摘要:夾雜物對(duì)鋼鐵的疲勞強(qiáng)度以及疲勞壽命均會(huì)產(chǎn)生影響,但是大塊試樣中的夾雜物情況無(wú)法直接用X射線顯微計(jì)算機(jī)斷層掃描 (X射線顯微CT)進(jìn)行精確成像。為實(shí)現(xiàn)對(duì)大塊試樣中夾雜物的三維特征觀察,采用非水溶液電解的方法獲取大塊試樣中的夾雜物,利用掃描電鏡對(duì)電解后的夾雜物進(jìn)行觀察和分析,將夾雜物聚合成為圓柱形樣品,最后采用X射線顯微CT對(duì)夾雜物進(jìn)行三維掃描,得到了大塊試樣中夾雜物的三維信息,并對(duì)夾雜物的各項(xiàng)尺寸數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。該研究為獲取大塊鋼鐵試樣中夾雜物的三維形貌提供了新思路。
關(guān)鍵詞:夾雜物;顯微計(jì)算機(jī)斷層掃描;掃描電鏡;非水溶液電解
中圖分類號(hào):TG142.1文獻(xiàn)標(biāo)志碼:A文章編號(hào):1002-4026(2023)03-0053-07
Abstract∶Inclusions have an impact on the fatigue strength and fatigue life of steel, but inclusions in large samples cannot be accurately imaged using X-ray micro computer tomo-graphy(X-ray micro-CT). This study provides a novel approach to obtain the three-dimensional morphology of inclusions in large steel samples. To realize the three-dimensional features of inclusions in large alloy samples, this study used a nonaqueous electrolysis method to obtain inclusions; then scanning electron microscopy was performed to observe and analyze the electrolyzed inclusions.Furthermore, the electrolyzed inclusions were aggregated into cylindrical samples and finally scanned with X-ray micro-CT to obtain their three-dimensional information, and the obtained dimensional data of the inclusions were statistically analyzed.
Key words∶inclusions;micro computer tomo-graphy; scanning electron microscopy; nonaqueous electrolysis
40Cr鋼是目前機(jī)械制造業(yè)使用最廣泛的鋼材之一,經(jīng)過(guò)調(diào)質(zhì)處理之后具有良好的綜合力學(xué)性能,應(yīng)用非常廣泛。但40Cr內(nèi)部的非金屬夾雜物會(huì)對(duì)其力學(xué)性能產(chǎn)生影響,是影響鋼鐵性能的重要因素[1-2]。例如,鋼的疲勞性能受夾雜物尺寸的影響很大[3-5]。鋼中夾雜物的精確表征是控制夾雜物的前提,因此夾雜物精確表征方法的發(fā)展對(duì)于控制夾雜物至關(guān)重要[6-7]。目前,夾雜物的形狀和尺寸分布可以利用光學(xué)顯微鏡和具有能譜分析功能的掃描電子顯微鏡對(duì)樣品的橫截面進(jìn)行分析[8-11]。但是,這些方法只能實(shí)現(xiàn)對(duì)夾雜物二維特征的分析,不能實(shí)現(xiàn)對(duì)夾雜物三維特征的精確分析,計(jì)算機(jī)斷層掃描(computer tomo-graphy,CT)技術(shù)可以原位無(wú)損地獲得材料內(nèi)部結(jié)構(gòu)的三維信息,是探查材料內(nèi)部結(jié)構(gòu)的有效手段。高強(qiáng)鋼中夾雜物的尺寸大多在微米量級(jí),而CT技術(shù)的分辨率可以達(dá)到亞微米,因此CT技術(shù)特別適合于高強(qiáng)鋼中內(nèi)部夾雜物的研究。利用X射線CT成像技術(shù)能夠揭示夾雜物的三維特征[12-15],是獲得樣品精確三維信息的絕佳方法[15-18]。目前CT技術(shù)已經(jīng)廣泛用于探索試樣內(nèi)部夾雜物或二次相等結(jié)構(gòu)對(duì)于該試樣斷裂行為的影響[19-20]。Murakami等[21]提出夾雜物尺寸對(duì)疲勞極限的影響可以用大夾雜物垂直于應(yīng)力方向的投影面積平方根來(lái)表示。Vaara等[22]提出了利用貝葉斯分布推斷潛在非金屬夾雜物分布的新方法。但是這些相關(guān)研究都是針對(duì)小塊試樣或者光滑試樣,缺乏針對(duì)大塊試樣或者其他復(fù)雜試樣中夾雜物的相關(guān)研究。由于鋼鐵對(duì)于X射線的吸收能力很強(qiáng),穿透大塊鋼鐵試樣需要高能量的X射線,這取決于顯微CT硬件的發(fā)展[23];另一方面,夾雜物尺寸在幾個(gè)到幾十微米之間,高能CT的分辨率很難對(duì)幾個(gè)到幾十個(gè)微米之間的夾雜物同時(shí)精確成像,這導(dǎo)致大塊試樣中夾雜物的表征成為難點(diǎn)。
本研究針對(duì)大塊試樣中的夾雜物無(wú)法直接用X射線顯微計(jì)算機(jī)斷層掃描(X射線顯微CT)精確成像的問(wèn)題,借助非水溶液電解和顯微CT相結(jié)合的方法實(shí)現(xiàn)對(duì)大塊試樣中夾雜物的精確表征。首先采用非水溶液電解的方法對(duì)40Cr進(jìn)行電解[24]獲得夾雜物,然后利用X射線顯微CT對(duì)電解得到的夾雜物進(jìn)行精確表征,最后利用多種量化參數(shù)對(duì)40Cr中各類夾雜物的三維特征進(jìn)行定量表征和統(tǒng)計(jì)分析。
1實(shí)驗(yàn)
1.1樣品制備
本研究采用的實(shí)驗(yàn)材料是40Cr鋼,其化學(xué)成分如表1所示。實(shí)驗(yàn)中大塊試樣尺寸為12.0 mm×8.0 mm×2.0 mm。電解液為含10%乙酰丙酮+1%四甲基氯化銨(體積分?jǐn)?shù))的甲醇溶液。實(shí)驗(yàn)過(guò)程中首先將40Cr試樣以及做為陰極的金屬網(wǎng)浸入盛有電解液的燒杯中,使電解回路處于接通狀態(tài);然后接通電源,開始電解。電解過(guò)程會(huì)產(chǎn)生數(shù)量較少的絡(luò)合物,這些絡(luò)合物會(huì)粘在40Cr試樣表面,同時(shí)電解過(guò)程中試樣變小,導(dǎo)致其與電解液的接觸面積減小,這都會(huì)導(dǎo)致電解的電流密度減小。但隨著電解實(shí)驗(yàn)的進(jìn)行,一段時(shí)間過(guò)后絡(luò)合物已經(jīng)生成,試樣與電解液接觸面積不再發(fā)生明顯改變,從而電流密度也不再發(fā)生明顯改變。
電解實(shí)驗(yàn)完成之后,首先用磁鐵將電解實(shí)驗(yàn)產(chǎn)生的鐵顆粒除去,這樣電解液中剩余的顆粒大多數(shù)為夾雜物。然后使用濾膜過(guò)濾電解液中的夾雜物,使夾雜物存留在濾膜上,再將存有夾雜物的濾膜置于玻璃培養(yǎng)皿中,并使用酒精浸泡濾膜。浸泡過(guò)后將盛有濾膜的培養(yǎng)皿置于超聲波振蕩器中進(jìn)行超聲振蕩,夾雜物經(jīng)過(guò)超聲波振蕩就會(huì)存留到酒精中,將酒精烘干就能得到實(shí)驗(yàn)所需要的夾雜物。
在完成非水溶液電解實(shí)驗(yàn)之后,首先用掃描電鏡及其配備的能譜儀對(duì)試樣中的夾雜物進(jìn)行檢測(cè),分析試樣中的夾雜物類型,觀察夾雜物的三維形貌特征。圖 1為電解所得夾雜物的形貌及部分區(qū)域的能譜分析結(jié)果。從圖中可以看出,試樣中夾雜物多為氧化鋁和氮化鈦等夾雜物。
經(jīng)過(guò)掃描電鏡觀察后,下一步將進(jìn)行非水溶液電解實(shí)驗(yàn)得到夾雜物的三維特征表征。但是因?yàn)殡娊庵螳@得的夾雜物在培養(yǎng)皿里,不能直接用X射線顯微CT進(jìn)行三維掃描,因此需要對(duì)夾雜物進(jìn)行二次制樣。在本研究中,使用雙面膠帶將培養(yǎng)皿中的夾雜物粘出,然后將雙面膠帶制作成圓柱形試樣以便進(jìn)行CT掃描。
1.2顯微CT表征
本研究采用布魯克Skyscan 2211高分辨率X射線顯微CT,電壓為80 kV,電流85 μA,曝光時(shí)間1.25 s,空間分辨率(一個(gè)像素尺寸)為 1.79 μm。由于X射線顯微CT圖像中材料的對(duì)比度不同由材料的X射線線性衰減系數(shù)(linear attenuation coefficients,LACs)決定[25],為了確定合適的X射線能量范圍、曝光時(shí)間,利用XCOM程序計(jì)算材料的理論線,該程序由美國(guó)國(guó)家標(biāo)準(zhǔn)技術(shù)研究所組織的標(biāo)準(zhǔn)參考數(shù)據(jù)庫(kù)提供[26]。當(dāng)材料LACs的相對(duì)差異超過(guò)10%時(shí),顯微CT可以區(qū)分材料的差異[27]。圖 2為Fe基體、氧化鋁、氮化鈦的LACs在1~100 keV的相對(duì)差異。從圖中可以看出,當(dāng)光子能量在1~80 keV之間時(shí),夾雜物與Fe基體的相對(duì)差異超過(guò)40%,即從理論上顯微CT可以從Fe基體中區(qū)分出夾雜物。
圖3為X射線顯微CT的工作原理圖,主要由X射線源、載物臺(tái)、X射線影像增強(qiáng)器和電荷耦合器(CCD)攝像機(jī)三個(gè)部分組成。其工作原理為:X射線顯微CT的光源發(fā)射的X射線穿透試樣,由于不同材料的LACs不同,X射線被試樣基體和夾雜物等內(nèi)部結(jié)構(gòu)部分吸收。然后,樣品后面的CCD相機(jī)檢測(cè)到剩余X射線的能量,進(jìn)而生成投影圖像數(shù)據(jù)[27]。
2實(shí)驗(yàn)結(jié)果與討論
2.1成像結(jié)果的三維重構(gòu)
將用雙面膠聚集起來(lái)的夾雜物制作成圓柱形試樣,然后進(jìn)行X射線顯微CT實(shí)驗(yàn),實(shí)驗(yàn)得到了一系列的試樣切片圖像。在三維重建之前,對(duì)含有夾雜物二維形貌的切片進(jìn)行一系列的圖像濾波處理,以去除干擾信息,提高圖像質(zhì)量。利用三維處理軟件,在優(yōu)化的橫截面圖像切片的基礎(chǔ)上,對(duì)三維圖像進(jìn)行了重構(gòu)。
圖4(a)為夾雜物的CT掃描結(jié)果,從圖中可以看出夾雜物的形貌成功實(shí)現(xiàn)了重建,各個(gè)夾雜物間存在明顯的間隙。圖4(b)~4(d)為經(jīng)過(guò)三維重構(gòu)后的夾雜物形貌以及單個(gè)夾雜物的形貌特征。從圖中夾雜物的形狀可以判斷夾雜物的類型,比如接近球體的氧化鋁夾雜物以及接近正方體的氮化鈦夾雜物。
2.2夾雜物3D形態(tài)的定量表征
表 2為一系列用來(lái)描述夾雜物三維形貌和結(jié)構(gòu)的形態(tài)學(xué)參數(shù),比如最小3D費(fèi)雷特直徑可以描述夾雜物的寬度,通過(guò)3D費(fèi)雷特直徑可以計(jì)算得到夾雜物的平均直徑(dave)、夾雜物體積(V)和夾雜物表面積(S)等信息。進(jìn)而利用平均直徑、夾雜物體積和夾雜物表面積可以計(jì)算得到夾雜物的形狀因子(φ)、等效直徑(Deq)和分形維數(shù)(Df)等參數(shù)。
3.3夾雜物尺寸統(tǒng)計(jì)分析
受X射線顯微CT圖像分辨率的限制,尺寸較小的夾雜物的形貌難以很好地重建,因此在本研究中忽略等效直徑小于2.00 μm的夾雜物顆粒。根據(jù)統(tǒng)計(jì),試樣中共有465個(gè)夾雜物,借助等效費(fèi)雷特直徑等參數(shù)對(duì)這些夾雜物進(jìn)行了統(tǒng)計(jì)分析。試樣中夾雜物的等效直徑分布如圖5所示。從圖中可以看出等效直徑峰值出現(xiàn)在6.00~7.00 μm的范圍內(nèi),這代表大部分夾雜物體積較小。圖6為夾雜物形狀因子的分布圖,可以看出形狀因子在0.80~1.00的范圍內(nèi)夾雜物所占比例最大,這表明大夾雜物大部分只是稍微偏離球體,但并未完全偏離球體。形狀因子大于1.00表明夾雜物顆粒開始向棱角的直方體過(guò)度,其中較小的可能接近長(zhǎng)方體顆粒,而形狀因子更大的夾雜物則對(duì)應(yīng)于團(tuán)聚的團(tuán)簇。
圖7為夾雜物粒子平均和最大分形維數(shù)的分布圖,可以看出平均分形維數(shù)峰值出現(xiàn)在2.50左右,最大分形維數(shù)峰值出現(xiàn)在2.70左右,這表明大多數(shù)夾雜物都不是球體,與規(guī)則的球體有一定偏差。
3結(jié)論
本研究針對(duì)大塊試樣中夾雜物無(wú)法用X射線顯微CT進(jìn)行三維掃描的問(wèn)題,采取非水溶液電解的實(shí)驗(yàn)方法首先獲得大塊40Cr試樣中的夾雜物,然后用雙面膠將夾雜物粘出,制成可以用CT進(jìn)行掃描的圓柱形試樣,進(jìn)而得出如下結(jié)論:
(1)采用非水溶液電解方法和X射線顯微CT成像技術(shù),可以實(shí)現(xiàn)大塊鋼鐵試樣中內(nèi)部夾雜物的精確成像。
(2)X射線顯微CT掃描與掃描電鏡微區(qū)成分分析結(jié)果表明,大塊40Cr試樣中夾雜物主要為氧化鋁、氮化鈦夾雜物。
(3)通過(guò)對(duì)大塊鋼鐵試樣中內(nèi)部夾雜物的等效直徑、形狀因子、分形維數(shù)等參數(shù)的統(tǒng)計(jì)分析,可以得出大塊試樣中夾雜物特征尺寸的分布規(guī)律。
參考文獻(xiàn):
[1]GUPTA A, GOYAL S, PADMANABHAN K A, et al. Inclusions in steel: Micro-macro modelling approach to analyse the effects of inclusions on the properties of steel[J]. The International Journal of Advanced Manufacturing Technology, 2015, 77(1): 565-572. DOI: 10.1007/s00170-014-6464-5.
[2]SCHMIEDT A B, DICKERT H H, BLECK W, et al. Evaluation of maximum non-metallic inclusion sizes in engineering steels by fitting a generalized extreme value distribution based on vectors of largest observations[J]. Acta Materialia, 2015, 95: 1-9. DOI: 10.1016/j.actamat.2015.05.013.
[3]PINEAU A, FOREST S. Effects of inclusions on the very high cycle fatigue behaviour of steels[J]. Fatigue amp; Fracture of Engineering Materials amp; Structures, 2017, 40(11): 1694-1707. DOI: 10.1111/ffe.12649.
[4]TOFIQUE M W, BERGSTRM J, BURMAN C. Very high cycle fatigue of cold rolled stainless steels, crack initiation and formation of the fine granular area[J]. International Journal of Fatigue, 2017, 100: 238-250. DOI: 10.1016/j.ijfatigue.2017.03.037.
[5]EL KHOUKHI D, MOREL F, SAINTIER N, et al. Probabilistic modeling of the size effect and scatter in High Cycle Fatigue using a Monte-Carlo approach: Role of the defect population in cast aluminum alloys[J]. International Journal of Fatigue, 2021, 147: 106177. DOI: 10.1016/j.ijfatigue.2021.106177.
[6]FRANCESCHINI A, RUBY-MEYER F, MIDROIT F, et al. An assessment of cleanliness techniques for low alloyed steel grades[J]. Metallurgical Research amp; Technology, 2019, 116(5): 509. DOI: 10.1051/metal/2018128.
[7]WANG Y, KARASEV A, JNSSON P G. Comparison of nonmetallic inclusion characteristics in metal samples using 2D and 3D methods[J]. Steel Research International, 2020, 91(7): 1900669. DOI: 10.1002/srin.201900669.
[8]TIAN C, LIU J H, LU H C, et al. Estimation of maximum inclusion by statistics of extreme values method in bearing steel[J]. Journal of Iron and Steel Research, International, 2017, 24(11): 1131-1136. DOI: 10.1016/S1006-706X(17)30164-4.
[9]VAARA J, VNTNEN M, KMRINEN P, et al. Bayesian analysis of critical fatigue failure sources[J].International Journal of Fatigue, 2020, 130: 105282. DOI: 10.1016/j.ijfatigue.2019.105282.
[10]KUMAR D, NUHFER N T, FERREIRA M E, et al.Application of plasma FIB to analyze a single oxide inclusion in steel[J]. Metallurgical and Materials Transactions B, 2019, 50(3): 1124-1127. DOI: 10.1007/s11663-019-01555-7.
[11]LI T, SHIMASAKI S I, TANIGUCHI S, et al. Reliability of inclusion statistics in steel by stereological methods[J]. ISIJ International, 2016, 56(9): 1625-1633. DOI: 10.2355/isijinternational.isijint-2016-269.
[12]YOSHINAKA F, NAKAMURA T, TAKEUCHI A, et al. Initiation and growth behaviour of small internal fatigue cracks in Ti-6Al-4V via synchrotron radiation microcomputed tomography[J]. Fatigue amp; Fracture of Engineering Materials amp; Structures, 2019, 42(9): 2093-2105. DOI: 10.1111/ffe.13085.
[13]STINON A, FAZEKAS A, BUFFIRE J Y, et al. A new methodology based on X-ray micro-tomo-graphy to estimate stress concentrations around inclusions in high strength steels[J]. Materials Science and Engineering: A, 2009, 513/514: 376-383. DOI: 10.1016/j.msea.2009.02.008.
[14]LI T, SHIMASAKI S I, TANIGUCHI S, et al. Morphology of nonmetallic-inclusion clusters observed in molten metal by X-ray micro-computed tomography (CT)[J].ISIJ International, 2013, 53(11): 1943-1952. DOI: 10.2355/isijinternational.53.1943.
[15]CUI L X, LEI X H, ZHANG L F, et al.Three-dimensional characterization of defects in continuous casting blooms of heavy rail steel using X-ray computed tomography[J]. Metallurgical and Materials Transactions B, 2021, 52(4): 2327-2340. DOI: 10.1007/s11663-021-02172-z.
[16]YAN J C, LI T, SHANG Z Q, et al. Three-dimensional characterization of MnS inclusions in steel during rolling process[J]. Materials Characterization, 2019, 158: 109944. DOI: 10.1016/j.matchar.2019.109944.
[17]GU C, LU Y, LUO A A. Three-dimensional visualization and quantification of microporosity in aluminum castings by X-ray micro-computed tomography[J]. Journal of Materials Science amp; Technology, 2021, 65: 99-107. DOI: 10.1016/j.jmst.2020.03.088.
[18]CHENG M, LU Z G, WU J, et al. Effect of thermal induced porosity on high-cycle fatigue and very high-cycle fatigue behaviors of hot-isostatic-pressed Ti-6Al-4V powder components[J]. Journal of Materials Science amp; Technology, 2022, 98: 177-185. DOI: 10.1016/j.jmst.2021.04.066.
[19]WANG C, LIU X G, GUI J T, et al. Influence of inclusions on matrix deformation and fracture behavior based on Gurson-Tvergaard-Needleman damage model[J]. Materials Science and Engineering: A, 2019, 756: 405-416. DOI: 10.1016/j.msea.2019.04.056.
[20]WANG Y, KARASEV A, JNSSON P G. Comparison of nonmetallic inclusion characteristics in metal samples using 2D and 3D methods[J]. Steel Research International, 2020, 91(7): 1900669. DOI: 10.1002/srin.201900669.
[21]MURAKAMI Y, NOMOTO T, UEDA T, et al. On the mechanism of fatigue failure in the superlong life regime (Ngt;107 cycles). Part 1: Influence of hydrogen trapped by inclusions[J]. Fatigue amp; Fracture of Engineering Materials and Structures, 2000, 23(11): 893-902. DOI: 10.1046/j.1460-2695.2000.00328.x.
[22]VAARA J, VNTNEN M, KMRINEN P, et al. Bayesian analysis of critical fatigue failure sources[J]. International Journal of Fatigue, 2020, 130: 105282. DOI: 10.1016/j.ijfatigue.2019.105282.
[23]楊文, 張立峰, 任英, 等. 利用高分辨同步輻射Micro-CT定量三維表征含Ti鐵素體不銹鋼鑄坯中氧化物夾雜[J]. 金屬學(xué)報(bào), 2016, 52(2): 217-223. DOI: 10.11900/0412.1961.2015.00226
[24]喬萬(wàn)兵, 肖夢(mèng)旋, 劉鵬,等. 低碳鋼中夾雜物的非水溶液電解分析[J]. 冶金工程, 2019, 6(2): 98-105.DOI:10.12677/meng.2019.62014.
[25]LI T, SHIMASAKI S I, TANIGUCHI S, et al. Three-dimensional observation of nonmetallic inclusion clusters in solid metal by X-ray micro-CT[J]. ISIJ International, 2016, 56(11): 1989-1995. DOI: 10.2355/isijinternational.isijint-2016-218.
[26]SAYYED M I, AKMAN F, GEIBESLER I H, et al. Measurement of mass attenuation coefficients, effective atomic numbers, and electron densities for different parts of medicinal aromatic plants in low-energy region[J]. Nuclear Science and Techniques, 2018, 29(10): 144. DOI: 10.1007/s41365-018-0475-0.
[27]SHANG Z Q, LI T, YANG S F, et al. Three-dimensional characterization of typical inclusions in steel by X-ray Micro-CT[J]. Journal of Materials Research and Technology, 2020, 9(3): 3686-3698. DOI: 10.1016/j.jmrt.2020.01.106.