminescent devices.

    女生性感内裤真人,穿戴方法视频| 精品第一国产精品| 精品熟女少妇八av免费久了| 老鸭窝网址在线观看| 亚洲精品美女久久久久99蜜臀| av欧美777| 91字幕亚洲| 午夜激情av网站| 国产人伦9x9x在线观看| 久久久国产一区二区| 国产亚洲欧美98| 操出白浆在线播放| 日本免费a在线| 99国产精品免费福利视频| 精品人妻1区二区| 中文亚洲av片在线观看爽| 搡老熟女国产l中国老女人| 中文字幕高清在线视频| 成人国语在线视频| 狂野欧美激情性xxxx| 国产精品成人在线| 一级,二级,三级黄色视频| 香蕉丝袜av| 国产欧美日韩一区二区三| 日韩欧美国产一区二区入口| 色哟哟哟哟哟哟| 亚洲国产精品合色在线| 国产成人免费无遮挡视频| 国产人伦9x9x在线观看| 黑人猛操日本美女一级片| 欧美一级毛片孕妇| 亚洲免费av在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美在线一区亚洲| 国产欧美日韩精品亚洲av| 日本五十路高清| 老汉色∧v一级毛片| 水蜜桃什么品种好| 亚洲中文字幕日韩| 欧美日韩瑟瑟在线播放| 免费日韩欧美在线观看| 香蕉久久夜色| 99国产精品一区二区三区| 国产精品国产高清国产av| 久久精品亚洲熟妇少妇任你| 久久 成人 亚洲| 高潮久久久久久久久久久不卡| 国产精品 欧美亚洲| 欧美一级毛片孕妇| 一级片'在线观看视频| 制服人妻中文乱码| 久久午夜综合久久蜜桃| 夜夜躁狠狠躁天天躁| 搡老乐熟女国产| 在线观看日韩欧美| 99riav亚洲国产免费| cao死你这个sao货| 欧美激情高清一区二区三区| 女性生殖器流出的白浆| 日韩欧美三级三区| 丰满的人妻完整版| 99热只有精品国产| 亚洲av美国av| 国产蜜桃级精品一区二区三区| 妹子高潮喷水视频| 一区二区三区国产精品乱码| 亚洲 欧美一区二区三区| 久久午夜综合久久蜜桃| 欧美日韩亚洲国产一区二区在线观看| 97超级碰碰碰精品色视频在线观看| 久久这里只有精品19| 热99re8久久精品国产| 91国产中文字幕| 亚洲一区二区三区欧美精品| 日韩人妻精品一区2区三区| 中文字幕人妻丝袜制服| 欧美成人性av电影在线观看| 久久久久久久久久久久大奶| 欧美精品一区二区免费开放| 午夜精品在线福利| 麻豆国产av国片精品| 色婷婷av一区二区三区视频| 欧美成人免费av一区二区三区| 成人三级做爰电影| 伦理电影免费视频| 91老司机精品| 亚洲国产欧美网| 亚洲午夜精品一区,二区,三区| 咕卡用的链子| 欧美激情久久久久久爽电影 | 亚洲精品国产一区二区精华液| 男女高潮啪啪啪动态图| 久久久久精品国产欧美久久久| 久久人人爽av亚洲精品天堂| 丰满迷人的少妇在线观看| 啦啦啦在线免费观看视频4| 免费观看精品视频网站| 一级毛片高清免费大全| 无限看片的www在线观看| 亚洲色图av天堂| 超碰97精品在线观看| 精品电影一区二区在线| 无遮挡黄片免费观看| 国产av一区二区精品久久| 亚洲熟妇中文字幕五十中出 | 欧美日韩亚洲国产一区二区在线观看| 一级片'在线观看视频| 久久影院123| 久久国产精品人妻蜜桃| 国产日韩一区二区三区精品不卡| 亚洲欧美日韩高清在线视频| 精品久久久久久成人av| 国内久久婷婷六月综合欲色啪| 久久午夜综合久久蜜桃| 亚洲一区二区三区不卡视频| 夜夜看夜夜爽夜夜摸 | 亚洲熟妇熟女久久| 国产午夜精品久久久久久| 黄色视频,在线免费观看| 色综合站精品国产| 一级片免费观看大全| 免费在线观看黄色视频的| 日韩人妻精品一区2区三区| 丝袜人妻中文字幕| 久久久久久久精品吃奶| 亚洲人成电影观看| 69精品国产乱码久久久| 日韩一卡2卡3卡4卡2021年| 久久久国产成人精品二区 | 亚洲精品一区av在线观看| 午夜a级毛片| av在线天堂中文字幕 | 免费在线观看日本一区| 手机成人av网站| 黑人巨大精品欧美一区二区蜜桃| 久久天堂一区二区三区四区| 国产一区二区激情短视频| 91成年电影在线观看| 老鸭窝网址在线观看| 人人妻人人澡人人看| 性少妇av在线| 国产区一区二久久| 国产人伦9x9x在线观看| 好看av亚洲va欧美ⅴa在| 一级黄色大片毛片| www.自偷自拍.com| 宅男免费午夜| 日本免费a在线| 国产极品粉嫩免费观看在线| 日本三级黄在线观看| 亚洲专区字幕在线| 免费在线观看影片大全网站| 国产精品久久久av美女十八| 五月开心婷婷网| 亚洲一区二区三区欧美精品| 视频区图区小说| 国产成人啪精品午夜网站| 国产熟女xx| 午夜视频精品福利| 亚洲成人精品中文字幕电影 | 成人手机av| 久久久久国产一级毛片高清牌| 亚洲在线自拍视频| 老司机深夜福利视频在线观看| 亚洲全国av大片| 亚洲久久久国产精品| 淫秽高清视频在线观看| 亚洲人成电影观看| 亚洲男人的天堂狠狠| 中文字幕精品免费在线观看视频| 91字幕亚洲| 亚洲成av片中文字幕在线观看| av网站免费在线观看视频| 欧洲精品卡2卡3卡4卡5卡区| av电影中文网址| 超碰97精品在线观看| 婷婷六月久久综合丁香| 国产亚洲精品久久久久5区| 99在线视频只有这里精品首页| 国产激情久久老熟女| 黄色怎么调成土黄色| 超碰成人久久| 午夜精品国产一区二区电影| 欧美黄色片欧美黄色片| 亚洲人成电影观看| 9色porny在线观看| 欧美激情久久久久久爽电影 | 亚洲 欧美 日韩 在线 免费| 亚洲国产看品久久| 亚洲欧美一区二区三区黑人| 色婷婷av一区二区三区视频| 国产成人免费无遮挡视频| 12—13女人毛片做爰片一| 免费av毛片视频| 亚洲av熟女| 极品人妻少妇av视频| 麻豆一二三区av精品| 一区二区三区激情视频| 一进一出好大好爽视频| 日本免费a在线| 日本wwww免费看| 窝窝影院91人妻| 亚洲熟女毛片儿| 1024香蕉在线观看| 免费看十八禁软件| 91大片在线观看| 亚洲欧美日韩另类电影网站| 午夜影院日韩av| 中文字幕人妻丝袜制服| 国产97色在线日韩免费| 丁香六月欧美| 国产成人欧美| 十八禁网站免费在线| 大香蕉久久成人网| 精品日产1卡2卡| 欧美乱码精品一区二区三区| 99久久久亚洲精品蜜臀av| 免费高清视频大片| 男人的好看免费观看在线视频 | 国产熟女xx| 99国产极品粉嫩在线观看| 黄色视频不卡| 久9热在线精品视频| 夜夜躁狠狠躁天天躁| 亚洲精品中文字幕在线视频| 在线免费观看的www视频| 国产av又大| 一级毛片女人18水好多| 一区二区三区激情视频| 国产精品久久久人人做人人爽| 亚洲国产精品一区二区三区在线| 97超级碰碰碰精品色视频在线观看| 色播在线永久视频| 黄色 视频免费看| 欧美黄色片欧美黄色片| 桃红色精品国产亚洲av| 成人18禁在线播放| 一边摸一边做爽爽视频免费| 深夜精品福利| 在线观看免费日韩欧美大片| 成人影院久久| 女同久久另类99精品国产91| 国产一卡二卡三卡精品| 桃红色精品国产亚洲av| 久久热在线av| 999久久久精品免费观看国产| 人人妻人人爽人人添夜夜欢视频| 男人的好看免费观看在线视频 | 一级毛片精品| 麻豆久久精品国产亚洲av | 级片在线观看| 久久久久国产精品人妻aⅴ院| 91成人精品电影| 中文字幕另类日韩欧美亚洲嫩草| 精品久久蜜臀av无| 一本大道久久a久久精品| 亚洲第一av免费看| 啪啪无遮挡十八禁网站| 国产片内射在线| 麻豆成人av在线观看| avwww免费| 男女之事视频高清在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 老司机在亚洲福利影院| 久久精品国产清高在天天线| 亚洲国产欧美一区二区综合| 国产片内射在线| 老司机亚洲免费影院| 亚洲国产毛片av蜜桃av| 最近最新中文字幕大全免费视频| 一级片'在线观看视频| 在线十欧美十亚洲十日本专区| av天堂在线播放| 大陆偷拍与自拍| 日韩人妻精品一区2区三区| svipshipincom国产片| 国产乱人伦免费视频| 欧美黑人精品巨大| 国产黄色免费在线视频| 国产精品一区二区免费欧美| 身体一侧抽搐| 国产精品爽爽va在线观看网站 | 999久久久精品免费观看国产| 两个人免费观看高清视频| 在线观看免费日韩欧美大片| 777久久人妻少妇嫩草av网站| 午夜福利欧美成人| 男人的好看免费观看在线视频 | 亚洲成人免费电影在线观看| 久久精品影院6| 男人的好看免费观看在线视频 | 中文字幕精品免费在线观看视频| 女人被躁到高潮嗷嗷叫费观| 久久久久久大精品| 亚洲成国产人片在线观看| 色老头精品视频在线观看| 丰满的人妻完整版| 两性夫妻黄色片| 黄色毛片三级朝国网站| 婷婷精品国产亚洲av在线| 免费人成视频x8x8入口观看| 成人18禁高潮啪啪吃奶动态图| 999精品在线视频| 亚洲人成77777在线视频| 亚洲第一欧美日韩一区二区三区| 国产亚洲精品综合一区在线观看 | 久久精品国产清高在天天线| 如日韩欧美国产精品一区二区三区| 免费一级毛片在线播放高清视频 | 两个人免费观看高清视频| 99在线视频只有这里精品首页| 91在线观看av| 日韩欧美一区二区三区在线观看| 真人一进一出gif抽搐免费| 精品卡一卡二卡四卡免费| 午夜福利一区二区在线看| 男人操女人黄网站| 在线国产一区二区在线| 精品一区二区三卡| 中文欧美无线码| 成人永久免费在线观看视频| 宅男免费午夜| 国产麻豆69| 97人妻天天添夜夜摸| 国产一区二区三区综合在线观看| av片东京热男人的天堂| 亚洲色图av天堂| 欧美激情极品国产一区二区三区| 可以免费在线观看a视频的电影网站| 亚洲精品成人av观看孕妇| 成人免费观看视频高清| 成年女人毛片免费观看观看9| av免费在线观看网站| 天堂√8在线中文| 久久这里只有精品19| 曰老女人黄片| www.999成人在线观看| 日本vs欧美在线观看视频| 一本大道久久a久久精品| 午夜福利欧美成人| 夜夜爽天天搞| 50天的宝宝边吃奶边哭怎么回事| 午夜免费成人在线视频| 色精品久久人妻99蜜桃| 久久国产精品人妻蜜桃| 久久久久久人人人人人| 国产亚洲精品久久久久5区| 久久影院123| 亚洲成人精品中文字幕电影 | 色尼玛亚洲综合影院| 欧美亚洲日本最大视频资源| 中文字幕另类日韩欧美亚洲嫩草| xxx96com| 新久久久久国产一级毛片| 国产黄色免费在线视频| 91在线观看av| 免费在线观看完整版高清| 国产成人av教育| www日本在线高清视频| 亚洲av成人av| 亚洲欧美精品综合久久99| 丝袜在线中文字幕| 免费搜索国产男女视频| 黄色毛片三级朝国网站| 另类亚洲欧美激情| 欧美丝袜亚洲另类 | 日韩三级视频一区二区三区| 最新在线观看一区二区三区| 亚洲熟女毛片儿| 男女之事视频高清在线观看| 一级毛片女人18水好多| 色在线成人网| 成人黄色视频免费在线看| 亚洲va日本ⅴa欧美va伊人久久| 国产欧美日韩精品亚洲av| 国产单亲对白刺激| 夜夜看夜夜爽夜夜摸 | 亚洲一区高清亚洲精品| 999精品在线视频| 一级,二级,三级黄色视频| 午夜日韩欧美国产| 亚洲精品一二三| 少妇的丰满在线观看| 少妇粗大呻吟视频| 最近最新免费中文字幕在线| 午夜91福利影院| 人人妻人人爽人人添夜夜欢视频| 国产单亲对白刺激| 免费在线观看影片大全网站| av网站免费在线观看视频| 色播在线永久视频| 搡老岳熟女国产| 国产国语露脸激情在线看| 亚洲专区国产一区二区| 黑丝袜美女国产一区| 久久人妻av系列| 久久狼人影院| 午夜老司机福利片| 一区二区三区激情视频| 满18在线观看网站| 亚洲色图综合在线观看| 亚洲国产看品久久| 视频区图区小说| 夜夜看夜夜爽夜夜摸 | 精品久久久久久成人av| 好男人电影高清在线观看| 亚洲人成电影观看| 免费日韩欧美在线观看| 久久精品人人爽人人爽视色| 精品久久久久久成人av| 乱人伦中国视频| 久久九九热精品免费| 色老头精品视频在线观看| 国产亚洲欧美在线一区二区| 欧美成人免费av一区二区三区| 好男人电影高清在线观看| 欧美精品一区二区免费开放| 欧美日韩瑟瑟在线播放| 亚洲av日韩精品久久久久久密| 亚洲情色 制服丝袜| 一区福利在线观看| 99久久精品国产亚洲精品| 热re99久久精品国产66热6| 久久久久久久精品吃奶| 在线观看免费高清a一片| 日韩欧美三级三区| 午夜久久久在线观看| 国产成人系列免费观看| 人人妻人人澡人人看| 久久精品91蜜桃| 国产精品久久久久久人妻精品电影| 美国免费a级毛片| 在线永久观看黄色视频| 国产麻豆69| 欧美日韩黄片免| 精品福利永久在线观看| 午夜福利影视在线免费观看| 99在线人妻在线中文字幕| 最近最新中文字幕大全电影3 | 别揉我奶头~嗯~啊~动态视频| 激情在线观看视频在线高清| 国产精品av久久久久免费| 国产精品电影一区二区三区| 18禁国产床啪视频网站| 黑人猛操日本美女一级片| 国产在线观看jvid| 色婷婷av一区二区三区视频| 午夜视频精品福利| 日韩大码丰满熟妇| 99国产精品一区二区三区| 国产精品九九99| 成人18禁在线播放| 成人三级黄色视频| x7x7x7水蜜桃| 亚洲专区中文字幕在线| 欧美成狂野欧美在线观看| 又紧又爽又黄一区二区| 国产成人精品久久二区二区91| 国产亚洲精品综合一区在线观看 | 免费高清视频大片| 欧美日韩亚洲综合一区二区三区_| 可以在线观看毛片的网站| 国产精品免费一区二区三区在线| 国产精品 欧美亚洲| 国产不卡一卡二| 国产单亲对白刺激| 亚洲精品一区av在线观看| 免费在线观看黄色视频的| 国产一区二区三区视频了| 一边摸一边抽搐一进一小说| 亚洲国产精品合色在线| 久久人妻熟女aⅴ| 香蕉久久夜色| 嫩草影院精品99| 精品国内亚洲2022精品成人| 午夜福利,免费看| 搡老乐熟女国产| 黄色女人牲交| 午夜成年电影在线免费观看| 亚洲国产看品久久| 欧美一级毛片孕妇| 亚洲欧美日韩无卡精品| 亚洲一区高清亚洲精品| 国产亚洲精品第一综合不卡| 热99re8久久精品国产| 女人被躁到高潮嗷嗷叫费观| 如日韩欧美国产精品一区二区三区| 亚洲熟女毛片儿| 久久久久九九精品影院| 国产视频一区二区在线看| 一级,二级,三级黄色视频| av免费在线观看网站| a级毛片在线看网站| 欧美精品亚洲一区二区| 久久久久久久精品吃奶| 美女国产高潮福利片在线看| 久久久久久久精品吃奶| 亚洲午夜精品一区,二区,三区| 久久99一区二区三区| 欧美乱色亚洲激情| 99精国产麻豆久久婷婷| 好看av亚洲va欧美ⅴa在| 免费高清在线观看日韩| 国产亚洲精品综合一区在线观看 | 久久久国产成人免费| 侵犯人妻中文字幕一二三四区| 亚洲五月天丁香| 精品福利观看| 日韩人妻精品一区2区三区| 精品福利观看| 18美女黄网站色大片免费观看| 在线观看66精品国产| 亚洲国产欧美一区二区综合| 777久久人妻少妇嫩草av网站| 老鸭窝网址在线观看| 一二三四在线观看免费中文在| 18美女黄网站色大片免费观看| 久热爱精品视频在线9| 中国美女看黄片| 黄网站色视频无遮挡免费观看| 亚洲人成电影观看| 超碰97精品在线观看| 一区在线观看完整版| 国产99白浆流出| 亚洲色图 男人天堂 中文字幕| 一进一出抽搐gif免费好疼 | 久久婷婷成人综合色麻豆| 亚洲人成电影免费在线| 91字幕亚洲| 老司机午夜十八禁免费视频| 亚洲精品一区av在线观看| 国产区一区二久久| 搡老岳熟女国产| 一级片'在线观看视频| 在线观看一区二区三区| 成人18禁在线播放| 91麻豆精品激情在线观看国产 | 国产精品免费一区二区三区在线| 久久人人爽av亚洲精品天堂| 天堂动漫精品| 脱女人内裤的视频| 久久久国产精品麻豆| 女人爽到高潮嗷嗷叫在线视频| 男女之事视频高清在线观看| 岛国在线观看网站| 最近最新免费中文字幕在线| 一边摸一边做爽爽视频免费| 国产色视频综合| 少妇粗大呻吟视频| 黄色片一级片一级黄色片| 日韩精品青青久久久久久| 色婷婷av一区二区三区视频| 日韩成人在线观看一区二区三区| 中文字幕色久视频| 久久亚洲精品不卡| 国产人伦9x9x在线观看| 美女高潮喷水抽搐中文字幕| 精品国内亚洲2022精品成人| 久久精品人人爽人人爽视色| 国产亚洲精品一区二区www| 51午夜福利影视在线观看| 国产精品免费视频内射| 国产精品偷伦视频观看了| 午夜视频精品福利| 色婷婷av一区二区三区视频| 成人三级黄色视频| 多毛熟女@视频| 欧美黄色片欧美黄色片| 日日爽夜夜爽网站| 俄罗斯特黄特色一大片| 欧美 亚洲 国产 日韩一| av网站免费在线观看视频| 国产亚洲av高清不卡| 男人的好看免费观看在线视频 | 国产一区二区三区综合在线观看| 精品高清国产在线一区| 中文字幕另类日韩欧美亚洲嫩草| 亚洲午夜精品一区,二区,三区| 这个男人来自地球电影免费观看| 亚洲精品国产区一区二| 黄色片一级片一级黄色片| 亚洲美女黄片视频| 午夜久久久在线观看| 国产精品免费一区二区三区在线| 久久青草综合色| 嫩草影院精品99| 色老头精品视频在线观看| 日本免费a在线| 美女国产高潮福利片在线看| www.www免费av| 国产欧美日韩一区二区三区在线| 亚洲成a人片在线一区二区| 国产精品久久久av美女十八| √禁漫天堂资源中文www| 日本精品一区二区三区蜜桃| 精品卡一卡二卡四卡免费| 亚洲av熟女| 日韩中文字幕欧美一区二区| 精品国产乱码久久久久久男人| 看黄色毛片网站| 99国产综合亚洲精品| a级毛片黄视频| 久久精品亚洲av国产电影网| 大型黄色视频在线免费观看| 久久草成人影院| 国产一卡二卡三卡精品| 91精品国产国语对白视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲一区中文字幕在线| 99riav亚洲国产免费| 成人国产一区最新在线观看| www国产在线视频色| 在线永久观看黄色视频| 国产精品电影一区二区三区| 日本免费a在线|