• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In-port-plug transmission line design of the ITER plasma position reflectometer

    2020-06-28 06:15:58MARTNEZFERNNDEZCAPPASIMONETTOESTRADADELALUNAandBLANCO
    Plasma Science and Technology 2020年6期

    J MARTíNEZ-FERNáNDEZ , á CAPPA, A SIMONETTO, T ESTRADA ,E DE LA LUNA and E J BLANCO

    1 Laboratorio Nacional de Fusión. CIEMAT, Avda Complutense 40. Madrid 28040, Spain

    2 CNR-ISTP, via Cozzi 53, 20125 Milano, Italy

    Abstract This work describes the microwave design of the transmission line housed in the in-port-plug region of the ITER plasma position reflectometer(PPR).The design of the components of the inport-plug reflectometers (located in equatorial port-plug 10 (EPP10) and in upper-port-plug 01(UPP01))is presented.Using a 3D ray tracing code,the spatial position and optimum orientation angles of each set of emission and detection antennas were determined.A feasible path was then created from the obtained antenna positions and orientations to the primary vacuum window.Oversized tall waveguides were chosen to reduce ohmic losses. Due to space constraints in the ITER crowded environment, bends in oversized waveguides were unavoidable, and thus mode conversion was produced. To keep mode conversion losses at bay, hyperbolic secant curvature bends had to be used whenever possible. However, E-plane bends in tall waveguides proved to be especially critical, making it necessary to employ other approaches when higher bending angles were needed. Mode conversion results were obtained by evaluating the mode coupling equations. Ohmic losses have also been computed and their results compared with commercial simulators, obtaining a perfect agreement.

    Keywords: reflectometry, microwave technology, ITER diagnostic(Some figures may appear in colour only in the online journal)

    1. Introduction

    The ITER plasma position reflectometer (PPR) diagnostic system is designed to provide information related to the edge electron density profile, at four defined locations distributed both poloidally and toroidally in the ITER vacuum vessel,known as gap 3, gap 4, gap 5 and gap 6, operating in the 15–75 GHz frequency range in O-mode.The antennas of gaps 4 and 6 are installed in-vessel,viewing the plasma through cutouts in the blanket modules, while those of gaps 3 and 5 are installed inside the port plugs EPP10 and UPP01,respectively,viewing the plasma through apertures in the diagnostic first wall. This document describes the work leading to the design of the waveguides connecting the gap 3 and 5 antennas to their correspondent interfaces in the primary vacuum window.Design and analysis of the transmission lines from the primary window (ex-vessel) are already presented in [1], while their structural analysis can be found in [2].

    2. Antenna placement and orientation

    Starting from two selected ITER baseline scenarios(15 MA/5.3 T/ D-T and 7.5 /2.65 T/4He), the TRUBA code [3] has been used to perform ray tracing simulations for each frequency,which allows us to determine the optimum launching direction angles (?, φ) for which the wave radiated by the emission antenna is reflected towards the center of the detection antenna,thus maximizing the wave coupling.As an example, figure 1 shows a projection of the simulated rays in the poloidal plane of the device(left panel)for gap 5 antennas with optimum launching angles at 75 GHz for the 15 MA scenario. For each frequency and scenario, the beam orientation is such that the rays reflected by the O-mode cut-off layer (red solid curve) are traced back until they reach the center of the detection antenna. In the right panel, the intersection of the reflected rays with the plane perpendicular to the launching direction and containing the center of both antenna mouths is shown together with a representation of the antennas’ apertures. The launching antenna direction angles are given in each panel’s upper left corner.

    Figure 1.Side view (left) of ray tracing results at 75 GHz and for the 15 MA scenario and intersection of reflected rays with the detection antenna plane(right).The calculation has been performed using 8×8=64 rays.Frequency dependent optimum launching angles(? and φ)ensure that the central part of the reflected beam reaches the detection antenna.

    Table 1.Far field distances in the principal planes of a 44 mm×44 mm horn compared with traveling distances provided by ray tracing.

    Figure 2.Power coupling(system gain)for the 15 MA scenario with gap 5 antennas.Low frequencies always show worse power coupling due to stronger beam diffraction.

    As a result of these simulations, a matching set of optimum launching angles were found,depending on the scenario,the frequency and the antenna pair. Taking into account that the antennas would be fixed, the computed angles which produce direct reflection would move from the antennas’physical launching angles.Therefore,a global optimization was carried out to get the best physical orientation angles (?optand φopt)and antenna dimensions. The objective of this optimization is to maximize the detected power in the worst case, namely the frequency and scenario combination with the worst coupling.In order to compute this coupling, radiation patterns of the antennas should be considered to account for the power drop out of the antenna maximum radiation direction. To alleviate the computational effort and make the global optimization possible, analytical expressions for the radiation pattern of symmetrical horns have been used together with the Friis transmission equation to get the power coupling [4] when the plasma is not present. These expressions require that the far field conditions are met [4], namely that the wave travelling distance is higher than the one at which the fields from an antenna are considered at far field. Table 1 compares the far field distances in the principal planes of the chosen 44 mm×44 mm horns with the wave traveling distances obtained by the ray tracing simulations for each angle and scenario.For these chosen antennas,only the gap 3 antennas in the 15 MA scenario at high frequency do not fulfill the far field condition(and even then maximum error can be delimited and taken into account). For all the remaining cases, the condition is fulfilled, and the analytical approximation is therefore valid for obtaining the power coupling between antennas. After the final optimum orientation angles are obtained,power coupling can be obtained for each scenario. As an example, figure 2 presents the power coupling of the system for the 15 MA scenario in the gap 5 antennas.

    Figure 3.Ohmic losses in a 0.62 m long 2 mm×12 mm E-plane bend.The left panel shows the theoretical results compared with a full wave simulation (HFSS), while the right panel compares the downtapered (2 mm×12 mm) bend with the regular one (20 mm×12 mm) using canonical theory.

    Two-dimensional full wave simulations using a finite difference time domain (FDTD) code were performed afterwards to obtain the complex wave amplitudes and phases at the detection antenna end. Performing the spectrogram of these data allows us then to obtain the time delay of the signal, which is then used to reconstruct the plasma density profile. This sort of synthetic diagnostic is used to get an estimation of the error in the determination of the position of the last closed flux surface in both static and turbulent plasmas [5].

    3. Transmission line

    Once the launching/receiving antennas have been designed and their positions and orientations have been decided, the waveguides carrying the signal must be specified. Rectangular oversized 20 mm×12 mm waveguides have been used for the transmission of the signal.In addition to the oversized dimensions of the waveguide, the TE01mode is chosen in what is called a ‘tall’ waveguide configuration in order to reduce ohmic losses. It is important to note that due to this mode choice, the cut-off frequency depends on the narrow wall dimension instead of the broad one as in the case of the fundamental TE10mode.

    One possibility that allows us to get rid of mode coupling at the bends at the cost of additional ohmic losses is downtapering of the waveguide.In particular,wherever the E-plane bends’ performance is unacceptable, the 20 mm×12 mm waveguide can be downtapered into a 2 mm ×12 mm waveguide.In an E-plane bend,power from the TE01mode can be coupled to any of the TEn1/TMn1degenerate mode pairs with n odd,being the TE11/TM11the one with the largest coupling coefficient. By performing a downtaper in the broad dimension of the waveguide, the TE11and TM11modes (degenerate) are at cut-off, and are therefore not degrading performance due to mode conversion. As the narrow dimension is not altered, the cut-off frequency of the operating(TE01) mode is the same, hence allowing normal operation,albeit the reduced dimensions provoke an increase in ohmic losses. Figure 3 shows in the left panel the ohmic losses of a 0.62 m long 2 mm×12 mm downtapered E-plane bend with a 13.17° bending angle and a minimum radius of curvature of 310.88 mm, both calculated analytically using perturbation theory, assuming a straight waveguide of the same length propagating a canonical TE01mode[9],and simulated with a full wave simulation (high frequency structure simulator(HFSS)). For illustrative purposes, it is convenient to highlight that this bend is the S-bend from the downtapered branch of gap 3 routing,which will be described in section 5.Additionally, in the right panel, a comparison using perturbation theory between the same bend using the original 20 mm×12 mm waveguide and the 2 mm ×12 mm one is presented. As the figure shows, despite not being completely rigorous, calculations using the straight waveguide approximation present negligible differences with full wave simulations.Moreover,the comparison between both downtapered and regular waveguides shows that approximately 1 dB loss difference can be obtained in a 0.62 m long bend.

    Figure 4.Transmission due to mode conversion in a 200 mm long 2 mm×12 mm to 20 mm×12 mm parabolic uptaper. High frequency spikes may be artefacts of the finite element calculation.

    Additionally, an uptaper should be added to the system in order to regain the correct 20 mm×12 mm dimensions. Mode conversion does occur both in the down and uptapers, although it is easier to cope with that in the case of E-plane bends. For instance, figure 4 depicts the mode conversion of a 200 mm length 2 mm×12 mm to 20 mm×12 mm parabolic taper [10]. Although no special optimization was performed on it, very low mode conversion is obtained, therefore making this solution a feasible one.

    4. Gap 5 routing

    The gap 5 reflectometer involves the use of two pairs of antennas with slightly different launching angles in order to cover different scenarios. Both routings (upper/lower antennas)are very similar,and only the upper antenna pair routing will be shown here. Due to the large distances involved, the whole routing of this gap can be carried out using hyperbolic secant curvature bends, even in the case of E-plane turns.Bending angles could be kept low enough with sufficiently large radii of curvature for acceptable mode conversion losses. Figure 5 shows an image of the final routing from the antennas (from the left) to the primary window (in the lower right corner of the figure) in the upper left image. Additionally,the integrated losses due to mode coupling are shown in the upper right image and the ohmic losses in the lower left one,leading to the total integrated losses that are shown in the lower right panel.

    5. Gap 3 routing

    In the case of gap 3, available space for the antennas is not on the axis of the port, thus making it necessary to perform some bending to run parallel to the axis. This fact, added to the reduced distance from the antennas to the primary window and the angle between the antennas,made it impossible to design E-plane bends with an acceptable performance.To minimize mode coupling,it was decided to make the design so that one of the branches was straight (in terms of horizontal bending),therefore increasing the horizontal bending in the other one, thus provoking even more mode coupling.To overcome this hindrance, it was decided to perform a downtaper to a 2 mm×12 mm waveguide (just adjusting the final dimensions of the antenna mouth) and then an uptaper to regain 20 mm×12 mm, as described before.Figure 6 shows in the upper left image the computer aided design representation of this solution and the mode conversion losses in the upper right image. It is important to highlight that as there is no noticeable mode conversion in the 2 mm×12 mm E-plane bends and it is negligible in the H-plane bends, these integrated mode conversion losses are dominated by mode conversion in the 200 mm length uptaper from 2 mm ×12 mm to 20 mm×12 mm, as a comparison with figure 4 reveals. Ohmic losses have also been depicted in the lower left image, splitting results into the losses due to the 2 mm×12 mm waveguide branch and the ones from the 20 mm×12 mm branch for comparison purposes. Finally, the lower right panel shows the total integrated losses when considering ohmic and mode conversion altogether.

    6. Conclusions

    Figure 5.Gap 5 final routing(upper left)and its mode conversion losses along routing(upper right),ohmic losses along routing considering iron’s resistivity (lower left) and overall integrated losses (lower right).

    Figure 6.Gap 3 final routing(upper left)and its mode conversion losses along routing(upper right),ohmic losses along routing considering iron’s resistivity (lower left) and overall integrated losses (lower right).

    Both the routings and their performance results for gap 5 and gap 3 of the ITER PPR reflectometer have been presented. In both cases 20 mm×12 mm rectangular oversized waveguides have been used to carry the signal using the TE01mode in order to minimize ohmic losses. Hyperbolic secant curvature bends have been used for the bending needs of the routing and have proven the best solution for H-plane bends. In case of E-plane bends, the degradation of performance has forced us to keep bending angles low, and whenever this was not possible, downtapering to a 2 mm×12 mm waveguide has proven to be a valid solution to get rid of mode conversion at the cost of extra ohmic loses. Nevertheless, ohmic losses have also been calculated and simulated, and acceptable results have been obtained.

    Acknowledgments

    This work has been partially funded by the Ministerio de Ciencia, Innovacion y Universidades of Spain under project FIS2017-88892-P, and by Fusion for Energy under Specific Grant Agreement F4E-FPA-375-SG05. This publication reflects only the views of the author, and Fusion for Energy cannot be held responsible for any use which may be made of the information contained therein.

    ORCID iDs

    J MARTíNEZ-FERNáNDEZ https://orcid.org/0000-0002-5583-8420

    T ESTRADA https://orcid.org/0000-0001-6205-2656

    久久精品亚洲av国产电影网| 成人国产av品久久久| 狠狠精品人妻久久久久久综合| 亚洲国产精品成人久久小说| 欧美日韩黄片免| 婷婷成人精品国产| videos熟女内射| 美女高潮到喷水免费观看| 欧美日韩成人在线一区二区| 午夜老司机福利片| 久久久久久亚洲精品国产蜜桃av| 丝袜人妻中文字幕| 青草久久国产| 老司机影院毛片| 在线精品无人区一区二区三| 久久毛片免费看一区二区三区| 久久亚洲精品不卡| 尾随美女入室| 国产欧美日韩精品亚洲av| 亚洲成人免费av在线播放| 99re6热这里在线精品视频| 日韩av在线免费看完整版不卡| 久久99精品国语久久久| 少妇人妻 视频| 亚洲精品乱久久久久久| 国产片内射在线| 久久久久精品国产欧美久久久 | 亚洲人成77777在线视频| 肉色欧美久久久久久久蜜桃| 男女下面插进去视频免费观看| 国产精品偷伦视频观看了| 在线观看www视频免费| 国产免费一区二区三区四区乱码| 午夜91福利影院| 男人爽女人下面视频在线观看| 波多野结衣av一区二区av| 免费高清在线观看日韩| 国产成人欧美在线观看 | 91精品三级在线观看| 亚洲五月婷婷丁香| 看免费av毛片| 老汉色∧v一级毛片| 高清视频免费观看一区二区| 成人手机av| 成人18禁高潮啪啪吃奶动态图| a 毛片基地| 久久狼人影院| 大话2 男鬼变身卡| 久久久久国产一级毛片高清牌| 午夜福利影视在线免费观看| 久久狼人影院| 黄色视频不卡| 精品高清国产在线一区| 777米奇影视久久| 久久久久国产一级毛片高清牌| 国产男女内射视频| 国产精品一区二区免费欧美 | 18禁观看日本| 免费观看人在逋| 狂野欧美激情性xxxx| 高清欧美精品videossex| 亚洲国产毛片av蜜桃av| 永久免费av网站大全| 大码成人一级视频| 少妇 在线观看| av视频免费观看在线观看| 久久久亚洲精品成人影院| 久久久久国产一级毛片高清牌| 黄色怎么调成土黄色| 午夜91福利影院| 蜜桃国产av成人99| 国产精品.久久久| 日韩伦理黄色片| 50天的宝宝边吃奶边哭怎么回事| 一本久久精品| 国产亚洲av高清不卡| 日韩制服丝袜自拍偷拍| 一个人免费看片子| 国产精品二区激情视频| 美女脱内裤让男人舔精品视频| 最近中文字幕2019免费版| 天堂中文最新版在线下载| 亚洲激情五月婷婷啪啪| 一级毛片 在线播放| 黑人欧美特级aaaaaa片| 三上悠亚av全集在线观看| 国产一区二区激情短视频 | av国产精品久久久久影院| 国产欧美日韩一区二区三区在线| 18禁国产床啪视频网站| 人人妻人人澡人人爽人人夜夜| 亚洲国产欧美一区二区综合| 黄色片一级片一级黄色片| 菩萨蛮人人尽说江南好唐韦庄| av又黄又爽大尺度在线免费看| 丰满迷人的少妇在线观看| 在线观看免费高清a一片| 久久久久国产精品人妻一区二区| 亚洲国产日韩一区二区| 18禁裸乳无遮挡动漫免费视频| 99国产精品一区二区三区| 日韩精品免费视频一区二区三区| 后天国语完整版免费观看| 我的亚洲天堂| 丝瓜视频免费看黄片| 国产高清不卡午夜福利| 久久久久视频综合| 在线观看www视频免费| 日韩,欧美,国产一区二区三区| bbb黄色大片| netflix在线观看网站| av在线老鸭窝| 汤姆久久久久久久影院中文字幕| 啦啦啦在线免费观看视频4| 日韩制服丝袜自拍偷拍| 母亲3免费完整高清在线观看| 国产片内射在线| 亚洲av综合色区一区| 九草在线视频观看| 一级片'在线观看视频| 国产精品熟女久久久久浪| 超碰97精品在线观看| 亚洲人成网站在线观看播放| 精品少妇久久久久久888优播| 少妇粗大呻吟视频| 亚洲国产精品一区二区三区在线| 91老司机精品| 在线观看一区二区三区激情| 青草久久国产| 国语对白做爰xxxⅹ性视频网站| 在线观看一区二区三区激情| 日韩av在线免费看完整版不卡| 天堂8中文在线网| 丝瓜视频免费看黄片| 亚洲欧美精品自产自拍| 色视频在线一区二区三区| 亚洲欧美激情在线| 少妇被粗大的猛进出69影院| 又大又黄又爽视频免费| 久久热在线av| 飞空精品影院首页| 交换朋友夫妻互换小说| 人人妻人人添人人爽欧美一区卜| av在线老鸭窝| 免费观看a级毛片全部| 99久久99久久久精品蜜桃| 国产xxxxx性猛交| 亚洲一区二区三区欧美精品| 好男人视频免费观看在线| 涩涩av久久男人的天堂| 最新的欧美精品一区二区| 亚洲精品久久午夜乱码| 精品一区二区三卡| 国产精品一国产av| 女性被躁到高潮视频| 丝袜喷水一区| 在线天堂中文资源库| 亚洲av欧美aⅴ国产| 少妇人妻久久综合中文| 亚洲精品av麻豆狂野| 亚洲欧美激情在线| tube8黄色片| 久久久国产精品麻豆| 久久免费观看电影| 国产一区亚洲一区在线观看| 国产成人免费无遮挡视频| 一个人免费看片子| 别揉我奶头~嗯~啊~动态视频 | 99久久人妻综合| 高清黄色对白视频在线免费看| av天堂久久9| 丝瓜视频免费看黄片| 欧美在线一区亚洲| 黑人欧美特级aaaaaa片| 青春草视频在线免费观看| 久久精品成人免费网站| 人妻人人澡人人爽人人| 久久精品国产亚洲av涩爱| 女人精品久久久久毛片| 一级黄片播放器| www.av在线官网国产| 国产一区亚洲一区在线观看| 久久久久久久国产电影| 视频在线观看一区二区三区| 美国免费a级毛片| 久久毛片免费看一区二区三区| 免费在线观看黄色视频的| 高清欧美精品videossex| 欧美老熟妇乱子伦牲交| 少妇的丰满在线观看| 久久久精品区二区三区| 国产成人精品无人区| 黑人欧美特级aaaaaa片| 在线观看免费视频网站a站| 最黄视频免费看| 在现免费观看毛片| 精品久久久久久久毛片微露脸 | 日日爽夜夜爽网站| 亚洲视频免费观看视频| 一级毛片 在线播放| 欧美成人午夜精品| 日本a在线网址| 人人澡人人妻人| 少妇精品久久久久久久| 国产极品粉嫩免费观看在线| 精品福利观看| 亚洲精品久久成人aⅴ小说| 日韩av在线免费看完整版不卡| 人人妻人人添人人爽欧美一区卜| 在线亚洲精品国产二区图片欧美| 满18在线观看网站| netflix在线观看网站| 亚洲视频免费观看视频| 大片电影免费在线观看免费| 老熟女久久久| 午夜av观看不卡| 女性被躁到高潮视频| 国产欧美亚洲国产| 两个人看的免费小视频| 成年动漫av网址| 18禁黄网站禁片午夜丰满| 亚洲国产精品成人久久小说| 香蕉丝袜av| 人人澡人人妻人| 欧美在线黄色| 18禁黄网站禁片午夜丰满| 亚洲欧美精品综合一区二区三区| 久久中文字幕一级| 久久 成人 亚洲| 一区福利在线观看| 男女边摸边吃奶| 欧美另类一区| 亚洲欧美一区二区三区国产| 欧美精品高潮呻吟av久久| videosex国产| 午夜av观看不卡| 国产精品一区二区在线不卡| 亚洲一区中文字幕在线| 久久精品aⅴ一区二区三区四区| 男女下面插进去视频免费观看| 高清不卡的av网站| 亚洲成人国产一区在线观看 | 国产不卡av网站在线观看| 99久久精品国产亚洲精品| 手机成人av网站| 成年动漫av网址| 中国美女看黄片| 青春草亚洲视频在线观看| 亚洲三区欧美一区| 1024香蕉在线观看| 满18在线观看网站| 美女扒开内裤让男人捅视频| 亚洲一区中文字幕在线| 99国产综合亚洲精品| 久久热在线av| h视频一区二区三区| 日韩一卡2卡3卡4卡2021年| 日韩中文字幕欧美一区二区 | 一区二区三区激情视频| 一级,二级,三级黄色视频| 一级毛片我不卡| 人妻一区二区av| 午夜激情久久久久久久| 亚洲 国产 在线| 久久精品成人免费网站| 777久久人妻少妇嫩草av网站| 人人妻人人澡人人爽人人夜夜| 国产日韩一区二区三区精品不卡| 亚洲专区中文字幕在线| 欧美人与善性xxx| 制服诱惑二区| 9热在线视频观看99| 国产又色又爽无遮挡免| 美女扒开内裤让男人捅视频| 国产免费又黄又爽又色| 亚洲免费av在线视频| 黄色 视频免费看| 亚洲国产欧美一区二区综合| a级毛片黄视频| 国产成人精品在线电影| 91精品国产国语对白视频| 国产91精品成人一区二区三区 | 一区二区av电影网| 少妇粗大呻吟视频| 91国产中文字幕| 美女国产高潮福利片在线看| 人人妻人人爽人人添夜夜欢视频| 日本wwww免费看| 亚洲黑人精品在线| 激情五月婷婷亚洲| 久久久久久久大尺度免费视频| 香蕉丝袜av| 亚洲精品国产色婷婷电影| 国产视频一区二区在线看| 成年人免费黄色播放视频| 成人三级做爰电影| 亚洲欧美精品综合一区二区三区| 热99久久久久精品小说推荐| 女警被强在线播放| 曰老女人黄片| 热99久久久久精品小说推荐| 男人操女人黄网站| 久久精品国产综合久久久| 国产精品久久久人人做人人爽| 91国产中文字幕| 热re99久久国产66热| 日本欧美视频一区| 久久免费观看电影| 少妇猛男粗大的猛烈进出视频| 人人妻,人人澡人人爽秒播 | 国产黄色免费在线视频| 两个人看的免费小视频| 午夜精品国产一区二区电影| 国产av精品麻豆| 免费久久久久久久精品成人欧美视频| 国产黄色视频一区二区在线观看| 在线精品无人区一区二区三| 精品一区二区三区四区五区乱码 | 国产成人系列免费观看| 这个男人来自地球电影免费观看| 久久国产亚洲av麻豆专区| 新久久久久国产一级毛片| 男女下面插进去视频免费观看| 丰满迷人的少妇在线观看| 亚洲专区中文字幕在线| 精品国产乱码久久久久久男人| 中文精品一卡2卡3卡4更新| 久久久久国产精品人妻一区二区| 亚洲国产精品999| av福利片在线| 婷婷色综合www| 青春草视频在线免费观看| 只有这里有精品99| 精品一区二区三区av网在线观看 | 亚洲黑人精品在线| 丰满迷人的少妇在线观看| 久久人人97超碰香蕉20202| 国产精品一区二区在线观看99| 成年女人毛片免费观看观看9 | 中文乱码字字幕精品一区二区三区| 国产欧美日韩一区二区三 | 大话2 男鬼变身卡| 制服人妻中文乱码| 午夜精品国产一区二区电影| cao死你这个sao货| 脱女人内裤的视频| 亚洲国产毛片av蜜桃av| 一区二区三区精品91| 亚洲色图综合在线观看| 巨乳人妻的诱惑在线观看| 免费人妻精品一区二区三区视频| 午夜福利视频精品| 久久亚洲精品不卡| 婷婷色综合大香蕉| 免费日韩欧美在线观看| 熟女av电影| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧美一区二区三区国产| 黄色视频不卡| av网站在线播放免费| 国产精品国产三级国产专区5o| 久久久国产精品麻豆| www.精华液| 晚上一个人看的免费电影| 美女脱内裤让男人舔精品视频| 黑人欧美特级aaaaaa片| 十八禁高潮呻吟视频| 婷婷色麻豆天堂久久| 咕卡用的链子| 国产一卡二卡三卡精品| 国产成人91sexporn| 精品少妇一区二区三区视频日本电影| 美女高潮到喷水免费观看| 国产精品免费大片| 亚洲欧美精品综合一区二区三区| 性色av乱码一区二区三区2| 人人澡人人妻人| 精品国产一区二区三区四区第35| 精品熟女少妇八av免费久了| 成年人午夜在线观看视频| 国产成人一区二区在线| 国产精品人妻久久久影院| 欧美日韩亚洲高清精品| 大话2 男鬼变身卡| 99国产精品99久久久久| 美女中出高潮动态图| 欧美日韩福利视频一区二区| 五月天丁香电影| 夫妻性生交免费视频一级片| 国产高清国产精品国产三级| 91成人精品电影| 如日韩欧美国产精品一区二区三区| a 毛片基地| 少妇裸体淫交视频免费看高清 | 在线观看人妻少妇| 欧美日韩视频精品一区| 成年人午夜在线观看视频| 午夜福利免费观看在线| 制服人妻中文乱码| 亚洲第一av免费看| 大香蕉久久成人网| 超碰成人久久| 欧美激情极品国产一区二区三区| 男女国产视频网站| tube8黄色片| 人人妻人人澡人人看| 国产精品一二三区在线看| 大型av网站在线播放| 午夜日韩欧美国产| 欧美人与善性xxx| av网站在线播放免费| 嫩草影视91久久| 久久精品亚洲av国产电影网| 激情五月婷婷亚洲| tube8黄色片| 国产成人91sexporn| 另类精品久久| 亚洲一码二码三码区别大吗| 王馨瑶露胸无遮挡在线观看| 亚洲,欧美精品.| 一本色道久久久久久精品综合| 国产欧美日韩一区二区三区在线| 国产精品国产三级专区第一集| 国产精品熟女久久久久浪| 日韩熟女老妇一区二区性免费视频| 欧美另类一区| 亚洲熟女毛片儿| 午夜福利免费观看在线| 黑人欧美特级aaaaaa片| 欧美日韩亚洲高清精品| 香蕉丝袜av| 王馨瑶露胸无遮挡在线观看| 捣出白浆h1v1| 精品一区在线观看国产| 国产又爽黄色视频| 亚洲伊人久久精品综合| 飞空精品影院首页| 国产成人影院久久av| 水蜜桃什么品种好| 性色av乱码一区二区三区2| 91精品国产国语对白视频| 亚洲成av片中文字幕在线观看| 免费av中文字幕在线| 日本欧美视频一区| 中文欧美无线码| 一级黄片播放器| 久久99一区二区三区| 91九色精品人成在线观看| 成人免费观看视频高清| 黑人欧美特级aaaaaa片| 久热这里只有精品99| 国产精品人妻久久久影院| 亚洲精品一区蜜桃| 欧美日韩福利视频一区二区| 久久久精品区二区三区| a级毛片在线看网站| 国产老妇伦熟女老妇高清| 国产av精品麻豆| 午夜福利视频精品| 免费在线观看完整版高清| 欧美另类一区| 午夜免费观看性视频| 国产一区亚洲一区在线观看| 夜夜骑夜夜射夜夜干| 国产高清视频在线播放一区 | 亚洲激情五月婷婷啪啪| 日本欧美国产在线视频| 色网站视频免费| 91精品伊人久久大香线蕉| 十八禁网站网址无遮挡| 成人18禁高潮啪啪吃奶动态图| 一区二区日韩欧美中文字幕| 久久久国产一区二区| 在线观看一区二区三区激情| 精品一区二区三区四区五区乱码 | 女人久久www免费人成看片| 国产精品欧美亚洲77777| 国产成人系列免费观看| 国产97色在线日韩免费| 午夜免费成人在线视频| 视频区图区小说| 老司机靠b影院| 成人黄色视频免费在线看| 久久久精品区二区三区| 日韩av在线免费看完整版不卡| 曰老女人黄片| 永久免费av网站大全| 国产老妇伦熟女老妇高清| 性色av乱码一区二区三区2| av国产久精品久网站免费入址| 午夜福利在线免费观看网站| 精品高清国产在线一区| 久久久久精品人妻al黑| 黄色怎么调成土黄色| 亚洲精品美女久久久久99蜜臀 | 免费看不卡的av| 精品一区在线观看国产| 两个人免费观看高清视频| 狂野欧美激情性xxxx| 精品人妻一区二区三区麻豆| 国产极品粉嫩免费观看在线| 欧美亚洲日本最大视频资源| 中国美女看黄片| 亚洲精品第二区| 亚洲精品自拍成人| 一级黄片播放器| 超色免费av| 亚洲熟女毛片儿| av网站免费在线观看视频| 欧美日韩av久久| 伊人亚洲综合成人网| 亚洲色图综合在线观看| 青春草视频在线免费观看| 国产黄色免费在线视频| 亚洲国产欧美网| 午夜免费男女啪啪视频观看| 国产极品粉嫩免费观看在线| 亚洲欧美精品综合一区二区三区| 中文字幕人妻丝袜制服| av天堂久久9| 老熟女久久久| 一级片免费观看大全| 啦啦啦中文免费视频观看日本| 久久亚洲精品不卡| 男人操女人黄网站| 男人爽女人下面视频在线观看| 国产女主播在线喷水免费视频网站| 丝袜脚勾引网站| 大型av网站在线播放| 欧美性长视频在线观看| 久久99一区二区三区| 国产精品99久久99久久久不卡| 国产黄色免费在线视频| 久久久久国产精品人妻一区二区| 丝袜人妻中文字幕| 亚洲三区欧美一区| 青草久久国产| 蜜桃国产av成人99| 一区二区av电影网| 午夜福利视频在线观看免费| 高清av免费在线| 亚洲人成网站在线观看播放| 久久国产精品人妻蜜桃| 国产伦理片在线播放av一区| 高潮久久久久久久久久久不卡| 美女高潮到喷水免费观看| 天天躁日日躁夜夜躁夜夜| cao死你这个sao货| 国产精品一区二区精品视频观看| 婷婷色麻豆天堂久久| 晚上一个人看的免费电影| 国产极品粉嫩免费观看在线| 日本五十路高清| 可以免费在线观看a视频的电影网站| 久久亚洲精品不卡| 亚洲av电影在线观看一区二区三区| 黄片小视频在线播放| 国产99久久九九免费精品| 国产av精品麻豆| 下体分泌物呈黄色| 汤姆久久久久久久影院中文字幕| 黄色 视频免费看| 日本wwww免费看| 免费少妇av软件| 亚洲av电影在线观看一区二区三区| 啦啦啦 在线观看视频| 啦啦啦中文免费视频观看日本| 国产免费现黄频在线看| 欧美性长视频在线观看| 免费看十八禁软件| 麻豆乱淫一区二区| 中文字幕人妻熟女乱码| 丁香六月天网| √禁漫天堂资源中文www| 中文字幕人妻丝袜一区二区| av国产精品久久久久影院| 成在线人永久免费视频| 久久久久网色| 只有这里有精品99| 午夜精品国产一区二区电影| 久久久久久亚洲精品国产蜜桃av| 在线观看免费视频网站a站| 两个人看的免费小视频| 国产三级黄色录像| 一区二区三区乱码不卡18| 国产成人精品久久二区二区91| 日韩中文字幕视频在线看片| 日韩电影二区| 亚洲情色 制服丝袜| 黄色一级大片看看| 夜夜骑夜夜射夜夜干| 天天躁夜夜躁狠狠久久av| 老司机靠b影院| 国产福利在线免费观看视频| 国产1区2区3区精品| 午夜福利在线免费观看网站| 2021少妇久久久久久久久久久| 母亲3免费完整高清在线观看| 韩国高清视频一区二区三区| 免费在线观看黄色视频的| videos熟女内射| 日本猛色少妇xxxxx猛交久久| 男女床上黄色一级片免费看| netflix在线观看网站| 国产成人精品久久二区二区91| 久久人人爽人人片av| 亚洲色图 男人天堂 中文字幕| 乱人伦中国视频| 女人精品久久久久毛片| 午夜福利一区二区在线看| 国产av国产精品国产| 国产伦人伦偷精品视频| 亚洲欧美一区二区三区国产| 香蕉国产在线看| 男女午夜视频在线观看|