趙越,崔笑宇,2,田野,2
仿仙人掌集水進展
趙越1,崔笑宇1,2,田野1,2
(1.東北大學 醫(yī)學與生物信息工程學院,沈陽 110016;2.東北大學 佛山研究生創(chuàng)新學院,廣東 佛山 528300)
全面總結了仿仙人掌集水領域的研究進展,重點介紹了仿仙人掌結構的常見制備方法,包括3D打印法、梯度電化學腐蝕法、電紡結合可犧牲模板法、改進的磁顆粒輔助成形法、磁流變繪制光刻法和機械打孔結合模板復刻法,并對每一種方法的制備步驟和優(yōu)缺點進行了詳細介紹。同時,也詳細介紹了仿仙人掌集水的主要原理,包括拉普拉斯壓力梯度和表面自由能梯度,為集水工程技術的開發(fā)和改進提供了理論基礎。另外,還詳細地介紹了仿仙人掌結構的集水行為,包括單根仿仙人掌棘刺集水和大規(guī)模集水行為。最后,對仿仙人掌集水的未來發(fā)展方向進行了分析和展望。
仙人掌;集水;水資源短缺;仿生表面;仙人掌激發(fā)
水是生命之源,是人類和動植物生命中必不可少的物質[1-2]。然而,近些年來,淡水資源危機加劇,水資源短缺問題已經成為21世紀全球性難題,如何解決水資源短缺問題迫在眉睫[3-4]。近些年來,已經有一些旨在解決水資源短缺問題的技術問世,例如海水淡化技術和空氣冷凝技術,但是這些技術一般會存在成本高昂、技術復雜等問題。因此,急需一種操作簡單、成本低廉的技術來解決或緩解水資源短缺問題。據(jù)悉,大氣中約含有1.29×1014t水,這部分水以霧氣的形式存在,是由懸浮在大氣中的大量微小水滴組成,約占地球上淡水總量的10%[5]。這在一定程度上為緩解水資源危機帶來了新的解決思路。
為了獲取大氣中的水,人們嘗試從自然中尋找靈感。蜘蛛絲[6-14]、甲殼蟲背部[15-20]和豬籠草[21-24]等都展示出了良好的水收集性能。蜘蛛絲浸水后會呈現(xiàn)出規(guī)律排列的周期性的紡錘形結構,這種結構有利于捕獲空氣中的霧氣,這些被捕獲的霧氣凝結成水滴,這些水滴會不斷地融合長大,最終由于重力作用而從蛛絲上掉落下來,實現(xiàn)水的收集。沙漠甲殼蟲背部具有超疏水和超親水相間排列的結構,其中超親水區(qū)域可以捕獲空氣中的霧氣,隨著捕獲水量的增加,相鄰親水區(qū)小水滴會合并成大水滴,最終水滴大到足以克服甲殼蟲背部親水區(qū)域對水滴的粘附力,進而使得水滴滾落,從而開始新的水收集循環(huán)。另外,豬籠草的圓錐形棘齒結構、相鄰棘齒之間的凹型結構以及蠕動表面等也展示出了良好的水收集性能。研究人員受到這些天然水收集器的啟發(fā),開發(fā)出了相應的水收集技術。
近些年來,由仙人掌集水現(xiàn)象[25-27]所激發(fā)的集水技術[28-46]受到了人們的廣泛關注,這為緩解水資源短缺問題開辟了新的路徑。仙人掌棘刺的特殊結構特征是仙人掌具有高效集水性能的原因。仙人掌棘刺呈現(xiàn)圓錐狀,尖端具有圓錐形倒鉤結構,中部有明顯的微凹槽,底部有帶狀結構的毛狀體,棘刺和倒鉤的圓錐形形貌導致了拉普拉斯壓力梯度,該壓力梯度可以產生一個使水滴從棘刺尖端向根部移動的驅動力[25]。另外,棘刺微凹槽寬度梯度導致了棘刺尖端和底部的表面粗糙度不同,從而產生了表面自由能梯度,該表面自由能梯度也可以產生一個指向棘刺根部的驅動力。在拉普拉斯壓力梯度和表面自由能梯度所產生的2個驅動力的共同作用下,凝結在仙人掌棘刺尖端的小水滴可以持續(xù)從棘刺尖端往棘刺根部移動,實現(xiàn)連續(xù)且周期性的定向水收集[25]。
受到仙人掌集水行為的啟發(fā),科研人員開發(fā)出了仿仙人掌棘刺結構,并將其廣泛應用于集水領域。本文將全面介紹仿仙人掌集水領域的最新研究進展,詳細闡述仙人掌的集水過程和仿仙人掌結構的制備方法、集水原理和集水行為等,并對仿仙人掌集水領域的未來發(fā)展做出展望。本文系統(tǒng)和全面地介紹了仿仙人掌集水領域的研究進展,并促進該領域在制備技術和集水性能等方面的全面進步和提高。另外,本文也可以為新材料的設計、流體控制和微流控等領域提供理論依據(jù)和科學指導。
許多仙人掌科的植物都能在高度干旱的荒漠里存活,其中一些仙人掌可以通過圓錐狀的棘刺收集霧氣來進行水分補給。來自奇華華沙漠的仙人掌O. Microdasys展示出一種集成的多功能高效水收集系統(tǒng)[25,28,31-32,34-35,39]。圓錐狀棘刺簇和毛狀體在仙人掌莖的表面生長成均勻分布的陣列,這些圓錐狀棘刺沿任意方向生長,形成半球結構,棘刺根部的毛狀體也形成半球結構,相鄰2個棘刺之間的平均角度為18.1°±5.31°。圓錐狀棘刺由具有不同結構特征的3部分組成,其尖端包含定向倒鉤結構,中部包含梯度凹槽結構,根部包含帶狀結構的毛狀體。其中,棘刺中部呈現(xiàn)多級凹槽,第一級凹槽是微凹槽,沿棘刺具有寬度梯度,第二級凹槽主要是寬度上缺乏明顯梯度的亞微凹槽(見圖1a)。這些結構(即圓錐狀棘刺、定向倒鉤、梯度凹槽和帶狀毛狀體)的精細整合可有助于霧氣的高效收集[25]。
圖1 仙人掌表觀結構及集水行為[25]
將單個棘刺以多個傾斜角度(90°、45°、–45°、90°、0°)放置,來確定棘刺生長方向對水滴定向運動行為的影響。對于每種情況,即使當棘刺垂直固定且尖端向下時,水滴也會被定向驅動,從尖端向棘刺的根部運動。這些結果表明,水滴的重力對定向集水性能影響不大,仙人掌莖上的棘刺生長方向不是水滴定向運動的關鍵因素(見圖1b)。將具有多個定向倒鉤的棘刺水平放置,在初始階段,倒鉤和棘刺上同時有微小水滴沉積。隨著沉積的進行,倒刺上的水滴一邊生長一邊向倒鉤的根部移動,當水滴離開倒鉤之后,倒鉤又開始了新的水滴沉積和定向收集循環(huán),最終倒鉤上的水滴與棘刺上的水滴合并形成較大的水滴。隨著連續(xù)沉積,這個較大的水滴進一步與沉積在相鄰倒鉤上的水滴合并,隨著小水滴沉積的繼續(xù),水滴尺寸持續(xù)增大,棘刺尖端側水滴依次聚結并沿棘刺向棘刺根部方向定向移動,從而實現(xiàn)水收集的目的。該過程可循環(huán)發(fā)生,實現(xiàn)連續(xù)循環(huán)水收集(見圖1c)。完整的仙人掌霧氣收集過程可概述如下:“水滴沉積過程”最初發(fā)生在倒鉤和棘刺上,隨后水滴沿著倒鉤和棘刺定向移動;隨著沉積的進行和水滴的結合,這些水滴的尺寸增大,并從棘刺的頂端離開(“收集過程”),然后較大的水滴沿著棘刺的梯度槽進一步傳輸(“傳輸過程”),并最終通過棘刺,被棘刺根部毛狀體吸收(“吸收過程”)[25]。
研究人員已經開發(fā)出了多種仿仙人掌結構的制備方法,以此來模仿仙人掌獨特的形貌和表面微結構,從而實現(xiàn)快速、高效的水收集。下面將簡要介紹現(xiàn)有的主要仿仙人掌結構制備技術[47]。
3D打印法可以制備高精度的仿仙人掌結構[48-49]。高精度的3D打印設備通常會被用來打印復雜的棘刺結構或圓錐形棘刺陣列。光敏樹脂是常用的打印仿仙人掌棘刺結構的材料。其中,層基表面浸沒堆積3D打印法(The layer-based immersed surface accumula-tion 3D printing method)[48]是一種極其有效的制備仿仙人掌結構的方法(如圖2所示)。層基表面浸沒堆積3D打印系統(tǒng)由光學系統(tǒng)、運動系統(tǒng)和視覺系統(tǒng)組成,其中,該系統(tǒng)中的光學工具可以投射2D圖案光束。為了產生2D圖案化光束,基于數(shù)字微鏡器件(DMD)的微尺度光學系統(tǒng)被設計與構建。在光學系統(tǒng)中,可見光首先通過熒光成像濾光片,該濾光片只能透射405 nm波長的光。光被DMD反射到準直透鏡中,使像素在最終的2D圖案光束中顯得明亮。通過調整DMD芯片中每個對應微鏡的開關頻率,可以控制2D圖案光束中每個像素的亮度。最后,在準直光通過4×Olympus plan消色差物鏡聚焦(聚焦距離=15 mm)后,在光學工具的頂面上產生2D圖案光束。把光學工具浸沒在可光固化的樹脂罐內,材料隨著光學工具的移動而堆積,再與多軸運動相結合,微尺度多叉棘刺結構便可以在不同的表面方向上成形。這個親水多叉棘刺的陣列結構可以通過表面改性方法來提升其疏水性能,從而來優(yōu)化該仿仙人掌結構的集水性能。3D打印法的優(yōu)點在于其高度的可控性,可以精準制備形狀復雜的仿仙人掌結構,但是缺點是設備昂貴,操作復雜,操作人員需要經過專業(yè)的培訓,且不適宜完成大規(guī)模連續(xù)仿仙人掌結構的制備。
圖2 層基表面浸沒堆積3D打印過程[48]
梯度電化學腐蝕法[50-52]是一種簡單、快速地制備仿仙人掌結構的方法。該方法分為2步來制備仿仙人掌棘刺結構,首先,通過梯度電化學腐蝕制備圓錐形銅絲(見圖3a),然后再將圓錐形銅絲進行梯度化學修飾(見圖3b)。商用銅絲在使用前,先用砂紙仔細將銅絲直徑打磨至約350 μm,然后用乙醇和大量水沖洗干凈,再用氮氣干燥,以除去外圍絕緣漆。接下來,將該銅絲垂直固定并連接到10 V DC電源的陽極,用銅片將其連接到陰極,并使用CuSO4溶液充當電解液。將裝滿硫酸銅溶液的容器放在可編程升降工作臺上,通過以特定速度升降工作臺,銅絲沿其高度產生電化學腐蝕梯度,從而形成圓錐形結構[50]。
圖3 梯度電化學腐蝕法制備仿仙人掌棘刺結構[50]
接下來,通過梯度電化學腐蝕制備的圓錐形銅絲需要使用真空蒸發(fā)法鍍上一層薄而均勻的金納米顆粒。然后將圓錐形銅絲垂直固定在支架上,尖端朝下。將裝滿1–十二硫醇的乙醇溶液的容器放置在圓錐形銅絲下方可編程升降工作臺上。緩慢抬起升降工作臺,圓錐形銅絲逐漸浸沒在溶液中??刂铺嵘俣龋_保圓錐形銅絲大約需要10 min才能完全浸沒。用充足的乙醇沖洗制備好的圓錐形銅絲,以去除物理吸附的1–十二硫醇,然后浸入11–巰基–1–十一醇的乙醇溶液中大約10 min,再用大量乙醇沖洗,最后在氮氣流中干燥[50]。通過上述2步工藝,便可以得到形貌和表面潤濕性均類似于仙人掌棘刺的結構。該方法可以簡單、快速地制備仿仙人掌結構,但是存在耗能高、難以批量生產等問題。
另外一種有效制備仿仙人掌結構的方法是電紡結合可犧牲模板法[53]。電紡結合可犧牲模板法的制備過程(見圖4a)可分為3步:1)靜電紡PAA-PS復合纖維經熱亞胺化處理后可以轉變?yōu)榧{米凹槽PI纖維;2)在電場力的作用下,制備的復合纖維平行穿過電極間隙,然,將一根銀針沿著對齊的纖維以固定的角度旋轉,從而在復合纖維表面覆蓋靜電紡絲產生的纖維;3)在接下來的亞胺化過程中,去除PS,便可得到具有層次分明的凹槽結構的人造仙人掌棘刺。接下來,將180根制備好的人造仙人掌棘刺裝配到一個球形海綿上,便可以得到人造仙人掌模型(見圖4b)。這種方法可以精準地構建人造仙人掌棘刺表面的微凹槽結構,可更加精準地模仿仙人掌棘刺,但該類方法存在產量較低、耗能高、高壓電危險等缺點。
改進的磁顆粒輔助成形法[54-55]是一種簡易且可大規(guī)模制備仿仙人掌棘刺陣列的方法(見圖5a)。首先,制備含有PDMS預聚物和磁性顆粒的混合物,質量比為2︰1。然后,通過旋涂工藝將均勻分布的混合物涂布在尺寸為0.5 mm(長)×0.5 mm(寬)× 0.13 mm(深)的聚苯乙烯幾何構形板上。使用具有超磁場強度的釹磁體作為外部磁場,在該磁場驅動下,通過紅外輻射固化,沿磁場方向產生了均勻有序的仙人掌棘刺狀微尖端陣列(見圖5b)。另外,輕微振動會加速磁性顆粒陣列的布置,有利于快速制備微尖端陣列。由于材料成分對微尖端形貌具有一定影響,所以通過調整PDMS與磁性顆粒的質量比便可以制備出多種微尖端陣列樣品。該方法簡單、快速、易操作,且適合大規(guī)模制備仿仙人掌棘刺陣列,缺點是微尖端陣列形貌可控性有限,很難制備較長的尖刺結構。
圖4 電紡結合可犧牲模板法制備仿仙人掌結構[53]
圖5 改進的磁顆粒輔助成型法制備仿仙人掌棘刺陣列[54]
為了使用磁流變繪制光刻法[56]來實現(xiàn)仿仙人掌圓錐形棘刺(帶/不帶微倒鉤結構)的增材制造,研究人員自主開發(fā)了一套制備裝置(見圖6a),并通過COMSOL Mutiphysics計算出磁場分布情況(見圖6b)。磁流變繪制光刻法具體制備過程(見圖6c)如下:將尖端有磁流變液滴的1 mm柱子壓縮在海綿基底上,以1 mm/s的速度拉回,在外部垂直磁場(≈80 mT)的作用下,在基底上形成一個液體圓錐形棘刺結構。將液體圓錐形棘刺結構在80 ℃下加熱并固化30 min。為了在固化的液體圓錐形棘刺結構上制造微倒鉤,將圓錐形棘刺水平固定在繪制區(qū)域,以1 mm/s的速度繪制垂直微倒鉤陣列,并在圓錐形棘刺表面上逐個形成一條線。當微倒鉤被移動到角度轉移區(qū)域時,其方向被轉移。圓錐形棘刺一側的傾斜微倒鉤也在80 ℃下加熱固化30 min。圓錐形棘刺另一側的微倒鉤陣列也被如此重復制造。這樣便可以得到無倒鉤以及有向前倒鉤、垂直倒鉤和向后倒鉤的圓錐形棘刺結構。磁流變繪制光刻法可以制備復雜的仿仙人掌棘刺結構,特別是對仙人掌倒鉤結構的模擬有著天然的優(yōu)勢,缺點是操作程序復雜,需要豐富的實驗經驗,制備過程涉及到高溫加熱和外部磁場作用,能耗較高。
機械打孔結合模板復刻法[57-58]是一種簡單、快速制備仿仙人掌棘刺陣列的方法(如圖7所示)。首先,使用圓錐狀尖銳物(如不銹鋼針)在基底材料上均勻規(guī)則地打孔,然后將PDMS的預聚物均勻涂覆在打好孔的基底上。待PDMS填充滿孔洞后,加熱固化PDMS。待PDMS完全固化后,要么將PDMS從基底上剝離,要么將基底材料溶解,便可以得到仿仙人掌棘刺陣列。該方法制備過程簡單,操作方便,可以快速大規(guī)模制備仿仙人掌棘刺陣列,缺點是所制備的棘刺長度有限,難以精準復刻仙人掌棘刺倒鉤結構和微凹槽結構。
圖6 磁流變繪制光刻法制備仿仙人掌結構[56]
圖7 機械打孔結合模板復刻法制備仿仙人掌棘刺陣列[57]
仿仙人掌集水在集水領域受到了廣泛的關注。研究人員從機理角度揭示了仿仙人掌集水過程,提出了適用于仿仙人掌集水的機理模型,例如拉普拉斯壓力梯度模型和表面自由能梯度模型等。這些模型有助于人們對仿仙人掌集水過程(如圖8a所示)有更深刻的理解,更好地指導人們對集水仿仙人掌結構進行設計和優(yōu)化。
在仙人掌和仿仙人掌材料上,凝結在倒鉤和棘刺尖端的小水滴能定向從這些尖端向對應的根部移動,其中最主要的動力之一就是由倒鉤和棘刺的形狀梯度所導致的拉普拉斯壓力梯度。在拉普拉斯壓力梯度的作用下,在圓錐形表面上的水滴會被驅動,從而向半徑加大的一端移動。通常情況下,由拉普拉斯壓力梯度引起的驅動力(見圖8b)可以表示為[25,30,41,57]:
圖8 仿仙人掌結構集水機理[25]
Fig.8 Water collection mechanism of bioinspired cactus structures[25]: a) an overview of the efficient cactus water collection system; b) analysis of the driving forces arising from the gradient of the Laplace pressure; c) analysis of the driving forces arising from the gradient of the surface-free energy
除了拉普拉斯壓力梯度引起的力之外,驅動水滴定向移動到棘刺根部的另一個主要的驅動力是由仙人掌棘刺表面的自由能梯度產生的。表面自由能梯度高度依賴于材料的化學成分和材料表面的粗糙度。特別是仙人掌棘刺表面上的微凹槽有寬度梯度,并且接近棘刺根部的微凹槽比接近尖端的微凹槽稀疏很多,換言之,靠近棘刺尖端的表面要比靠近棘刺根部的表面粗糙很多。另一方面,從表面的粗糙度來說,對于親水表面,表面粗糙度大的具有更高的表面能;而對于疏水表面,表面粗糙度大的具有更小的表面能。根據(jù)Wenzel定律[25]有:
其中:ω為表觀接觸角;為本征接觸角;為表面粗糙度因子。由于仙人掌棘刺被一層植物蠟覆蓋著,所以仙人掌棘刺表面呈現(xiàn)疏水性。因為仙人掌棘刺尖端的粗糙度大,所以其疏水性較強,表面自由能較低,而仙人掌棘刺的底部的粗糙度小,所以其疏水性較差,表面自由能較高,因此水滴向表面自由能較高的棘刺底部方向移動。由表面自由能梯度所產生的驅動力(見圖8c)可表示為[25,30,41]:
式中:A和R分別為水滴在仙人掌棘刺表面的前進角和后退角;d為從棘刺尖端附近區(qū)域(tip)到棘刺底部附近區(qū)域(base)在沿著棘刺中部長度上的積分變量。由于表面自由能梯度所產生的驅動力由表面能較低的棘刺尖端指向表面自由能較高的棘刺根部方向,因此由表面自由能梯度所產生的驅動力可以推動水滴從棘刺尖端向棘刺根部定向移動。
單根仿仙人掌棘刺集水行為與自然中仙人掌棘刺集水行為類似。對于單一圓錐狀仿仙人掌棘刺結構[50,52-54],其集水過程為:在初始階段,霧氣中的微小水滴隨機沉積在仿仙人掌棘刺結構的表面上;隨著沉積的進行,仿仙人掌棘刺結構上的水滴一邊生長,一邊向仿仙人掌棘刺結構的根部移動,并與仿仙人掌棘刺上沿途的水滴合并,從而形成較大的水滴;隨著連續(xù)沉積和合并,這個水滴尺寸越來越大,尖端側水滴依次聚結并沿仿仙人掌棘刺向其根部方向定向移動,從而實現(xiàn)水收集的目的。該過程可連續(xù)循環(huán)發(fā)生,實現(xiàn)連續(xù)循環(huán)水收集。對于帶有倒鉤的仿仙人掌棘刺結構[56],其集水過程可以概括為:將具有倒鉤結構的仿仙人掌棘刺結構水平放置,在初始階段,這些倒鉤和仿仙人掌棘刺上同時有微小水滴沉積;隨著沉積的進行,這些倒鉤上的小水滴一邊生長,一邊向倒鉤的根部移動;當水滴離開倒鉤之后,這些倒鉤又開始了新的水滴沉積和定向收集循環(huán);最終,這些倒鉤上的水滴與仿仙人掌棘刺上的水滴合并形成較大的水滴;隨著連續(xù)沉積,這個較大的水滴進一步與沉積在相鄰倒鉤上的水滴合并,隨著小水滴沉積的繼續(xù),水滴尺寸越來越大,仿仙人掌棘刺尖端側水滴依次聚結,并沿著仿仙人掌棘刺向仿仙人掌棘刺根部方向定向移動,從而實現(xiàn)水收集的目的。該過程可循環(huán)發(fā)生,實現(xiàn)連續(xù)循環(huán)水收集。
目前,對于仿仙人掌結構集水的研究大多停留在單根棘刺結構或者單根棘刺結構重復的棘刺陣列結構上,對于大規(guī)模集成仿仙人掌結構集水的方面研究較少。
Guo等[53]用電紡結合可犧牲模板法制備了仿仙人掌棘刺,并將180根仿仙人掌棘刺安裝在橢球形海綿球上,構成一個簡易的仿仙人掌集水器。在霧流速為55~60 cm/s的情況下,該集水器可以在15 min內收集1.3 mL的水,并且使用200個該仿仙人掌集水器,在2.4 h內便可以收集到滿足1個成年人1天的飲水量(見圖9a)。另外,Cao等[54]也通過在棉球上安裝圓錐形微尖的結構來構建仙人掌激發(fā)的連續(xù)霧氣收集器(見圖9b),通過構建這種仿仙人掌結構的集水器,成功實現(xiàn)了大規(guī)模、高效的水收集。
圖9 仿仙人掌結構集水行為[53-54]
本文主要介紹了目前較為常用的仿仙人掌結構制備法(見表1)、仿仙人掌結構的集水原理以及相應的集水行為,這將很好地促進仿仙人掌集水領域的發(fā)展和進步。目前,仿仙人掌結構集水已經得到較好的研究,特別是對單根仿仙人掌結構的集水過程和原理進行了深入了探討,并已經能夠較好地實現(xiàn)大氣集水,或為缺水地區(qū)的人民帶來福音。然而,目前的仿仙人掌結構集水仍舊存在一些不足,比如結構較為復雜的仿仙人掌結構的制備工藝較為復雜,一般成本較高;結構簡單且制備簡單的仿仙人掌棘刺結構較難實現(xiàn)對水的快速、高效收集;仿仙人掌棘刺結構在集水時對環(huán)境濕度具有較高的依賴性等。在未來的研究中,應該注重利用更先進的加工制備工藝來制備價格低廉、工藝簡單、表面微納結構更優(yōu)、集水性能更佳的仿仙人掌結構,實現(xiàn)高效、快速、大規(guī)模的水收集。同樣,如何在較為干旱的、濕度較低的環(huán)境中利用仿仙人掌結構集水也是未來重要的研究方向之一。另外,如何實現(xiàn)仿仙人掌結構的大規(guī)模制備,以及利用仿仙人掌結構實現(xiàn)大規(guī)模、高效水收集也是需要在未來重點攻克的難題。由仙人掌集水現(xiàn)象的啟發(fā),人們已經在仿仙人掌集水領域做出了許多杰出的貢獻。同時,這些可喜的發(fā)現(xiàn)為解決水資源短缺問題提供了新的思路,相信在不久的將來,仿仙人掌集水技術會有質的飛躍,為解決水資源短缺問題帶來實質性的和根本的解決方案和策略。本綜述提供了一個全面的視角,使人們更加全面地了解仿仙人掌結構集水領域的研究進展。本綜述能為功能材料的設計提供很好的途徑,也能促進仿仙人掌結構應用的開發(fā)、改善和拓展,同時也能促進諸如液體傳輸、油水分離、流體控制和功能材料等領域的發(fā)展。
表1 仿仙人掌結構制備方法匯總
[1] ZHOU W, ZHOU C, DENG C, et al. High-Performance Freshwater Harvesting System by Coupling Solar Desalination and Fog Collection with Hierarchical Porous Microneedle Arrays[J]. Advanced Functional Materials, 2022, 32: 2113264.
[2] LU Heng-yi, SHI Wen, ZHANG J H, et al. Tailoring the Desorption Behavior of Hygroscopic Gels for Atmospheric Water Harvesting in Arid Climates[J]. Advanced Mate-rials, 2022, 34(37): 2205344.
[3] LAHA S, MAJI T K. Binary/Ternary MOF Nanocom-posites for Multi-Environment Indoor Atmospheric Water Harvesting[J]. Advanced Functional Materials, 2022, 32(34): 2203093.
[4] DODS M N, WESTON S C, LONG J R. Prospects for Simultaneously Capturing Carbon Dioxide and Harves-ting Water from Air[J]. Advanced Materials (Deerfield Beach, Fla), 2022, 34(38): e2204277.
[5] LI Ren-yuan, SHI Y, ALSAEDI M, et al. Hybrid Hydro-gel with High Water Vapor Harvesting Capacity for Dep-loyable Solar-Driven Atmospheric Water Genera-tor[J]. Environmental Science & Technology, 2018, 52(19): 11367-11377.
[6] ZHENG Yong-mei, BAI Hao, HUANG Zhong-bing, et al. Directional Water Collection on Wetted Spider Silk[J]. Nature, 2010, 463(7281): 640-643.
[7] DONG H, WANG N, WANG L, et al. Bioinspired Electrospun Knotted Microfibers for Fog Harvesting[J]. Chemphyschem: a European Journal of Chemical Physics and Physical Chemistry, 2012, 13(5): 1153-1156.
[8] SHI Rui, TIAN Ye, WANG Li-qiu. Bioinspired Fibers with Controlled Wettability: From Spinning to Appli-cation[J]. ACS Nano, 2021, 15(5): 7907-7930.
[9] TIAN Ye, WANG Li-qiu. Bioinspired Microfibers for Water Collection[J]. Journal of Materials Chemistry A, 2018, 6(39): 18766-18781.
[10] BAI H, JU J, SUN R, et al. Controlled Fabrication and Water Collection Ability of Bioinspired Artificial Spider Silks[J]. Advanced Materials, 2011, 23(32): 3708-3711.
[11] TIAN Xue-lin, CHEN Yuan, ZHENG Yong-mei, et al. Controlling Water Capture of Bioinspired Fibers with Hump Structures[J]. Advanced Materials (Deerfield Bea-ch, Fla), 2011, 23(46): 5486-5491.
[12] BAI Hao, TIAN Xue-lin, ZHENG Yong-mei, et al. Direc-tion Controlled Driving of Tiny Water Drops on Bioins-pired Artificial Spider Silks[J]. Advanced Materials (Deer-field Beach, Fla), 2010, 22(48): 5521-5525.
[13] DONG Hua, ZHENG Yong-mei, WANG N, et al. Highly Efficient Fog Collection Unit by Integrating Artificial Spider Silks[J]. Advanced Materials Interfaces, 2016, 3(11): 1500831.
[14] TIAN Ye, ZHU Pin-gan, TANG Xin, et al. Large-Scale Water Collection of Bioinspired Cavity-Microfibers[J]. Nature Communications, 2017, 8: 1080.
[15] WANG Xi-kui, ZENG Jia, LI Jing, et al. Beetle and Cactus-Inspired Surface Endows Continuous and Direc-tional Droplet Jumping for Efficient Water Harvesting[J]. Journal of Materials Chemistry A, 2021, 9(3): 1507-1516.
[16] WEN Chi-yu, GUO Hong-shuang, BAI Hao-yu, et al. Beetle-Inspired Hierarchical Antibacterial Interface for Reliable Fog Harvesting[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 34330-34337.
[17] ZHU H, HUANG Y, LOU X, et al. Beetle-Inspired Wettable Materials: From Fabrications to Applications[J]. Materials Today Nano, 2019, 6: 100034.
[18] WANG Xi-kui, ZENG Jia, YU Xin-quan, et al. Beetle- Like Droplet-Jumping Superamphiphobic Coatings for Enhancing Fog Collection of Sheet Arrays[J]. RSC Ad-van-ces, 2020, 10(1): 282-288.
[19] XU Chen, FENG Rui, SONG Fei, et al. Desert Beetle- Inspired Superhydrophilic/Superhydrophobic Patterned Cellulose Film with Efficient Water Collection and Antibacterial Performance[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(11): 14679-14684.
[20] YU Z, YUN F F, WANG Y, et al. Desert Beetle-Inspired Superwettable Patterned Surfaces for Water Harves-ting[J]. Small, 2017, 13(36): 1701403.
[21] LI Chu-xin, YU Cun-long, ZHOU Shan, et al. Liquid Harvesting and Transport on Multiscaled Curvatures[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(38): 23436-23442.
[22] FENG Rui, XU Chen, SONG Fei, et al. A Bioinspired Slippery Surface with Stable Lubricant Impregnation for Efficient Water Harvesting[J]. ACS Applied Materials & Interfaces, 2020, 12(10): 12373-12381.
[23] DAI Xian-ming, SUN Nan, NIELSEN S O, et al. Hy-drophilic Directional Slippery Rough Surfaces for Water Harvesting[J]. Science Advances, 2018, 4(3): eaaq0919.
[24] WANG Yuan-feng, LIANG Xin, MA Kai-kai, et al. Nature-Inspired Windmill for Water Collection in Com-plex Windy Environments[J]. ACS Applied Materials & Interfaces, 2019, 11(19): 17952-17959.
[25] JU Jie, BAI Hao, ZHENG Yong-mei, et al. A Multi- Structural and Multi-Functional Integrated Fog Collection System in Cactus[J]. Nature Communications, 2012, 3: 1247.
[26] LEE S J, HA Na-mi, KIM H. Superhydrophilic-Super-hydrophobic Water Harvester Inspired by Wetting Pro-perty of Cactus Stem[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(12): 10561-10569.
[27] LIU Cheng-cheng, XUE Yan, CHEN Yuan, et al. Effec-tive Directional Self-Gathering of Drops on Spine of Cactus with Splayed Capillary Arrays[J]. Scientific Re-ports, 2015, 5: 17757.
[28] CAO Si-si, JIANG Qi-sheng, WU Xuan-hao, et al. Ad-van-ces in Solar Evaporator Materials for Freshwater Generation[J]. Journal of Materials Chemistry A, 2019, 7(42): 24092-24123.
[29] MALINOWSKI R, PARKIN I P, VOLPE G. Advances towards Programmable Droplet Transport on Solid Surfaces and Its Applications[J]. Chemical Society Re-views, 2020, 49(22): 7879-7892.
[30] LIU Jing, CAO Min, LI Long, et al. Bioinspired Inter-facial Design for Gravity-Independent Fluid Transport Control[J]. Giant, 2022, 10: 100100.
[31] ZHANG Fan, GUO Zhi-guang. Bioinspired Materials for Water-Harvesting: Focusing on Microstructure Designs and the Improvement of Sustainability[J]. Materials Ad-vances, 2020, 1(8): 2592-2613.
[32] JU Jie, ZHENG Yong-mei, JIANG Lei. Bioinspired One- Dimensional Materials for Directional Liquid Trans-port[J]. Accounts of Chemical Research, 2014, 47(8): 2342-2352.
[33] CUI Ying, LI De-wen, BAI Hao. Bioinspired Smart Materials for Directional Liquid Transport[J]. Industrial & Engineering Chemistry Research, 2017, 56(17): 4887-4897.
[34] ZHU Hai, GUO Zhi-guang, LIU Wei-min. Biomimetic Water-Collecting Materials Inspired by Nature[J]. Chemi-cal Communications (Cambridge, England), 2016, 52(20): 3863-3879.
[35] YUE Hao, ZENG Qing-hong, HUANG Jin-xia, et al. Fog Collection Behavior of Bionic Surface and Large Fog Collector: A Review[J]. Advances in Colloid and Interface Science, 2022, 300: 102583.
[36] YU Zhi-hua, ZHU Tian-xue, ZHANG Ji-chao, et al. Fog Harvesting Devices Inspired from Single to Multiple Creatures: Current Progress and Future Perspective (Adv. Funct. Mater. 26/2022)[J]. Advanced Functional Mate-rials, 2022, 32(26): 2270148.
[37] WANG Ben, ZHOU Xue-chang, GUO Zhi-guang, et al. Recent Advances in Atmosphere Water Harvesting: Desi-gn Principle, Materials, Devices, and Applications[J]. Nano Today, 2021, 40: 101283.
[38] LIU C, SUN Y, HUANG J, et al. External-Field-Induced Directional Droplet Transport: A Review[J]. Advances in Colloid and Interface Science, 2021, 295: 102502.
[39] LI Jian, GUO Zhi-guang. Spontaneous Directional Trans-por-tations of Water Droplets on Surfaces Driven by Gra-dient Structures[J]. Nanoscale, 2018, 10(29): 13814- 13831.
[40] WANG Yuan-feng, MA Kai-kai, XIN J H. Stimuli-Res-ponsive Bioinspired Materials for Controllable Liquid Manipulation: Principles, Fabrication, and Applica-tions[J]. Advanced Functional Materials, 2018, 28(6): 1705128.
[41] WANG Qiu-yue, YANG Fu-chao, GUO Zhi-guang. The Intrigue of Directional Water Collection Interface: Me-chanisms and Strategies[J]. Journal of Materials Che-mistry A, 2021, 9(40): 22729-22758.
[42] GURERA D, BHUSHAN B. Designing Bioinspired Surfaces for Water Collection from Fog[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2019, 377(2138): 20180269.
[43] ZHAI Lei, BERG M C, CEBECI F C, et al. Patterned Superhydrophobic Surfaces: Toward a Synthetic Mimic of the Namib Desert Beetle[J]. Nano Letters, 2006, 6(6): 1213-1217.
[44] GUO L, TANG G H. Experimental Study on Directional Motion of a Single Droplet on Cactus Spines[J]. International Journal of Heat and Mass Transfer, 2015, 84: 198-202.
[45] MALIK F T, CLEMENT R M, GETHIN D T, et al. Hierarchical Structures of Cactus Spines that Aid in the Directional Movement of Dew Droplets[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374(2073): 20160110.
[46] BAI Hao-yu, ZHAO Tian-hong, WANG Xin-sheng, et al. Cactus Kirigami for Efficient Fog Harvesting: Simpli-fying a 3D Cactus into 2D Paper Art[J]. Journal of Materials Chemistry A, 2020, 8(27): 13452-13458.
[47] ZHANG S, HUANG J, CHEN Z, et al. Bioinspired Special Wettability Surfaces: From Fundamental Research to Water Harvesting Applications[J]. Small (Weinheim an Der Bergstrasse, Germany), 2017, 13(3): 27935211.
[48] LI Xiang-jia, YANG Yang, LIU Lu-yang, et al. 3D-Prin-ted Cactus-Inspired Spine Structures for Highly Efficient Water Collection[J]. Advanced Materials Interfaces, 2020, 7(3): 1901752.
[49] MAHMOOD A, CHEN L, CHEN S, et al. Nature-In-spired Design of Conical Array for Continuous and Efficient Fog Collection Application[J]. Colloid and Inter-face Science Communications, 2020, 37: 100283.
[50] JU Jie, XIAO Kai, YAO Xi, et al. Bioinspired Conical Copper Wire with Gradient Wettability for Continuous and Efficient Fog Collection[J]. Advanced Materials (Deerfield Beach, Fla), 2013, 25(41): 5937-5942.
[51] TAN Xian-hua, SHI Tie-lin, TANG Zi-rong, et al. Investi-gation of Fog Collection on Cactus-Inspired Structures[J]. Journal of Bionic Engineering, 2016, 13(3): 364-372.
[52] HENG Xin, XIANG Ming-ming, LU Zhi-hui, et al. Bran-ched ZnO Wire Structures for Water Collection Inspired by Cacti[J]. ACS Applied Materials & Interfaces, 2014, 6(11): 8032-8041.
[53] BAI Fan, WU Jun-tao, GONG Guang-ming, et al. Biomi-metic Cactus Spine with Hierarchical Groove Structure for Efficient Fog Collection[J]. Advanced Science (Wein-heim, Baden-Wurttemberg, Germany), 2015, 2(7): 1500047.
[54] CAO Mo-yuan, JU Jie, LI Kan, et al. Facile and Large- Scale Fabrication of a Cactus-Inspired Continuous Fog Collector[J]. Advanced Functional Materials, 2014, 24(21): 3235-3240.
[55] SONG Yun-yun, YU Zhao-peng, DONG Li-ming, et al. Cactus-Inspired Janus Membrane with a Conical Array of Wettability Gradient for Efficient Fog Collection[J]. Langmuir, 2021, 37(46): 13703-13711.
[56] YI Sheng-zhu, WANG Jian, CHEN Zhi-peng, et al. Cactus-Inspired Conical Spines with Oriented Microbarbs for Efficient Fog Harvesting[J]. Advanced Materials Technologies, 2019, 4(12): 1900727.
[57] JU Jie, YAO Xi, YANG Shuai, et al. Cactus Stem Inspired Cone-Arrayed Surfaces for Efficient Fog Collection[J]. Advanced Functional Materials, 2014, 24(44): 6933-6938.
[58] PENG Y, HE Y, YANG S, et al. Magnetically Induced Fog Harvesting via Flexible Conical Arrays[J]. Advanced Functional Materials, 2015, 25(37): 5967-5971.
Advances in Cactus-inspired Water Collection
1,1,2,1,2
(1. College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110016, China; 2. Foshan Graduate School of Innovation, Northeastern University, Guangdong Foshan 528300, China)
Water is the source of life and essential to human life, animal and plant life. However, the water shortage has become a major global issue in the 21st century. It is extremely urgent to solve the water shortage. Therefore, a simple and low-cost technology is urgently needed to solve or alleviate water shortage. There is a large amount of water in the atmosphere, to a certain extent, which brings the new solution to alleviate the water crisis. To obtain the water from the atmosphere, people try to draw inspiration from nature.
The water collection property of cactus provides a good idea for solving the problem of water shortage. The special structure of cactus spines is the reason of its efficient water collecting performance. The special structure results in the driving forces arising from the gradient of the Laplace pressure and the gradient of the surface-free energy. Both forces can drive the small water droplets to move from the tip of spine to the bottom of spine. Therefore, the cactus spine can collect water from atmosphere continuously.
In recent years, the water collection of cactus has attracted more and more attentions due to its high water harvesting performance. Therefore, it is very necessary to summarize the advances in cactus water collection and cactus-inspired water harvesting. In this work, research progresses in water collection of natural cactus and cactus-inspired structures were summarized comprehensively and in detail. This work mainly introduced the common fabrication methods of cactus inspired structures, including3D printing methods, gradient electrochemical corrosion method, combining electrospinning with sacrificial template method, modified magnetic particle-assisted molding approach, magnetorheological drawing lithography method and combining mechanical perforating and template replica technology, and also expounded the fabrication steps, advantages and disadvantages for each method. The related introduction of fabrication methods for cactus inspired structures can make people have a good understanding of cactus-inspired structures and materials. Meanwhile, this work also introduced the main mechanisms of water collection of cactus-inspired structures, including Laplace pressure gradient and surface free energy gradient, providing a theoretical basis for the development and improvement of water collection engineering and technology. The forces arising from Laplace pressure gradient and surface free energy gradient can provide strong driving forces to push tiny water droplet to move from tip side to end side along the cactus spine. This made the cactus show the high performance of water harvesting. In addition, this work also introduced the water collection behaviors, including water collection on a single bioinspired cactus spine and large-scale water collection. This would help related people understand the water harvesting behaviors and characteristics. At last, the future development direction of cactus inspired structures for water collection was analyzed and prospected. This work will contribute to a comprehensive understanding of the fabrication methods, the water collection mechanism and water collection behaviors of cactus-inspired structures and greatly promote the development of water collection engineering, liquid transport, functional materials, microfluidics and fluid control, even smart materials, bioinspired materials and functional materials.
cactus; water collection; water shortage; bioinspired surface; cactus-inspired
TQ342
A
1001-3660(2022)12-0052-11
10.16490/j.cnki.issn.1001-3660.2022.12.004
2022–10–01;
2022–11–08
2022-10-01;
2022-11-08
廣東省基礎與應用基礎研究基金(2020A1515110126,2021A1515010130);中央高?;究蒲袠I(yè)務專項資金(N2119006,N2224001-10);寧波市2025重大專項(2021Z027)
Guangdong Basic and Applied Basic Research Foundation (2020A1515110126, 2021A1515010130); The Fundamental Research Funds for the Central Universities (N2119006, N2224001-10); Ningbo Science and Technology Bureau (2021Z027)
趙越(1966—),女,博士,教授,主要研究方向為生物信息學、醫(yī)學圖像分析和仿生工程。
ZHAO Yue (1966-), Female, Doctor, Professor, Research focus: bioinformatics, medical images analysis and bioinspired engineering.
崔笑宇(1984—),男,博士,副教授,主要研究方向為生物信息學、計算機視覺和仿生工程。
CUI Xiao-yu (1984-), Male, Doctor, Associate professor, Research focus: bioinformatics, computer vision and bioinspired engineering.
田野(1987—),男,博士,副教授,主要研究方向為微流控、軟物質、功能纖維、集水工程。
TIAN Ye (1987-), Male, Doctor, Associate professor, Research focus: microfluidics, soft matter, Functional fiber and Water-collection engineering.
趙越, 崔笑宇, 田野. 仿仙人掌集水進展[J]. 表面技術, 2022, 51(12): 52-62.
ZHAO Yue, CUI Xiao-yu, TIAN Ye. Advances in Cactus-inspired Water Collection[J]. Surface Technology, 2022, 51(12): 52-62.
責任編輯:劉世忠