歐陽昌耀,李艷玲,王蕊,2,白峭峰,閆獻(xiàn)國,張建廣
304鋼表面激光熔覆stellite12鈷基涂層組織及腐蝕性能
歐陽昌耀1,李艷玲1,王蕊1,2,白峭峰1,閆獻(xiàn)國1,張建廣3
(1.太原科技大學(xué),太原 030024;2.河北工程大學(xué),河北 邯鄲 056009;3.西安航空職業(yè)技術(shù)學(xué)院 汽車工程學(xué)院,西安 710089)
對304不銹鋼表面強(qiáng)化處理來提高其耐腐蝕性能。使用激光熔覆技術(shù)將Stellite12涂層制備在304鋼基體上。使用光學(xué)顯微鏡(OM)、掃描電子顯微鏡(SEM)、能譜儀(EDS)、X射線衍射(XRD)、三電極電化學(xué)工作站對涂層顯微組織、元素分布、物相、電化學(xué)腐蝕行為進(jìn)行測試與分析,并對涂層和304不銹鋼的耐腐蝕性能進(jìn)行了對比分析。涂層物相主要由面心立方結(jié)構(gòu)a-Co固溶體、CoC等化合物組成。由于溫度梯度和凝固速度的不同,熔覆層截面下、中、上部呈現(xiàn)出了不同的組織形貌特征:依次由平面晶、胞狀晶、樹枝晶、細(xì)小樹枝晶組成。涂層枝晶間為Co和碳化物的共晶組織,枝晶內(nèi)主要為a-Co的初生相。在進(jìn)行電化學(xué)腐蝕后,涂層的自腐蝕電位為?504.5 mV,304鋼的自腐蝕電位為?579.7 mV,涂層的腐蝕電位較304鋼偏正,比304鋼耐腐蝕。涂層表面出現(xiàn)了腐蝕點(diǎn),腐蝕點(diǎn)位分布均勻、且程度較輕。304鋼表面發(fā)生了嚴(yán)重的腐蝕,明顯可見深度和面積較大的腐蝕孔洞。Stellite12合金涂層能夠有效地提高304不銹鋼表面耐腐蝕性能。
激光熔覆;Stellite12涂層;304不銹鋼;電化學(xué)腐蝕;腐蝕機(jī)理
304不銹鋼具有良好的塑韌性、耐腐耐磨及耐高溫性等性能,被廣泛應(yīng)用于食品、機(jī)械制造、石油化工等領(lǐng)域[1-3]。但是在304不銹鋼實(shí)際應(yīng)用過程中,其容易出現(xiàn)點(diǎn)蝕與縫隙腐蝕的破壞,對產(chǎn)品使用性能造成不利影響[4]。同時304不銹鋼也是廣泛應(yīng)用于海洋環(huán)境的不銹鋼。由于海水介質(zhì)條件的多樣性,不銹鋼在海水中發(fā)生腐蝕,不僅與自身的成分、組織有關(guān),還與所處的環(huán)境密切相關(guān)[5]。為進(jìn)一步提高304不銹鋼耐腐蝕性能以及其他相關(guān)的性能,可通過對其表面改性處理。目前,激光熔覆作為快速無污染制造技術(shù)對材料表面改性在國內(nèi)外廣泛的得以應(yīng)用[6];激光熔覆技術(shù)是通過高能激光束將金屬粉末熔覆在基體表面來達(dá)到材料表面強(qiáng)化的目的。通過激光熔覆技術(shù)可以在保證基體性能的同時有效提高基體表面的耐磨、耐腐蝕等性能[7-8],并且在304不銹鋼表面也得到了相關(guān)的應(yīng)用。韓晨陽等[9]使用激光熔覆技術(shù)熔覆Ni60合金粉末在304不銹鋼基體上,結(jié)果表明熔覆質(zhì)量良好的Ni60涂層硬度、耐磨及耐腐蝕性較基體有很大的提升。姜慧玲[10]在304鋼表面通過激光合金化制備FeMnSi記憶合金層,研究結(jié)果證明制備的FeMnSi記憶合金能夠顯著提高在海水環(huán)境中的耐腐蝕性能。304不銹鋼表面激光熔覆常選用高熵合金粉末[11-12]、鎳基合金粉末[13]和添加元素的合金粉末[14-15]對其改性處理,熔覆鈷基合金粉末提高其耐腐蝕性能研究較少。
鈷基合金主要由高硬度、高熔點(diǎn)的硬質(zhì)相與潤濕性良好的韌性黏結(jié)相鈷組成,整體強(qiáng)度、韌性和耐磨性極佳。同時鈷具有優(yōu)良的耐蝕性能,它在常溫下耐水、耐潮濕大氣、耐堿和有機(jī)酸[16-17]。同時有不少學(xué)者使用激光熔覆技術(shù)制備鈷基合金涂層來提高基體材料的相關(guān)性能。Feng等[18]在鈦合金表面制備了鈷基涂層,研究了鈷基涂層在不同腐蝕液下的耐腐蝕性能和高溫摩擦磨損條件下的氧化磨損機(jī)理。邵延凡等[19]在雙相不銹鋼表面激光熔覆耐磨和耐腐的鈷基合金涂層。針對304不銹鋼在腐蝕較為嚴(yán)重的惡劣工作環(huán)境下的應(yīng)用,結(jié)合鈷合金優(yōu)良的性能,可以使用激光熔覆在304鋼表面熔覆鈷基合金涂層提高其耐腐蝕性能。目前304不銹鋼表面激光熔覆鈷基合金提高其耐腐蝕性研究較少,對其相關(guān)報(bào)告不全面。因此在304不銹鋼表面激光熔覆鈷基合金涂層提高其耐腐蝕性能具有一定的意義。
為提高304不銹鋼在海水、石油、化工等腐蝕情況較為嚴(yán)重的工作環(huán)境中的耐腐蝕性能,通過激光熔覆技術(shù)在其表面熔覆鈷基合金涂層提高其耐腐蝕性能。本文采用激光熔覆技術(shù)在304不銹鋼基體上制備了鈷基合金(Stellite12)涂層,研究了涂層的組織、物相及涂層和基體的電化學(xué)腐蝕性能。
試驗(yàn)使用尺寸為200 mm×120 mm×10 mm的304不銹鋼板塊作為熔覆基體,熔覆前用砂紙打磨使表面平整光潔,最后用乙醇清洗干凈,風(fēng)干待用。熔覆材料為平均粒徑為45 μm、粉末形貌為球形的Stellite12合金粉末。成分如表1所示。
采用LDF 3000-60型激光器(最大激光功率為3.3 kW,激光波長為980~1040 nm,光斑直徑為3 mm),RC-PGF-D型送粉器(保護(hù)氣及送粉氣均為Ar),搭配kuka機(jī)械臂帶動激光熔覆頭實(shí)現(xiàn)空間位移轉(zhuǎn)化對基體進(jìn)行同步送粉熔覆試驗(yàn)。經(jīng)過多次實(shí)驗(yàn)研究,選擇的激光熔覆工藝參數(shù)如表2所示。
表1 304鋼和Stellite12合金粉末化學(xué)成分
Tab.1 Chemical compositions of 304 steel and Stellite12 alloy powder wt.%
表2 Stellite12涂層激光熔覆工藝參數(shù)
Tab.2 Stellite12 coating laser cladding process parameters
將激光熔覆后的試樣電火花線切割成尺寸為10 mm×10 mm×10 mm 含熔覆層的立方體小塊。使用光學(xué)顯微鏡(OM)、場發(fā)射掃描電子顯微鏡SEM(FEI、ZEISS)搭配OXFORD Ultim Extreme 能譜儀(EDS)觀察涂層的顯微組織形貌、涂層與基體的腐蝕形貌以及元素分析。用Empyrean X-射線衍射儀(Cu Ka衍射,=0.154 060 nm),掃描步長為0.02°,掃描范圍為20°~90°,對涂層的物相結(jié)構(gòu)進(jìn)行測定。采用三電極體系的電化學(xué)工作站RST5000對試樣進(jìn)行電化學(xué)實(shí)驗(yàn)。電化學(xué)腐蝕試驗(yàn)以3.5% NaCl溶液作為電解質(zhì)溶液、工作電極為1 cm2的拋光表面、以飽和甘汞電極作為參比電極,以金屬鉑片作為輔助電極。在開路電位穩(wěn)定的情況下,設(shè)置試驗(yàn)的測試頻率范圍為10?2~105Hz、交流電幅度為10 mV進(jìn)行阻抗試驗(yàn)。設(shè)置以0.5 mV/s的掃描速率在?1~1.5 V的范圍內(nèi)進(jìn)行動電位極化測試。
如圖1a所示,stellite12涂層表面整體呈現(xiàn)淺綠色,涂層整體完善未見明顯的缺陷,對試樣進(jìn)行滲透探傷未發(fā)現(xiàn)涂層表面裂紋等缺陷(見圖1c)。圖1b所示測量涂層表面粗糙度=40.1 μm,影響涂層表面粗糙度的主要原因?yàn)橥繉颖砻骖w粒狀的熔渣以及凹陷的搭接區(qū)。
2.2.1 截面組織
圖2是涂層截面的顯微組織結(jié)構(gòu)特征。從圖2a中可以看出,涂層總厚度約為1.1 mm,熔覆層內(nèi)未見裂紋和氣孔等明顯缺陷,熔覆層和基體間呈現(xiàn)良好的結(jié)合。從圖2a—i可見,涂層截面的組織形貌在上中下部的特征不同。這是由于溫度梯度和凝固速度在熔覆層各區(qū)域不同造成的,/是控制組織生長形態(tài)的主要參數(shù)[20-21]。
涂層下部區(qū)域由于基體溫度低,當(dāng)金屬粉末以熔融態(tài)進(jìn)入熔池時,其主要的散熱方式是通過基體來發(fā)生凝固。因此這使得液固界面處溫度梯度大于零,同時液固界面以緩慢的速度向前推進(jìn)。/數(shù)值較大,故晶粒以平面晶的方式生長。搭接區(qū)組織以細(xì)小的塊狀枝晶存在,這是因?yàn)橹厝凼沟迷搮^(qū)域的金屬再次熔化后,出現(xiàn)再結(jié)晶,其厚度增加,如圖2a—c所示。隨著液固界面的推進(jìn),/數(shù)值減小,滿足了平面晶向胞狀晶、樹枝晶的轉(zhuǎn)變條件。枝晶沿逆熱流外延生長,如圖2d—f所示。涂層表面與空氣直接接觸,熱量可向不同方向散失,形成了方向性不明顯的細(xì)小枝晶,如圖2g—i所示。文獻(xiàn)[20,22]中也報(bào)道過激光熔覆涂層類似的組織形貌,相比于他們所研究的不銹鋼涂層和Co50涂層,stellite12涂層組織這種梯度生長表現(xiàn)得更為明顯。
圖1 涂層表面宏觀形貌及表面粗糙度
圖3所示為涂層截面沿線性掃描方向的元素分布情況,可見元素在過渡區(qū)發(fā)生了突變,這證明了涂層與基體之間在強(qiáng)冶金結(jié)合下發(fā)生了稀釋現(xiàn)象。通過涂層Fe元素的成分可計(jì)算稀釋率,公式如下[23-24]:
式中:ρ是粉末或基體的密度,X是涂層、基體或粉末中元素X的重量百分比。根據(jù)元素鐵的能譜分析結(jié)果,計(jì)算出稀釋率約為16.9%。
2.2.2 表面組織
圖4為涂層表面顯微組織特征。涂層表面主要為柱狀晶、尺寸較小的平面晶,以及短小的樹枝晶。相較于涂層截面,涂層表面組織生長方向變的更為紊亂。這是由于表面涂層其熔池面積寬,散熱更具有多樣性。表3顯示了圖4b標(biāo)記點(diǎn)(點(diǎn)1在枝晶內(nèi),點(diǎn)2在枝晶間)EDS元素含量,能譜分析結(jié)果表明枝晶間和枝晶內(nèi)存在較大的區(qū)別。亮白色枝晶間C、Cr、W元素相較于枝晶內(nèi)含量較多,Cr、W元素與C元素結(jié)合形成CrC、W2C[25],枝晶間為Co和碳化物的共晶組織。文獻(xiàn)[26]指出根據(jù)碳含量的占比可分類成不同類型的共晶合金,并報(bào)道Stellite12合金是一種亞共晶合金。深灰色的枝晶內(nèi)主要為a-Co的初生相,它是一種含有大量其他元素的固溶體,Cheng等[27]也曾報(bào)道過相關(guān)的結(jié)論。
圖5是涂層的XRD圖譜。可知涂層主要成分是a-Co、CoC等化合物。根據(jù)溫度的不同,Co具有面心立方結(jié)構(gòu)a-Co(417 ℃以上)和密排六方結(jié)構(gòu)ε-Co(417 ℃以下)。Ni元素能起到穩(wěn)定面心立方點(diǎn)陣結(jié)構(gòu),而Stellite12約含有2.21%的Ni。同時,激光熔覆冷卻是速度較快的動態(tài)過程。二者共同作用限制了面心立方結(jié)構(gòu)向密排六方結(jié)構(gòu)的轉(zhuǎn)變,使大量的a-Co來不及轉(zhuǎn)變?yōu)棣?Co。導(dǎo)致常溫下涂層內(nèi)主要為韌性、耐蝕性良好的亞穩(wěn)相a-Co 固溶體。相比較于其他學(xué)者[28]研究的Co基涂層,本次涂層還殘留少量的ε-Co。
圖4 涂層表面顯微組織特征
表3 圖4(b)標(biāo)記點(diǎn)EDS元素含量
圖5 涂層X射線衍射圖譜
涂層與基體在3.5%氯化鈉測試溶液的開路電位如圖6a所示。開路電位法(OCP)是在沒有外加電流的穩(wěn)定自然環(huán)境中測量材料腐蝕微電位和參比電極之間的總電位差。由圖6a可見涂層和基體測得的開路電位保持于一個相對穩(wěn)定狀態(tài),表示系統(tǒng)未施加交流電時處于相對穩(wěn)定[18],可對試樣進(jìn)行進(jìn)一步的電化學(xué)測試分析。
圖6b為涂層和基體的極化曲線。表4為采用塔菲爾外推法對基體和涂層極化曲線參數(shù)擬合結(jié)果,可得涂層的自腐蝕電位(corr)為?504.5 mV,基體的自腐蝕電位corr為?579.7 mV。corr的高低可以表征材料的耐腐蝕傾向,corr越低表明材料被腐蝕傾向越高[29]。涂層的腐蝕電位較基體偏正,比基體耐腐蝕;同時通過電化學(xué)工作站測試系統(tǒng)擬合可得,涂層年平均腐蝕速率為0.002 mm/a遠(yuǎn)小于基體年平均腐蝕速率0.05 mm/a(如表4所示)?;w的鈍化電位為?403.3 mV,點(diǎn)蝕電位為?48.4 mV;涂層的鈍化電位為?32.6 mV,點(diǎn)蝕電位為626.7 mV。相比較于基體涂層的鈍化電位和點(diǎn)蝕電位較高,表示其抗蝕性能較好。圖6c奈奎斯特圖顯示的頻率區(qū)間中可以觀察到涂層曲線偏離半圓軌跡更大,證明涂層的阻抗遠(yuǎn)大于基材的阻抗,說明涂層形成鈍化膜的耐蝕性較好。圖6d波特圖中涂層阻抗模量遠(yuǎn)大于基材,進(jìn)一步說明涂層的耐蝕性好,這與極化曲線、奈奎斯特圖的結(jié)果相互驗(yàn)證。
為了更好地研究涂層和基體的電化學(xué)性能,根據(jù)涂層和基體材料的腐蝕行為及曲線的特征。根據(jù)阻抗譜特征,利用相似理論進(jìn)行擬合。圖6d中顯示相位角有一個較寬的峰(駝峰),說明該系統(tǒng)只具有一個時間常數(shù),等效電路模型如圖7所示。在等效電路中,s表示溶液電阻,用CPE表示相角為常數(shù)的元件同時補(bǔ)償腐蝕過程中的不均勻性,b代表電荷轉(zhuǎn)移電阻。CPE的阻抗由式(2)定義,其中的數(shù)值可評估常相位角元件與理想電容的偏差程度。阻抗函數(shù)由等式(3)定義。
圖6 涂層與基體在 3.5%Nacl 溶液中 EIS 圖
表4 基體和涂層極化曲線參數(shù)擬合結(jié)果
(3)
表5列出了涂層和基體阻抗擬合數(shù)據(jù)。從擬合結(jié)果中可以看出,涂層的b=166.06 k?·cm2遠(yuǎn)高于基體b=9.836 k?·cm2。表明涂層相比于基體電荷轉(zhuǎn)移阻力較高,這些結(jié)果與動電位極化曲線一致。這證明了在304不銹鋼基體上激光熔覆stellite12涂層,可有效提高其耐腐蝕性能。
表5 涂層和基體阻抗擬合數(shù)據(jù)
涂層與基體動電位極化之后的表面形貌見圖8、圖9。從圖8a、9a中可以觀察到,涂層在電化學(xué)腐蝕之后表面發(fā)生了點(diǎn)蝕出現(xiàn)了均勻且較多、程度較輕的腐蝕點(diǎn),腐蝕試樣表面還出現(xiàn)輕微的腐蝕裂紋?;w在電化學(xué)腐蝕之后表面發(fā)生了不均勻腐蝕,出現(xiàn)了大量深度及面積較大的腐蝕坑和腐蝕孔洞,少量的表面未出現(xiàn)明顯腐蝕跡象(見8b、9b)。腐蝕坑區(qū)域中出現(xiàn)類似“網(wǎng)絮狀”的腐蝕形貌特征,這是由于坑內(nèi)被嚴(yán)重腐蝕所引起的。這主要是Co基合金涂層內(nèi)具有較多的Co元素(鈷元素標(biāo)準(zhǔn)還原電位Φ0(V,vs. SHE,25 ℃)為?0.277[30])其還原電位遠(yuǎn)高于304不銹鋼基體內(nèi)大量存在的Fe元素(鐵元素標(biāo)準(zhǔn)還原電位Φ0(V,vs. SHE,25 ℃)為?0.440[30]),使得Co基合金涂層在電化學(xué)腐蝕過程中還原電位高于304不銹鋼基體,相較于304不銹鋼基體不易被腐蝕,耐腐蝕性能較好。并且合金內(nèi)大量的Cr元素容易形成致密的鈍化膜,保護(hù)了合金并提高其耐腐蝕性能。
圖8 涂層與基體的電化學(xué)腐蝕表面形貌
圖9 涂層與基體的電化學(xué)腐蝕微觀形貌
表6為圖9標(biāo)記點(diǎn)能譜成分圖。涂層腐蝕點(diǎn)內(nèi)Co、Cr元素被腐蝕,Cl元素的存在主要是由于NaCl電解質(zhì)溶液中陰離子Cl–-的侵蝕和殘留引起的。O元素的存在方式是以氧化物的形成,由于腐蝕較為劇烈,氧化物在短時間內(nèi)產(chǎn)生未能形成致密的氧化膜。304 不銹鋼中Cr元素會在表面形成一層鈍化膜,這層鈍化膜能夠有效防止腐蝕。而在實(shí)際環(huán)境中,當(dāng)接觸到Cl?時,Cl?會附著在鈍化膜上,替換掉鈍化膜中的氧原子,使其轉(zhuǎn)變?yōu)榭扇苄缘穆然铮光g化膜喪失保護(hù)能力,此時失去保護(hù)的金屬基體表面會形成點(diǎn)蝕核,隨后不斷發(fā)展最終形成點(diǎn)蝕孔,這也是304不銹鋼中較為常見的腐蝕情況[31]。同時,304不銹鋼Fe元素容易被大量的腐蝕,形成了程度較深的腐蝕坑?;w中Fe元素腐蝕情況:陽極:Fe?2e?→Fe2+;陰極:O2+2H2O+4e?→4OH?;總反應(yīng)方程式2Fe+O2+2H2O→2Fe(OH)2,F(xiàn)e(OH)2可以繼續(xù)與溶液中的氧反應(yīng)4Fe(OH)2+O2+2H2O→4Fe(OH)3。
Stellite12涂層中富含Co、Cr等耐蝕性較強(qiáng)的元素,使得涂層具有較低的腐蝕傾向。同時涂層表層組織細(xì)小、均勻,能夠形成較為均勻的鈍化膜,增加涂層耐蝕性。Cr元素在腐蝕中會逐漸形成一層致密的鈍化膜來保護(hù)涂層內(nèi)部,結(jié)合圖4涂層表面顯微組織特征,枝晶間處Cr元素較多,使得其在腐蝕過程更容易產(chǎn)生較多的鈍化膜。根據(jù)文獻(xiàn)[32]相關(guān)學(xué)者在研究鐵基非晶合金涂層電化學(xué)中報(bào)道,Cr在鈍化區(qū)形成鈍化膜為Cr2O3,到過鈍化區(qū)無法承受腐蝕變成CrO3,慢慢溶于水消失。Stellite12含有大量的Cr元素,這極大的提高了其耐腐蝕能力,尤其是晶間腐蝕。涂層中Co元素腐蝕情況:陽極:Co?2e?→Co2+;陰極:O2+2H2O+4e?→4OH?;總反應(yīng)方程式Co+O2+ 2H2O→Co(OH)4。
表6 圖9標(biāo)記點(diǎn)能譜數(shù)據(jù)
Tab.6 Marked point energy spectrum data in fig.9 at.%
1)在304不銹鋼基體上制備了Stellite12涂層,涂層表面整體呈現(xiàn)淺綠色,涂層整體完善未見明顯的缺陷,測量涂層表面粗糙度=40.1 μm。
2)涂層與基體之間在強(qiáng)冶金結(jié)合下在過渡區(qū)元素發(fā)生了突變,出現(xiàn)了稀釋現(xiàn)象,稀釋率約為16.9%。涂層枝晶間為Co和碳化物的共晶組織,枝晶內(nèi)主要為a-Co的初生相,它是一種含有大量其他元素的固溶體。涂層物相主要成分是a-Co、CoC等化合物組成。
3)涂層的自腐蝕電位為?504.5 mv,基體的自腐蝕電位為?579.7mV。涂層的腐蝕電位較基體偏正,比基體耐腐蝕。涂層在腐蝕之后表面發(fā)生了程度較輕的腐蝕點(diǎn)?;w在腐蝕之后表面發(fā)生了深度和面積較大的腐蝕坑和腐蝕孔洞。Stellite12涂層可以提高304不銹鋼的耐腐蝕性能。
[1] 陳勇, 徐育烺, 李勤濤, 等. 304不銹鋼TIG焊與激光焊工藝對比研究[J]. 焊接技術(shù), 2021, 50(2): 41-45.
CHEN Yong, XU Yu-lang, LI Qin-tao, et al. Comparative Study on TIG Welding and Laser Welding Technology of 304 Stainless Steel[J]. Welding Technology, 2021, 50(2): 41-45.
[2] YANG Jing-jing, WANG Yun, LI Fang-zhi, et al. Weldability, microstructure and Mechanical Properties of Laser-Welded Selective Laser Melted 304 Stainless Steel Joints[J]. Journal of Materials Science & Technology, 2019, 35(9): 1817-1824.
[3] 丁浩晨, 趙艷君, 胡治流, 等.基于3D熱加工圖的SUS304奧氏體不銹鋼熱變形特性研究[J]. 精密成形工程, 2021, 13(3): 97-103.
DING Hao-chen, ZHAO Yan-jun, HU Zhi-liu, et al.Hot Deformation Characterization of SUS304 Stainless Steel Based on 3D Processing Map[J]. Journal of Netshape Forming Engineering, 2021, 13(3): 97-103.
[4] 戴紅霞, 馮曉麗. 厚度對車用304不銹鋼表面激光熔覆鈦涂層組織性能的影響[J]. 應(yīng)用激光, 2020, 40(4): 626-630.
DAI Hong-xia, FENG Xiao-li. Effect of Thickness on Microstructure and Properties of Laser Cladding Titanium Coating on Automotive 304 Stainless Steel[J]. Applied Laser, 2020, 40(4): 626-630.
[5] 彭文山, 劉少通, 郭為民, 等. 兩種不銹鋼在港口海水環(huán)境中的腐蝕行為和規(guī)律研究[J]. 裝備環(huán)境工程, 2020, 17(7): 76-83.
PENG Wen-shan, LIU Shao-tong, GUO Wei-min, et al. Corrosion Behavior and Regularities of Two Stainless Steels in Seawater Environment of Different Harbors[J]. Equipment Environmental Engineering, 2020, 17(7): 76- 83.
[6] NIE Jin-hao, LI Yu-xin, LIU Si-yuan, et al. Evolution of Microstructure of Al Particle-Reinforced NiCoCrAlY Coatings Fabricated on 304 Stainless Steel Using Laser Cladding[J]. Materials Letters, 2021, 289: 129431.
[7] LI Mei-yan, HAN Bin, SONG Li-xin, et al. Enhanced Surface Layers by Laser Cladding and Ion Sulfurization Processing towards Improved Wear-Resistance and Self- Lubrication Performances[J]. Applied Surface Science, 2020, 503: 144226.
[8] 胡登文, 劉艷, 陳輝, 等. Q960E鋼激光熔覆Ni基WC涂層組織及性能[J]. 中國激光, 2021, 48(6): 239-245.
HU Deng-wen, LIU Yan, CHEN Hui, et al. Microstru-cture and Properties of Laser Cladding Ni-Based WC Coating on Q960E Steel[J]. Chinese Journal of Lasers, 2021, 48(6): 239-245.
[9] 韓晨陽, 孫耀寧, 徐一飛, 等. 激光熔覆鎳基合金磨損及電化學(xué)腐蝕性能研究[J]. 表面技術(shù), 2021, 50(11): 103-110.
HAN Chen-yang, SUN Yao-ning, XU Yi-fei, et al. Re-search on Wear and Electrochemical Corrosion Properties of Laser Cladding Nickel Base Alloy[J]. Surface Techno-logy, 2021, 50(11): 103-110.
[10] 姜慧玲. 304不銹鋼表面激光合金化制備FeMnSi記憶合金層研究[D]. 大連: 大連海事大學(xué), 2020.
JIANG Hui-ling. Preparation of FeMnSi Memory Alloy Layer by Laser Alloying on 304 Stainless Steel Sur-face[D]. Dalian: Dalian Maritime University, 2020.
[11] WU H, ZHANG S, WANG Z Y, et al. New Studies on Wear and Corrosion Behavior of Laser Cladding FeNiCoCrMoxHigh Entropy Alloy Coating: The Role of Mo[J]. International Journal of Refractory Metals and Hard Materials, 2022, 102: 105721.
[12] LIU S S, ZHANG M, ZHAO G L, et al. Microstructure and Properties of Ceramic Particle Reinforced FeCoNiCrMnTi High Entropy Alloy Laser Cladding Coating[J]. Intermetallics, 2022, 140: 107402.
[13] BHATNAGAR S, MULLICK S, GOPINATH M. A Lumped Parametric Analytical Model for Predicting Molten Pool Temperature and Clad Geometry in Pre- Placed Powder Laser Cladding[J]. Optik, 2021, 247: 168015.
[14] LIU Chang-yu, XU Peng, ZHA Gang-qiang, et al. Micro-structure and Properties of a Ti Doped Fe-Based SMA Coating Produced by Laser Cladding[J]. Journal of Mate-rials Research and Technology, 2021, 14: 2441-2450.
[15] SHAO Y, XU P, LIU C Y. Effect of WC Particle Size and Doping Amount on the Structure and Properties of a WC Reinforced Fe-Mn-Si Shape Memory Alloy (SMA) Laser Clad Onto Stainless Steel[J]. Lasers in Engineering, 2021, 50(1-3): 159-171.
[16] 劉培生. 鈷基合金鋁化物涂層的高溫氧化行為[M]. 北京: 冶金工業(yè)出版社, 2008.
LIU Pei-sheng. Oxidation behavior of aluminide coating on cobalt-based alloy at high temperature[M]. Beijing: Metallurgical Industry Press, 2008.
[17] 苗文卷, 曹睿, 車洪艷, 等. Stellite12鈷基合金的疲勞性能及其斷裂機(jī)理研究[J]. 材料工程, 2021, 49(1): 153-159.
MIAO Wen-juan, CAO Rui, CHE Hong-yan, et al. Fatigue Properties and Fracture Mechanism of Stellite12 Cobalt-Based Alloy[J]. Journal of Materials Engineering, 2021, 49(1): 153-159.
[18] SHU Feng-yuan, WANG Bin, ZHANG Si-xu, et al. Micro-structure, High-Temperature Wear Resistance, and Corrosion Resistance of Laser Cladded Co-Based Coa-ting[J]. Journal of Materials Engineering and Perfor-mance, 2021, 30(5): 3370-3380.
[19] 邵延凡, 王澤華, 李瀟, 等. 雙相不銹鋼表面激光熔覆鈷基合金組織和性能研究[J]. 表面技術(shù), 2020, 49(4): 299-305.
SHAO Yan-fan, WANG Ze-hua, LI Xiao, et al. Micro-structure and Properties of Laser Cladding Co-Based Alloys on Duplex Stainless Steel[J]. Surface Technology, 2020, 49(4): 299-305.
[20] 牟軍偉. H13鋼表面制備鈷基合金覆層的組織性能研究[D]. 武漢: 武漢理工大學(xué), 2008.
(MOU/MU) Jun-wei. Research on Microstructure and Properties of Co-Based Alloy Coatings Prepared on H13 Steal[D]. Wuhan: Wuhan University of Technology, 2008.
[21] 馬幼平, 許云華. 金屬凝固原理及技術(shù)[M]. 北京: 冶金工業(yè)出版社, 2008.
MA You-ping, XU Yun-hua. Principle and technology of metal solidification[M]. Beijing: Metallurgical Industry Press, 2008.
[22] 王彥芳, 趙曉宇, 陸文俊, 等. 抽油桿接箍表面高速激光熔覆不銹鋼涂層的組織與性能[J]. 中國激光, 2021, 48(6): 175-184.
WANG Yan-fang, ZHAO Xiao-yu, LU Wen-jun, et al. Microstructure and Properties of High Speed Laser Cladding Stainless Steel Coating on Sucker Rod Coupling Surfaces[J]. Chinese Journal of Lasers, 2021, 48(6): 175- 184.
[23] SONG B, HUSSAIN T, VOISEY K T. Laser Cladding of Ni50Cr: A Parametric and Dilution Study[J]. Physics Procedia, 2016, 83: 706-715.
[24] LOU Li-yan, ZHANG Yu, JIA Yun-jie, et al. High Speed Laser Cladded Ti-Cu-NiCoCrAlTaY Burn Resistant Coa-ting and Its Oxidation Behavior[J]. Surface and Coatings Technology, 2020, 392: 125697.
[25] CUI Gang, HAN Bin, ZHAO Jian-bo, et al. Comparative Study on Tribological Properties of the Sulfurizing Layers on Fe, Ni and Co Based Laser Cladding Coatings[J]. Tribology International, 2019, 134: 36-49.
[26] 任博. 激光增材制造CoCrW合金及熱處理的組織與性能研究[D]. 蘇州: 蘇州大學(xué), 2018.
REN Bo. Study on Microstructure and Mechanical Pro-perties of Laser Additive Manufactured and Heat Treated CoCrW Alloy[D]. Suzhou: Soochow University, 2018.
[27] CHENG Qi-ran, SHI Hai-chuan, ZHANG Pei-lei, et al. Microstructure, Oxidation Resistance and Mechanical Properties of Stellite 12 Composite Coating Doped with Submicron TiC/B4C by Laser Cladding[J]. Surface and Coatings Technology, 2020, 395: 125810.
[28] 于坤, 祁文軍, 李志勤. TA15表面激光熔覆鎳基和鈷基涂層組織和性能對比研究[J]. 材料導(dǎo)報(bào), 2021, 35(6): 6135-6139.
YU Kun, QI Wen-jun, LI Zhi-qin. Comparative Study on Microstructure and Properties of Laser Cladding Nickel- Based and Cobalt-Based Coatings on TA15 Surface[J]. Materials Reports, 2021, 35(6): 6135-6139.
[29] FENG Kai, ZHANG Yue, LI Zhu-guo, et al. Corrosion Properties of Laser Cladded CrCoNi Medium Entropy Alloy Coating[J]. Surface and Coatings Technology, 2020, 397: 126004.
[30] 杜元龍. 金屬設(shè)備的衛(wèi)士[M]. 濟(jì)南: 山東教育出版社, 2001.
DU Yuan-long. Defender of metal[M]. Jinan: Shandong Education Press, 2001.
[31] 方振興, 祁文軍, 李志勤. 304不銹鋼激光熔覆搭接率對CoCrW涂層組織與耐磨及耐腐蝕性能的影響[J]. 材料導(dǎo)報(bào), 2021, 35(12): 12123-12129.
FANG Zhen-xing, QI Wen-jun, LI Zhi-qin. Effect of Laser Cladding Lap Ratio of 304 Stainless Steel on Micro-structure, Wear Resistance and Corrosion Resis-tance of CoCrW Coating[J]. Materials Reports, 2021, 35(12): 12123-12129.
[32] LIN T J, SHEU H H, LEE Chun-ying, et al. The Study of Mechanical Properties and Corrosion Behavior of the Fe-Based Amorphous Alloy Coatings Using High Velo-city Oxygen Fuel Spraying[J]. Journal of Alloys and Compounds, 2021, 867: 159132.
Microstructure and Corrosion Properties of Laser Cladding Stellite12 Coating on 304 Steel
1,1,1,2,1,1,3
(1. Taiyuan University of Science and Technology, Taiyuan 030024, China; 2. Hebei University of Engineering, hebei Handan 056009, China; 3. School of Automotive Engineering, Xi'an Aviation Vocational and Technical College, Xi'an 710089, China)
In practical applications, 304 stainless steel is prone to pitting and crevice corrosion damage, which will adversely affect the performance of the product. In order to further improve the corrosion resistance and other related properties of 304 stainless steel, surface modification treatment can be carried out on it. At present, the surface modification treatment of laser cladding technology is widely used at home and abroad.
The test used a 304 stainless steel plate as the cladding substrate, and the cladding material was Stellite12 alloy powder with an average particle size of 45 μm and a spherical powder morphology. After many experimental studies, the processing parameters were set to a laser power of 1 400 W, a spot diameter of 3 mm, and a scanning speed of 15 mm/s. Field emission scanning electron microscope SEM (FEI, ZEISS) and OXFORD Ultim Extreme energy spectrometer (EDS) were used to observe the microstructure morphology of the coating, the corrosion morphology of the coating and the substrate, and element analysis. An Empyrean X-ray diffractometer was used to determine the phase structure of the coating. An electrochemical workstation with RST5000 three-electrode system was used to conduct electrochemical experiments on the samples.
The overall surface of the stellite12 coating was light green, and the overall perfection of the coating showed no obvious defects. The penetrant inspection of the sample did not find defects such as coating surface cracks, and the coating surface roughness=40.1 μm. The upper, middle and lower parts of the coating cross-section showed different microstructure characteristics. The cross-section elements of the coating had abrupt changes in the transition zone, which proved that the coating and the substrate were diluted under strong metallurgical bonding. The dilution rate was calculated to be about 16.9% based on the composition of Fe element in the coating. The coating surface was mainly columnar crystals, small planar crystals, and short dendrites. Compared with the cross-section of the coating, the growth direction of the surface structure of the coating became more disordered. This was because the surface coating had a wide molten pool area and more diversified heat dissipation.
The main phase of the coating wasa-Co, CoCand other compounds. The open circuit potential, Tafel polarization curve, Nyquist plot, and Bode plot of the coating and the substrate in the 3.5wt.% sodium chloride test solution. It can be seen from the figure that the open circuit potential measured by the coating and the substrate remains in a stable state, the self-corrosion potential of the coating was ?504.5 mv, and the self-corrosion potential of the substrate was ?579.7 mv. The corrosion potential of the coating was more positive than that of the substrate, and it was more resistant to corrosion than the substrate. At the same time, the annual corrosion rate of the coating was 0.002 mm/a far less than the substrate rate of 0.05 mm/a.
A Stellite12 coating was prepared on a 304 stainless steel substrate, and the structure, phase and electrochemical corrosion performance of the coating and the substrate are studied. The interdendritic was a eutectic structure of Co and carbides, and the primary phase ofa-Co was mainly contained in the dendrites. The main components of the coating phase were a-Co, CoCand other compounds. The self-corrosion potential of the coating was ?504.5 mv, and the self-corrosion potential of the substrate was ?579.7 mv. The corrosion potential of the coating was more positive than that of the substrate. Stellite12 coating can improve the corrosion resistance of 304 stainless steel.
laser cladding; stellite12 alloy coating; 304 stainless steel; electrochemical corrosion; corrosion mechanism
TG178
A
1001-3660(2022)11-0295-10
10.16490/j.cnki.issn.1001-3660.2022.11.028
2021–09–04;
2022–03–22
2021-09-04;
2022-03-22
山西省重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(201903D121051);陜西省自然科學(xué)基礎(chǔ)研究計(jì)劃項(xiàng)目(2020JM-713);西安航空職業(yè)技術(shù)學(xué)院院級重點(diǎn)項(xiàng)目(18XHZY-04)
Shanxi Provincial Key R&D Project (201903D121051); Shaanxi Provincial Natural Science Basic Research Project (2020JM-713); Xi'an Aviation Vocational and Technical College Key Project (18XHZY-04)
歐陽昌耀(1997—),男,碩士研究生,主要研究方向?yàn)楸砻婀こ獭?/p>
OUYANG Chang-yao (1997-), Male, Postgraduate, Research focus: surface engineering.
王蕊(1979—),女,博士生,講師,主要研究方向?yàn)樵僦圃旃こ獭?/p>
WANG Rui (1979-), Female, Ph. D. student, Lecturer, Research focus: remanufacturing engineering.
歐陽昌耀, 李艷玲, 王蕊, 等. 304鋼表面激光熔覆Stellite12鈷基涂層組織及腐蝕性能[J]. 表面技術(shù), 2022, 51(11): 295-304.
OUYANG Chang-yao, LI Yan-ling, WANG Rui, et al. Microstructure and Corrosion Properties of Laser Cladding Stellite12 Coating on 304 Steel[J]. Surface Technology, 2022, 51(11): 295-304.