繆克基,尹陽(yáng)陽(yáng),王婷,劉川槐,沈利,劉建峰,潘衛(wèi)國(guó)
T91/TP347H焊接接頭在含氯溶液中的腐蝕特性
繆克基1,尹陽(yáng)陽(yáng)1,王婷1,劉川槐2,沈利3,劉建峰1,潘衛(wèi)國(guó)1
(1.上海電力大學(xué),上海 200090;2.淮浙煤電有限責(zé)任公司,安徽 232100;3.浙能電力股份有限公司,浙江 310024)
研究電廠用T91/TP347H鋼鎢極氬弧焊接頭在含氯溶液中的腐蝕行為及其影響因素。將服役前后的焊接接頭制作成工作電極,用電化學(xué)工作站測(cè)試極化曲線和交流阻抗,擬合計(jì)算試驗(yàn)數(shù)據(jù)。將焊接接頭在含氯溶液中浸泡,結(jié)束后對(duì)試樣表面進(jìn)行表征。T91鐵素體鋼的腐蝕電位最小、腐蝕電流密度最大,電荷轉(zhuǎn)移電阻最小,從而表現(xiàn)出的腐蝕敏感性更強(qiáng),而ERNiCr-3和TP347H奧氏體鋼的對(duì)應(yīng)數(shù)值相對(duì)較低,其表面形成致密的鈍化膜,增強(qiáng)了耐腐蝕性。隨著焊接接頭服役時(shí)間的增加,腐蝕電流密度逐漸增大,耐腐蝕性逐漸降低。氯離子促進(jìn)了焊接接頭表面在溶液中的陽(yáng)極過(guò)程,在點(diǎn)蝕坑的成核和生長(zhǎng)過(guò)程中都起著重要的促進(jìn)作用。焊接接頭試樣邊緣位置形成的原電池較為強(qiáng)烈,腐蝕破壞更加嚴(yán)重。T91/TP347H焊接接頭容易在T91側(cè)發(fā)生腐蝕破壞失效,在580 ℃/25 MPa以上蒸汽參數(shù)下長(zhǎng)時(shí)間服役后,會(huì)導(dǎo)致焊接接頭整體耐腐蝕性下降,并且T91鐵素體鋼的下降幅度最大。鉻元素、不銹鋼組織的溶碳能力和穩(wěn)定性等因素是決定焊接接頭耐腐蝕性強(qiáng)弱的關(guān)鍵因素。
電化學(xué);氯離子;鈍化膜;高溫服役;固溶元素
在復(fù)雜的環(huán)境中運(yùn)行,金屬材料會(huì)發(fā)生腐蝕,導(dǎo)致設(shè)備的完整性和耐久性下降,對(duì)設(shè)備的危害十分嚴(yán)重[1]。在富Cl?的高溫高壓水環(huán)境中,金屬腐蝕會(huì)縮短金屬部件的使用壽命,造成巨大的維護(hù)成本[2-4]。目前發(fā)電設(shè)備正朝著更大容量的方向發(fā)展,所使用的蒸汽參數(shù)也朝著更高的溫度和壓力發(fā)展,因此對(duì)金屬材料造成的腐蝕破壞也更加嚴(yán)重。超(超)臨界機(jī)組所使用的管道在愈加嚴(yán)格的蒸汽條件下運(yùn)行,必須提高材料的抗氧化腐蝕性能和抗蠕變性能[5]。
對(duì)于異種耐熱鋼的連接技術(shù),焊接是最成熟的方式之一。鐵素體和奧氏體焊接接頭是工業(yè)應(yīng)用極為廣泛的接頭形式[6-7]。鐵素體和奧氏體耐熱鋼具有優(yōu)良的蠕變強(qiáng)度和耐腐蝕性,因此被用于火力發(fā)電設(shè)備中的過(guò)熱器管道中。奧氏體鋼的耐高溫性能要優(yōu)于鐵素體鋼,但是其經(jīng)濟(jì)成本較高,奧氏體鋼常用于高溫段,而鐵素體鋼用于低溫段[8]。焊接過(guò)程會(huì)改變母材良好的組織結(jié)構(gòu),并在接頭處產(chǎn)生殘余應(yīng)力。在某些情況下,殘余應(yīng)力可能超過(guò)材料的拉伸應(yīng)力,導(dǎo)致材料的應(yīng)力腐蝕敏感性惡化。
不銹鋼易受局部腐蝕的影響,如氯化物環(huán)境中的點(diǎn)蝕和應(yīng)力腐蝕。金屬材料與活性被動(dòng)金屬(鋁或鉻)合金化,在表面形成一層鈍化膜,以抵抗進(jìn)一步的腐蝕。然而,鈍化膜的部分破壞可能會(huì)導(dǎo)致局部腐蝕坑形成[9-10]?;痣姍C(jī)組在運(yùn)行過(guò)程中由于凝汽器泄漏、有機(jī)物的分解等原因,導(dǎo)致循環(huán)水中氯離子濃度升高,管道會(huì)發(fā)生黏著離子引起的破壞。當(dāng)金屬接觸到含有腐蝕性介質(zhì)時(shí),通常會(huì)發(fā)生點(diǎn)蝕,氯離子是引起點(diǎn)蝕的主要原因。一般來(lái)說(shuō),金屬在含氯溶液中的點(diǎn)蝕過(guò)程包括四個(gè)連續(xù)過(guò)程:鈍化膜的形成、鈍化膜的破壞、可催化的亞穩(wěn)態(tài)坑的生長(zhǎng)和穩(wěn)定坑的生長(zhǎng)[11-12]。在鍋爐的管道中,機(jī)械載荷作用下的局部點(diǎn)蝕可能導(dǎo)致微裂紋的萌生和擴(kuò)展,產(chǎn)生應(yīng)力腐蝕開(kāi)裂,這是最有可能的壽命限制性損傷[13-15]。
金屬腐蝕對(duì)基礎(chǔ)設(shè)施以及設(shè)備的危害十分嚴(yán)重,異種金屬的連接與腐蝕研究對(duì)實(shí)際生產(chǎn)具有重要意義。Li[16]和Chandra等[17]研究發(fā)現(xiàn)暴露在高溫下合金鋼的晶間腐蝕失效歸因于富鉻碳化物或其他富鉻化合物相鄰的貧鉻區(qū)形成。Lanzutti等[18]研究了91系列鋼焊接接頭在焊接狀態(tài)下和經(jīng)熱處理后的電化學(xué)行為,發(fā)現(xiàn)熱影響區(qū)是一個(gè)非?;钴S的區(qū)域,在暴露于侵蝕環(huán)境中相對(duì)更快被腐蝕。熱影響區(qū)的優(yōu)先腐蝕是在馬氏體晶粒和晶界中大量析出強(qiáng)化富鉻顆粒的亞區(qū)域存在,產(chǎn)生了強(qiáng)烈的局部鉻耗損(一種敏化行為)。Martinelli等[19-20]研究發(fā)現(xiàn)合金鋼暴露在高溫水環(huán)境中,金屬表面的氧化物會(huì)溶解沉積。當(dāng)氧化物溶解時(shí),隨著暴露時(shí)間的延長(zhǎng),金屬離子擴(kuò)散到超臨界流體中,在氧化物表面留下一定的空穴,最后空位堆積在氧化物表面形成孔洞。
目前對(duì)于T91/TP347H鋼焊接接頭腐蝕行為的研究開(kāi)展較少,沒(méi)有研究高溫服役后對(duì)焊接接頭腐蝕的影響。本文開(kāi)展了T91/TP347H鋼焊接接頭服役前后在含氯溶液中的腐蝕情況研究,由于焊縫、母材組織及晶粒尺寸存在明顯差異,焊接接頭的腐蝕行為更加復(fù)雜。通過(guò)電化學(xué)[21-22]方法和腐蝕形貌的表征開(kāi)展T91鐵素體和TP347H奧氏體鋼焊接接頭腐蝕行為的研究,對(duì)進(jìn)一步掌握異種焊接結(jié)構(gòu)在服役過(guò)程中的腐蝕特征、變化規(guī)律、可靠性評(píng)價(jià)等方面具有重要意義。
本文中所使用的焊接接頭材料來(lái)源于淮浙煤電有限責(zé)任公司鳳臺(tái)發(fā)電分公司,T91/TP347H未服役與在580 ℃/25 MPa以上的超(超)臨界參數(shù)下服役105h試樣材料如圖1所示。焊縫填充材料為ERNiCr-3鎳基焊絲,焊材和焊絲的化學(xué)成分符合標(biāo)準(zhǔn)[23]。采用鎢極氬弧焊(TIG)工藝,坡口形式為V形對(duì)接,坡口角度為70°,根部不留間隙,分5層9道焊接。采用電火花線切割加工方法,從母材和焊縫中提取了腐蝕試驗(yàn)所需的試樣。
圖1 焊接接頭試樣
電化學(xué)測(cè)試?yán)秒娀瘜W(xué)工作站的三電極電解池進(jìn)行。工作電極(WE)用環(huán)氧樹(shù)脂密封,只暴露正方形截面(1 cm2)。試驗(yàn)前將工作電極表面打磨光滑,清洗后用丙酮對(duì)樣品進(jìn)行超聲波脫脂處理。參比電極和輔助電極分別采用飽和甘汞電極(SCE)和鉑金電極。電化學(xué)測(cè)試在室溫下濃度為1 000 mg/L的氯離子電解液中進(jìn)行。三電極體系開(kāi)放空氣,測(cè)試溶液不攪拌或脫氣。樣品在開(kāi)路電位下測(cè)量10 min,系統(tǒng)穩(wěn)定后開(kāi)始動(dòng)電位掃描。極化電位掃描間隔?1~0.5 V,掃描速率0.5 mV/s。交流阻抗在頻率范圍0~1 000 kHz的開(kāi)路電位下進(jìn)行的。采用振幅為5 mV 的正弦波對(duì)系統(tǒng)進(jìn)行擾動(dòng)。
將試樣在室溫下的氯離子溶液中浸泡一個(gè)月,用金相顯微鏡(OM)和掃描電子顯微鏡(SEM)對(duì)浸泡腐蝕后試樣的表面微觀結(jié)構(gòu)和腐蝕產(chǎn)物處的成分進(jìn)行研究,用XPS分析材料表面鈍化膜的形成情況。
金屬的腐蝕是由于表面形成局部電池而產(chǎn)生電化學(xué)反應(yīng),對(duì)金屬腐蝕的評(píng)價(jià)可采用電化學(xué)測(cè)試技術(shù)。T91/TP347H焊接接頭中鐵的腐蝕是其發(fā)生的主要陽(yáng)極電化學(xué)反應(yīng),并釋放鐵離子進(jìn)入電解質(zhì)溶液,反應(yīng)模型如式(1)所示。
圖2顯示了服役前后的T91/TP347H焊接接頭在1 000 mg/L Cl?溶液中陽(yáng)極動(dòng)電位極化曲線,3種材料的腐蝕電位、腐蝕電流密度通過(guò)塔菲爾外推法得到,腐蝕速率根據(jù)公式(2)計(jì)算得到如表1所示。腐蝕電流密度與腐蝕速率之間存在如式(2)所示關(guān)系[24]:
式中:corr為腐蝕電流密度,μA/cm2;為原子量;為得失電子數(shù);為材料密度,g/cm3。
從圖2a和表1中未服役狀態(tài)下的T91/TP347H焊接接頭的電化學(xué)腐蝕數(shù)據(jù)發(fā)現(xiàn),3種材料的腐蝕電位大小順序?yàn)門(mén)91
圖2 動(dòng)電位極化曲線
表1 試樣在1 000 mg/L Cl?溶液中的腐蝕電流密度、自腐蝕電位和腐蝕速率
Tab.1 Corrosion current density corrosion potential and corrosion rate of sample in 1 000 mg/L Cl? solution
對(duì)比圖2和表1中T91/TP347H焊接接頭服役前后的電化學(xué)數(shù)據(jù)發(fā)現(xiàn),在580 ℃/25 MPa以上的蒸汽參數(shù)下服役100 000 h后,3種材料的腐蝕電位降低、腐蝕電流密度和腐蝕速率都增加,因此該焊接接頭在含氯溶液中的整體耐腐蝕性能隨著高溫服役而降低。這是因?yàn)楹附咏宇^在高溫服役階段發(fā)生不可逆轉(zhuǎn)的化學(xué)反應(yīng)而退化行為,Cr、Mo等合金元素偏析程度加深,導(dǎo)致固溶合金元素的貧化,使得焊接接頭的耐腐蝕性降低。
為了進(jìn)一步研究T91/TP347H焊接接頭的耐腐蝕性能,進(jìn)行了電化學(xué)交流阻抗(EIS)研究,EIS能提供腐蝕反應(yīng)機(jī)理的詳細(xì)分析[25]。圖3顯示了服役前后T91/TP347H焊接接頭在1 000 mg/L Cl?溶液中的奈奎斯特圖和伯德圖。圖3a和圖3c分別為服役前后的奈奎斯特圖,奈奎斯特圖由高頻容性回路和中-低頻感性回路組成。中-低頻區(qū)域的響應(yīng)與點(diǎn)蝕過(guò)程中氯離子在點(diǎn)蝕區(qū)域的吸附有關(guān),該區(qū)的阻抗是在基底和過(guò)渡峰處測(cè)量的線性界面,反映孔隙的形成[26]。高頻容抗回路與試樣表面的電子轉(zhuǎn)移過(guò)程密切相關(guān),TP347H鋼的容抗弧半徑要大于ERNiCr-3和T91鋼。通常情況下,容抗回路的半徑越大,材料的總阻抗也越大[27]。由此可知,TP347H奧氏體鋼的耐腐蝕性要優(yōu)于ERNiCr-3和T91鐵素體鋼。通過(guò)電荷轉(zhuǎn)移過(guò)程控制的等效電路圖(見(jiàn)圖4)來(lái)分析交流阻抗,等效電路的電荷轉(zhuǎn)移電阻(2)平行于雙層電容(1),1為溶液電阻,阻抗數(shù)據(jù)分析采用Zview軟件,擬合結(jié)果如表2所示。從表2可知未服役狀態(tài)下的3種材料中T91的電荷轉(zhuǎn)移電阻最小,T91鋼的陽(yáng)極電化學(xué)反應(yīng)更加活躍,說(shuō)明T91鋼表面更容易發(fā)生腐蝕情況。在580 ℃/25 MPa以上的蒸汽參數(shù)下服役100 000 h后,奈奎斯特曲線整體形狀和低頻區(qū)感性回路沒(méi)有明顯的差異,但是高頻區(qū)的容抗回路半徑減小,且T91鋼的容抗弧半徑降幅較大,說(shuō)明高溫高壓服役后對(duì)焊接接頭耐腐蝕性能具有嚴(yán)重的影響,對(duì)T91鐵素體鋼的破壞更加嚴(yán)重。
圖3b和圖3d分別為服役前后的伯德圖,根據(jù)掃描頻率范圍可分為3個(gè)區(qū)域。首先,在高頻區(qū)范圍內(nèi)3種材料的相位角接近于零度,表明在高頻區(qū)的阻抗主要為溶液阻抗。在本文中服役前后的焊接接頭所用的侵蝕溶液相同,所以服役前后高頻區(qū)的阻抗基本相同;其次,在中頻區(qū)范圍內(nèi)材料的相位角達(dá)到最大值,通常情況下相位角越接近90°時(shí),可以認(rèn)為試樣表面的鈍化膜趨于一個(gè)純電容絕緣層,對(duì)試樣的保護(hù)能力較強(qiáng)。然而三種材料的相位角均未接近90°,說(shuō)明試樣表面的鈍化膜不夠致密,并且T91鐵素體鋼的相角最小,其受到的溶液中氯離子的侵蝕作用更加強(qiáng)烈。服役后中頻區(qū)的相角沒(méi)有發(fā)生明顯變化,說(shuō)明高溫服役對(duì)材料腐蝕過(guò)程中的鈍化膜形成幾乎沒(méi)有影響;最后,在低頻區(qū)范圍內(nèi)的阻抗模||表示腐蝕反應(yīng)的阻抗,阻抗模||越大,則材料的耐腐蝕性能越強(qiáng)。3種材料的低頻區(qū)阻抗模||大小分別為:TP347H> ERNiCr-3>T91,這說(shuō)明溶液中的氯離子對(duì)T91的鈍化膜損傷要比另外2種材料更加容易。經(jīng)歷高溫服役過(guò)后,3種材料在低頻區(qū)的阻抗模||明顯減小,說(shuō)明高溫服役降低材料的腐蝕反應(yīng)阻抗,加劇了氯離子對(duì)鈍化膜的破壞。綜合分析說(shuō)明在含氯溶液中T91鐵素體鋼是T91/TP347H焊接接頭耐腐蝕性能最差的一側(cè),高溫服役后嚴(yán)重降低焊接接頭的耐腐蝕性能。
圖3 交流阻抗譜圖
圖4 等效電路圖
表2 等效電路擬合參數(shù)
Tab.2 Equivalent circuit fitting parameters
火電機(jī)組管道暴露在高溫高壓的循環(huán)水中,水中的侵蝕性離子會(huì)對(duì)管道表面造成損傷。隨著暴露時(shí)間的延長(zhǎng),金屬離子擴(kuò)散到循環(huán)水中,在管道表面留下一定的空穴,使其失效速度加快。
通過(guò)金相顯微鏡分別對(duì)原始材料和在1 000 mg/L Cl?溶液中浸泡30 d的材料表面進(jìn)行觀察,其表征結(jié)果如圖5所示。從圖中可以看到未腐蝕的3種試樣表面沒(méi)有明顯的差別,隨著腐蝕時(shí)間的增加,局部腐蝕不斷擴(kuò)大,金屬表面形成了腐蝕的黃色斑點(diǎn),其中T91鋼的腐蝕最為嚴(yán)重。從圖5f中看出T91鋼表面附著大量黃褐色腐蝕斑點(diǎn),并且隨著腐蝕時(shí)間的增加,腐蝕溶液逐漸變黃,這說(shuō)明T91鋼表面形成的氧化膜對(duì)試樣的保護(hù)有限。從圖5b和圖5d中發(fā)現(xiàn)TP347H和ERNiCr-3表面存在少量的腐蝕斑點(diǎn),可能存在一層不均勻的鈍化膜,金屬表面的鈍化膜結(jié)構(gòu)在腐蝕后期往往可以阻止大部分的腐蝕性物質(zhì),減緩材料的腐蝕速度,極大程度上了提高鋼的耐腐蝕性。
圖5 T91/TP347H焊接接頭腐蝕前后OM表征
圖6分別顯示了TP347H和焊縫樣品上形成的鈍化膜中Cr 2p3/2、Ni 2p3/2和Fe 2p3/2的光譜。從XPS的分析結(jié)果中看出TP347H材料鈍化膜的成分主要為鉻、鎳和鐵的氧化物,焊縫材料鈍化膜的主要成分鉻、鎳的氧化物。Cr2O3鈍化膜將材料與腐蝕介質(zhì)隔離,阻止氯離子進(jìn)入鈍化膜內(nèi)部對(duì)材料造成破壞。對(duì)比2種樣品的Ni 2p3/2光譜可以發(fā)現(xiàn),2種樣品鈍化膜中鎳元素的演化基本一致。并且在整個(gè)鈍化膜中發(fā)現(xiàn)了NiO,3種元素中鎳的化學(xué)活性較弱,鎳氧化物更容易被還原。
為了更加清晰觀察氯離子的侵蝕影響,進(jìn)行SEM(EDS)表征分析。對(duì)焊接接頭腐蝕試樣的中心位置和邊緣位置進(jìn)行觀察如圖6所示,以及相應(yīng)的能譜分析結(jié)果如圖7所示。3種材料打磨后的表面劃痕清晰光亮,都觀察到腐蝕點(diǎn)或局部腐蝕特征分布在表面。劃痕對(duì)TP347H和ERNiCr-3材料表面的腐蝕影響相對(duì)較小,而在T91鋼的劃痕周圍存在微小的孔洞。TP347H和ERNiCr-3試樣表面附著這光滑、明亮的塊狀腐蝕產(chǎn)物,腐蝕產(chǎn)物核心延伸到材料基體的內(nèi)部,但傾向于在試樣表面邊緣位置腐蝕。T91鋼的鈍化膜幾乎被侵蝕,表面出現(xiàn)大量微小的腐蝕坑,并且在邊緣位置的腐蝕更加嚴(yán)重,出現(xiàn)腐蝕斑,隨著腐蝕斑的脫落材料的厚度會(huì)逐漸降低。
在含氯溶液的浸泡過(guò)程中,氯離子很容易會(huì)穿過(guò)溶液和鈍化膜界面進(jìn)入鈍化膜,從而破壞了鈍化膜大大降低了鈍化膜的致密性和完整性。當(dāng)金屬離子被水解,會(huì)與穿過(guò)的氯離子生成氯化物,使得材料表面的腐蝕均勻進(jìn)行。一旦點(diǎn)蝕坑發(fā)生或形核,點(diǎn)蝕的生長(zhǎng)和擴(kuò)展以主動(dòng)溶解模式繼續(xù)進(jìn)行。這說(shuō)明氯離子促進(jìn)了腐蝕點(diǎn)的出現(xiàn)。由此可知,氯離子的存在促進(jìn)了均勻腐蝕和腐蝕點(diǎn)的形成和發(fā)展。
圖6 XPS光譜
圖7 T91/TP347H焊接接頭腐蝕試樣SEM表征
在一定的氯離子濃度下,金屬腐蝕速率的值取決于合金的化學(xué)成分。一般來(lái)說(shuō),化學(xué)成分對(duì)金屬的穩(wěn)定性起著重要的作用。焊接接頭表面腐蝕坑處的電子能譜分析如圖8所示,腐蝕坑的周圍主要成分是鐵、鉻等腐蝕產(chǎn)物。從圖8a可知T91鋼的鐵元素含量非常高,氧含量也較高,因此T91鋼極易被氧化腐蝕。從圖8b和圖8c可知ERNiCr-3和TP347H的鉻元素含量較高,因?yàn)殂t元素是不銹鋼元素成分中特別耐腐蝕的元素,T91鋼的鉻元素含量較其它金屬要低,且T91鋼鐵素體組織的溶碳能力較差,極易析出碳元素從而形成鉻的碳化物,降低材料的耐腐蝕性。在焊接過(guò)程中會(huì)發(fā)生的焊接熱循環(huán)、元素遷移、相變等會(huì)加劇材料的組織差異以及不均勻性,并且?jiàn)W氏體鋼的穩(wěn)定性遠(yuǎn)大于鐵素體鋼。
圖8 腐蝕產(chǎn)物處元素成分分析
1)在1 000 mg/L 氯離子溶液的浸蝕下,T91/ TP347H焊接接頭中T91鋼的耐腐蝕性最差,腐蝕極易發(fā)生在其表面,使其減薄發(fā)生過(guò)早失效。
2)氯離子促進(jìn)了焊接接頭表面在溶液中的陽(yáng)極過(guò)程,接頭腐蝕點(diǎn)的形成過(guò)程可分為形核和長(zhǎng)大2個(gè)階段。氯離子在點(diǎn)蝕坑的成核和生長(zhǎng)過(guò)程中都起著重要的促進(jìn)作用。試樣邊緣位置形成的原電池較為強(qiáng)烈,腐蝕破壞更加嚴(yán)重。
3)在含氯溶液中,由于T91鋼的鉻元素含量較其它金屬要低,且T91鋼鐵素體組織的溶碳能力較差,極易析出碳元素從而形成鉻的碳化物,降低材料的耐腐蝕性。
4)高溫高壓服役后,焊接接頭的耐腐蝕性能會(huì)降低,尤其是T91鐵素體鋼。由于在服役過(guò)程中T91鐵素體鋼的碳化物生長(zhǎng)和二次相的析出使得鉻和鉬等耐蝕性元素的偏析程度加深,導(dǎo)致其耐腐蝕性降低。
[1] LIN Chen, RUAN Hai-hui, SHI San-qiang. Phase Field Study of Mechanico-Electrochemical Corrosion[J]. Elec-tr-ochimica Acta, 2019, 310: 240-255.
[2] PAN Cheng-cheng, SONG Yang, JIN Wei-xian, et al. Enha-ncing the Stability of Passive Film on 304 SS by Chemical Modification in Alkaline Phosphate-Molybdate Solutions[J]. Transactions of Tianjin University, 2020, 26(2): 135-141.
[3] ZHU Yu, SONG Yang, XU Li-kun, et al. Quantification of the Atmospheric Corrosion of 304 and 2205 Stainless Steels Using Electrochemical Probes Based on Thevenin Electrochemical Equivalent Circuit Model[J]. Transac-tions of Tianjin University, 2020, 26(3): 218-227.
[4] TOKUDA S, MUTO I, SUGAWARA Y, et al. Pit Initiat-ion on Sensitized Type 304 Stainless Steel under Applied Stress: Correlation of Stress, Cr-Depletion, and Inclusion Dissolution[J]. Corrosion Science, 2020, 167: 108506.
[5] LONG Yi. Corrosion Behaviour of T92 Steel in NaCl Solution[J]. International Journal of Electrochemical Science, 2017: 5104-5120.
[6] KHAN M M A, ROMOLI L, FIASCHI M, et al. Laser Beam Welding of Dissimilar Stainless Steels in a Fillet Joint Configuration[J]. Journal of Materials Processing Technology, 2012, 212(4): 856-867.
[7] HSIEH C C, LIN D Y, CHEN Ming-che, et al. Precipit-ation and Strengthening Behavior of Massive Δ-Ferrite in Dissimilar Stainless Steels during Massive Phase Transf-ormation[J]. Materials Science and Engineering: A, 2008, 477(1-2): 328-333.
[8] KAUFFMANN F, KLEIN T, KLENK A, et al. Creep Behavior and In-Depth Microstructural Characterization of Dissimilar Joints[J]. Science and Technology of Advanced Materials, 2013, 14(1): 014203.
[9] CHEN Zi-guang, ZHANG Guang-feng, BOBARU F. The Influence of Passive Film Damage on Pitting Corro-sion[J]. Journal of the Electrochemical Society, 2015, 163(2): C19-C24.
[10] LI Tian-shu, SCULLY J R, FRANKEL G S. Localized Corrosion: Passive Film Breakdown Vs Pit Growth Stability: Part II. a Model for Critical Pitting Temp-erature[J]. Journal of the Electrochemical Society, 2018, 165(9): C484-C491.
[11] SCHEINER S, HELLMICH C. Stable Pitting Corrosion of Stainless Steel as Diffusion-Controlled Dissolution Process with a Sharp Moving Electrode Boundary[J]. Corrosion Science, 2007, 49(2): 319-346.
[12] ORGAN L, SCULLY J R, MIKHAILOV A S, et al. A Spatiotemporal Model of Interactions among Metastable Pits and the Transition to Pitting Corrosion[J]. Electro-chimica Acta, 2005, 51(2): 225-241.
[13] ABOU-ELAZM A S, EL MAHALLAWI I, ABDEL- KARIM R, et al. Failure Investigation of Secondary Super-Heater Tubes in a Power Boiler[J]. Engineering Failure Analysis, 2009, 16(1): 433-448.
[14] LU B T, CHEN Z K, LUO J L, et al. Pitting and Stress Corrosion Cracking Behavior in Welded Austenitic Stainless Steel[J]. Electrochimica Acta, 2005, 50(6): 1391-1403.
[15] RAHIMI S, MARROW T J. A New Method for Pred-icting Susceptibility of Austenitic Stainless Steels to Intergranular Stress Corrosion Cracking[J]. Materials & Design, 2020, 187: 108368.
[16] LI Shu-xin, HE Yan-ni, YU Shu-rong, et al. Evaluation of the Effect of Grain Size on Chromium Carbide Precipit-ation and Intergranular Corrosion of 316L Stainless Steel[J]. Corrosion Science, 2013, 66: 211-216.
[17] CHANDRA K, KAIN V, TEWARI R. Microstructural and Electrochemical Characterisation of Heat-Treated 347 Stainless Steel with Different Phases[J]. Corrosion Science, 2013, 67: 118-129.
[18] LANZUTTI A, ANDREATTA F, LEKKA M, et al. Microstructural and Local Electrochemical Charact-erisation of Gr. 91 Steel-Welded Joints as Function of Post-Weld Heat Treatments[J]. Corrosion Science, 2019, 148: 407-417.
[19] MARTINELLI L, BALBAUD-CéLéRIER F, PICARD G, et al. Oxidation Mechanism of a Fe-9Cr-1Mo Steel by Liquid Pb-Bi Eutectic Alloy (Part III)[J]. Corrosion Science, 2008, 50(9): 2549-2559.
[20] MARTINELLI L, BALBAUD-CéLéRIER F, PICARD G, et al. Oxidation Mechanism of a Fe-9Cr-1Mo Steel by Liquid Pb-Bi Eutectic Alloy (Part III)[J]. Corrosion Science, 2008, 50(9): 2549-2559.
[21] XIA Da-hai, SONG Shi-zhe, QIN Zhen-bo, et al. Review— Electrochemical Probes and Sensors Designed for Time- Dependent Atmospheric Corrosion Monitoring: Fundam-entals, Progress, and Challenges[J]. Journal of the Electr-ochemical Society, 2020, 167(3): 037513.
[22] NISHIKATA A, ZHU Qing-jun, TADA Eiji. Long-Term Monitoring of Atmospheric Corrosion at Weathering Steel Bridges by an Electrochemical Impedance Method[J]. Corrosion Science, 2014, 87: 80-88.
[23] 楊小輝, 張貴鋒, 張建勛. 兩種鋁/鋼組合(1060/Q235和1060/SUS304)的攪拌摩擦釬焊組織與性能對(duì)比研究[J]. 精密成形工程, 2020, 12(1): 38-44.
YANG Xiao-hui, ZHANG Gui-feng, ZHANG Jian-xun. Comparative Study of Aluminum/Steel Dissimilar Couples (1060/Q235 and 1060/SUS304) Friction Stir Brazing Microstructure and Properties[J]. Journal of Netshape Forming Engineering, 2020, 12(1): 38-44.
[24] AHMAD H W, CHAUDRY U M, TARIQ M R, et al. Assessment of Fatigue and Electrochemical Corrosion Characteristics of Dissimilar Materials Weld between Alloy 617 and 12 Cr Steel[J]. Journal of Manufacturing Processes, 2020, 53: 275-282.
[25] ITAGAKI M, SUZUKI T, WATANABE K. Anodic Dissolution of Fe-Mo in Sulfuric Acid Solution as Investigated by Electrochemical Impedance Spectroscopy Combined with Channel Flow Double Electrode[J]. Corrosion Science, 1998, 40(8): 1255-1265.
[26] BELLANGER G, RAMEAU J J. Effect of Slightly Acid pH with or without Chloride in Radioactive Water on the Corrosion of Maraging Steel[J]. Journal of Nuclear Materials, 1996, 228(1): 24-37.
[27] MOLAEI M, FATTAH-ALHOSSEINI A, KESHAVARZ M K. Influence of Different Sodium-Based Additives on Corrosion Resistance of PEO Coatings on Pure Ti[J]. Journal of Asian Ceramic Societies, 2019, 7(2): 247-255.
Corrosion Characteristics of T91/TP347H Welded Joints in Chlorine-Containing Solution
1,1,1,2,3,1,1
(1. Shanghai University of Electric Power, Shanghai 200090; 2. Huaizhe Coal Power Co., Ltd., Anhui 232100; 3. Zheneng Electric Power Co., Ltd., Zhejiang 310024)
It is a convenient corrosion test method, which can measure the corrosion rate of various metals in real time with high sensitivity, and the current or voltage applied to the metal surface will not cause irreversible effects. Combined with the characterization method, the failure factors of welded joints are comprehensively analyzed. Due to the complex material properties of dissimilar steel welded joints, the strength of welded joints is low, which becomes the source of stress corrosion cracking defects in joints. The corrosion behavior and influencing factors of T91/TP347H steel GTAW joint in solution containing chloride ions were studied.
The T91/TP347H welded joints required for the experiment were intercepted from the original and super-critical (super) critical parameters above 580 ℃/25 MPa for 105hours in the superheater pipeline. The TP347H/T91 welded joint was cut into 1cm×1cm square slices, then soldered to the copper wire, and finally sealed with epoxy resin to ensure that only one surface was in contact with the solution. According to the chloride ion concentration in the circulating water, an electrolyte solution containing 1 000 mg/L of chloride ions is prepared. The polarization curve and AC impedance of the material were tested using an electrochemical workstation. The working electrode was measured at open circuit potential for ten minutes, and the potential sweep was started after the system stabilized. The polarization potential scanning interval is ?1-0.5 V, and the scanning rate is 0.5 mV/s. AC impedance is carried out at open circuit potential in the frequency range 0-1 000 kHz. The system was perturbed with a sine wave with an amplitude of 5 mV. The reference electrode and auxiliary electrode were saturated calomel electrode (SCE) and platinum electrode, respectively. The changes of the surface of TP347H/T91 welded joints before and after corrosion were observed by metallographic microscope and scanning electron microscope, and then the elemental composition at each selected corrosion pit was obtained by energy dispersive spectrometer. The elements and valence states of the surface were measured by X-ray photoelectron spectroscopy, and the formation of the passivation film was analyzed.
T91 ferritic steel has the smallest corrosion potential and the largest corrosion current density, and the smallest charge transfer resistance, thus showing a stronger corrosion sensitivity, while ErnicR-3 and TP347H austenitic steel have relatively low corresponding values, forming a dense passivation film on their surfaces, which enhances the corrosion resistance. With the increase of service time of welded joints, the corrosion current density increases gradually, and the corrosion resistance decreases gradually. Chloride ions promote the anodic process of welded joint surface in solution, and play an important role in the nucleation and growth of pitting pits. The galvanic cell formed at the edge of welded joint sample is more intense and the corrosion damage is more serious. T91/TP347H welded joint is prone to corrosion failure on T91 side. After long service at steam parameters above 580 ℃/25 MPa, the overall corrosion resistance of welded joints will decrease, and T91 ferritic steel has the largest decline. The chromium, carbon dissolving ability and stability are the key factors to determine the corrosion resistance of welded joint.
electrochemistry; chloride ion; passivation film; high temperature service; solid solution elements
TG172
A
1001-3660(2022)11-0328-09
10.16490/j.cnki.issn.1001-3660.2022.11.031
2021–09–16;
2022–04–25
2021-09-16;
2022-04-25
繆克基(1997—),男,碩士研究生,主要研究方向?yàn)槟透邷睾附咏饘俨牧稀?/p>
MIAO Ke-ji (1997-), Male, Postgraduate, Research focus: high temperature resistant welding metal materials.
劉建峰(1982—),女,博士,副教授,主要研究方向?yàn)槿剂想姵睾徒饘俑g。
LIU Jian-feng (1982-), Female, Doctor, Associate professor, Researchfocus: fuel cell and metal corrosion.
繆克基, 尹陽(yáng)陽(yáng), 王婷, 等. T91/TP347H焊接接頭在含氯溶液中的腐蝕特性[J]. 表面技術(shù), 2022, 51(11): 328-336.
MIAO Ke-ji, YIN Yang-yang, WANG Ting, et al. Corrosion Characteristics of T91/TP347H Welded Joints in Chlorine-Containing Solution[J]. Surface Technology, 2022, 51(11): 328-336.