• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stirring by anisotropic squirming

    2022-12-19 03:34:38ZhiLinSiruiZhuLingyunDing

    Zhi Lin , , Sirui Zhu , Lingyun Ding

    a School of Mathematical Sciences, Zhejiang University, Hangzhou, Zhejiang 310027, China

    b Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599, United States

    Keywords: Mixing and transport Passive scalar Anisotropic diffusion

    ABSTRACT We consider a fluid stirred by the locomotions of squirmers through it and generalize the stochastic hy- drodynamic model proposed by Thiffeault and Childress, Phys. Lett. A (2010) and Lin et al., J. Fluid Mech. (2011) to the case in which the swimmers move in anisotropically random directions. A non-diagonal effective diffusivity tensor is derived with which the diffusive preference of a passive particle along any given direction can be computed to provide more details of the phenomena beyond scalar statistics. We further identify a fraction from the orthogonal decomposition of the drift-induced particle displacement to distinguish the underlying nonlinear mixing mechanism for different types of swimmers. Numerical simulations verify the analytical results with explicit examples of prescribed, anisotropic stirring motions. We also connect our formulation to several measures used in clinical medical research such as diffusion tensor imaging where anisotropic diffusion has a significant consequence.

    Scalar advection due to drift, namely, the permanent displace- ment of elements disturbed by the passage of a body through a bulk fluid, is a ubiquitous and important mechanism that enhances heat and mass transport in various natural and industrial pro- cesses. Recently, academic interests in drift-enhanced mixing has been sparked by their potential importance in geophysical and bi- ological contexts [1–4] .

    A key feature in these fluidic environments is stratification that prohibits the mixing and transport of various quantities in certain directions [5,6] . Yet, field measurements suggest that this hindrance is somehow compensated by motions overcoming the cross-sectional potential energy gradient and stability between wa- ter layers [7,8] . In this paper we focus on the potential contribu- tion of the Darwin drift due to swimming bodies [9] as suggested to be a significant effect in the swimming-induced mixing in the ocean [10–12] .

    To define and compute the effective diffusivity for the mass displacement due to a colony of submerged swimmers, Thiffeault et. al. followed the classical kinetic theory of diffusion and pro- posed an original stochastic hydrodynamic model that derives the effective diffusivity of a passive scalar drifted by random swim- mers [13,14] . In particular, the position of target particlexMafterMencounters withsquirmers, which are classical and accurate mod- els for potential or Stokesian swimmers in real life [15–19] , is com- puted as a discrete sum of sequential, independent drifts:

    HereΔλ(ak,bk)is the displacement from each “kick”in the ran- dom direction ?rk,akandbkare decomposed impact parameters in a co-moving framework of reference. Under isotropic and non- interacting assumptions the flow-enhanced diffusivity is increased by about 100 times over molecular diffusion. The model has later been substantiated in observations from experiments [20–22] and from simulations [23–25] .

    Among the extensive body of aforementioned research, a com- mon but oversimplifying assumption is isotropy. As mentioned ear- lier, a signature of the environments in which the swimmers oper- ate is the anisotropic distribution of important physical quantities and the resulting behavioral parameters [26–28] . Therefore in this paper we analyze and simulate the anisotropic squirming and the resulting mixing enhancements as a generalization to the isotropic model. Here, the full effective diffusivity tensor is computed from the mean squared particle displacement in two or three dimen- sions for an anisotropic probability distribution prescribed for the random swimming directions.

    We study the mixing and transport of a passive scalar field stirred byNnon-interacting swimmers uniformly distributed in a two- or three-dimensional fluidic domainΩ. Each swimmer moves along a line segment of lengthλin a random direction at a con- stant speedU. The Darwin drift of a particle in an encounter with

    one swimmer is therefore the vector

    whereUis the random velocity vector of magnitudeUandx(s)is the particle trajectory starting at the pointη. It can be shown thatΔλ(η,U)is independent ofUfor largeλ[14,29] .

    Consider the probability density function (PDF),pa(k), for the random swimming direction vectora=U/U. It was assumed to be isotropic in previous work, namely,pa(k)= 1/2 πin 2D orpa(k)= 1/4 πin 3D. To extend the applicability of the model by allow- ingpa(k)to be non-constant, we first note that the mean squared particle displacement due to one instance of Darwin drift over all swimming directions is

    Furthermore, under the assumptions of diluteness and indepen- dent, identically distributed (i.i.d.) swimming directions, the total particle displacementdue toNswimmers/encounters is sim- ply the sumwith the displacementfrom theith encounter also being i.i.d. Therefore,

    wheren=N/Vis the number density of the swimmers. In the largeλlimit as we will show in later sections, this average is fur- ther reduced tonregardless of whether the distribu- tionpa(k)is constant and the effects of anisotropy only emerge in the full diffusivity tensor while its trace, the total diffusivity, is in- variant. Therefore the total diffusivity is only a first order descrip- tion of the effective diffusion in question and more details can only be recovered with further analysis.

    In this section, a standard procedure in statistical mechanics will be adopted to compute the full diffusivity tensor for analysis and for simulation.

    Following the classical It?approach the effectively particle dif- fusion in question can be characterized by a second-order tensor which we denote ashenceforth. It is derived from statistical av- erages of asymptotic particle displacements as the following,

    To facilitate future derivation, we now orthogonally decompose the displacement vectorΔλ(η,U)in theco-moving frameworkof reference aligned with the swimming path. For example, in two dimensions we have

    whereais the swimming direction as we described before and the unit vectorbis perpendicular toa. Combined with Eq. (3) for the particle displacements, the full effective diffusivity tensor in Eq. (4) is then reduced to

    An encounter between the particle and the swimmer is illustrated in Fig. 1 .

    Fig. 1. Schematic diagram of the 2D decomposition of particle displacement in a single encounter.

    Fig. 2. Spatially averaged cross-stream fraction of particle displacements, ξ, as a function of swimming length, λ, for three types of swimmers.

    Fig. 3. Polar plots of two-dimensional probability density functions f i (θ) , i = 1 , 2 , 3 for different swimming preferences and their induced directional effective diffusivities κf (θ) .

    And we further replace the probability distribution functionpa(k)for the random swimming direction with an equivalent but simpler form, namely,

    Then the diffusivity tensor Eq. (4) in 2D can be readily computed as

    where the parameters

    are Fourier components of the PDF and

    which is essentially the spatially averaged cross-stream fraction of particle displacements. This fraction is specified by the fluid dy- namical properties of the flow field generated by one individual swimmer and is also dependent on the swimming lengthλ.

    Similarly, in a 3D spherical coordinate system a function of two angular variables,h(θ,?),θ∈ [0,2 π),?∈ [0,π] , should be used to describe the probability distribution of random swimming direc- tions. In particular, whenhis separable, namely,

    the three-dimensional version of the diffusivity tensor Eq. (4) is

    where the parameters are computed by

    For a non-separableh(θ,?), a closed-form expression of the tensor Eq. (4) is not available to our knowledge due to the compli- cated structure in the flow field. But as we will show in the next section, we can decompose the distribution as a linear combination of separable components and identify the anisotropic signatures in each component. Furthermore, with the above formulation the nu- merical computation for the tensor given any general distribution is then straightforward by superposition.

    To understand how directionally preferred stirring translates into anisotropic diffusion, we now establish a quantitative connec- tion between the diffusivity tensor Eq. (6) and the swimming mo- tion by introducing an analogous swimmer mobility tensor as

    and again,ais the unit vector in the swimming direction. It is then obvious that the streamwise component of the diffusivity Eq. (6) is a constant multiple of. To evaluate the significance of the trans- verse contribution we rewrite Eq. (6) as

    with the average cross-stream fraction of particle displacements,ξ, defined in Eq. (10) .

    Figure 2 demonstrates the behavior ofξfor three types of typ- ical swimmers: a cylinder in a potential flow (2D potential), a sphere in a potential flow (3D potential) and a Stokesian squirmer with the stresslet intensity set to 0.5 [14] . It can be seen that for potential swimmers,ξdecreases rapidly asλ/lincreases which in- dicates that the overall transverse contribution to the effective dif- fusion is negligible. In this case the diffusivity tensoris trivially proportional to the swimmer mobility tensor. However, for the Stokesian case,ξhas an asymptote of a significantly nonzero value and now we recover a nonlinear relation between the two as a result of indispensable cross-stream effects in the Darwinian drift. This distinction in terms of mixing mechanism can be viewed as a direct consequence of the difference between the mechanical and dynamical features of potential and Stokes flows.

    In this section, we will see the explicit results for several pre- scribed distributions,pa(k)in both 2D and 3D cases. Moreover, we will introduce a scalar function to obtain a more straightforward, geometrical interpretation of the anisotropic effective diffusion.

    Notice that in two dimensions we can always apply a coordi- nate rotation so that the diffusivity tensor Eq. (8) is equivalent to the diagonal form

    in which the diagonal elements are the diffusivities along two coordinate axes, respectively. This linear transformation has been widely used by clinical and animal studies and the ratioκx/κywas used to characterize anisotropic diffusion [30] . In this spirit, we now reduce the rank-2 tensor to a single scalar function to have a geometrical and physical understanding to our problem. That is,

    and it can be viewed as the diffusivity along any given direction specified by the angleθ.

    Here the constants

    and the dynamical parameterξ, the probabilistic parametersαfandβfhave been defined in Eqs. (9) and (10) .

    Now we look at the results for the following angular functions describing the swimming preference in 2D as indicated in Eq. (7) :

    Figure 3 is a comparison between the distributions Eq. (19) and the corresponding directional diffusivitiesκfi(θ),i= 1,2,3 . Here we have a uniform distribution of circular swimmers with num- ber densityn= 10?5each of which generates a 2D potential flow with parametersU=l= 1 andλ= 20 .

    It can be observed that although the swimming preferences are vastly different and anisotropic, their diffusive consequences are similar indicated by the mild angular variations inκfi. In particular,κf2is essentially a rotated version ofκf1andf3 even implies an isotropic diffusivity. This should have been expected because diffu- sion is a smoothing process and the sharp variations infiwould be attenuated. On the other hand, we have seen in Eq. (9) that the controlling components infin terms of diffusive impact are sin(2θ)and cos(2θ)throughthe parametersαfandβf. Thereforef1andf2produce similar results. In contrast, the modes sin(3θ)and cos(3θ)inf2andf3have no significance in the effective diffu- sivity, a second-order statistics and can only contribute to higher- order statistics of the scalar field.

    Alternatively a physical perspective of the above results can be provided by visualizing the evolution of an initial scalar concentra- tion being expanded under the effective diffusivity tensor Eq. (8) . With the same dynamical settings used in Fig. 3 , we numerically solve the effective heat equation in free 2D space

    forfi,i= 1,2,3 and summarize the results in Fig. 4 . The initial, isotropic distribution of the passive scalar fieldθis

    In column (a) of Fig. 4 ,θ0is plotted in grayscale superimposed with concentric contours. In columns (b) and (c), we can clearly see that the scalar field develops anisotropic structures forf1andf2astimeprogresses, highlighted by the elliptical contours. How- ever, forf3the plots are indistinguishable from isotropic diffusion since the effective diffusivity tensor in this case is merely a con- stant multiple of the identity matrix. These are all consistent with our previous analyses, especially with the plots forκfishown in Fig. 3 .

    Fig. 4. Numerical simulations of the effective heat Eq. (20) . In the i th row, i = 1 , 2 , 3 , three snapshots of the evolution of the scalar concentration are shown for t = 0 , 50 and 100 respectively, with the diffusivity tensor Eq. (8) computed for the prescribed distribution f i (θ) given in Eq. (19) .

    The diffusivity tensor in three dimensions can be computed with Eq. (12) if the swimming preference distribution is separable as

    For a general, non-separable distribution, we may decompose it as

    with the coefficientsak= 1,2,···chosen to satisfy renormalization conditions for a proper probability distribution. Consequently, the diffusion tensor would also be a linear combination of terms in the form of Eq. (12) . That is,

    and

    with probabilistic parameters

    We now focus on one such component without the loss of gen- erality and drop the subscriptskhenceforth. Following a similar derivation, we can define a three-dimensional, directional diffusion coefficient as

    for given anglesθ∈ [0,2 π),?∈ [0,π] where parametersci,i= 1,2,3,4 are constants connected to those in Eq. (25) by

    For example, for distribution densities the corresponding directional diffusivities are

    Figure 5 illustrates the density functions Eq. (28) and the di- rectional diffusivities Eq. (29) with similar features as in two- dimensional cases shown in Fig. 3 , especially when 2D projections onto thex?yplane are considered. Here the surfaces are rendered withx=rcosθcos?,y=rsinθcos?andz=rsin?where the ra- dial distanceris specified by the function value ofh(θ,?)or byκh(θ,?).

    To validate the analytical results in previous sections we im- plement direct particle simulations. Similar numerical experiments as documented in Ref. [14] are performed with the same param- eter values used, with the only difference being that the swim- mers here are swimming in anisotropically random directions. For each scenario, the particle starts at the origin with 105realiza- tions in the domains(x,y)∈ [ ?50 0,50 0]2in two dimensions and(x,y,z)∈ [ ?50 0,50 0]3in three dimensions, respectively.

    Figure 6 compares the mean squared displacements of the par- ticle stirred by anisotropic swimmers each of which generates a potential flow around a dipole for the probability distributions Eq. (19) . In each case, the displacement and its projections onto thex?andy?axis all grow linearly in time which indicate the dif- fusive nature of the process. In each panel, the black dashed line segment slightly below the curve of total displacement 〈R2〉 has a slope equal to the trace of the theoretical formula for diffusivity tensor Eq. (8) with numerical parameter values. The agreement be- tween simulation and analysis verifies that the modified stochas- tic hydrodynamic model we propose is an accurate model for the anisotropic stirring we started to investigate.

    We notice that although the total mean squared displacement 〈R2〉 has the same growth rate for all three distributions given in Eq. (19) , the evolution of its axial projections varies. Forf2(θ)andf3(θ)the projected displacementsandare essen- tially equal. This similarity suggests that the second-order statis- tics alone does not sufficiently identify the signatures of the anisotropic dynamics and one needs a more detailed perspective such as the full diffusivity tensor, or the directional diffusivity function Eq. (17) . In contrast, a clear distinction betweenandcan be observed forf1(θ)attributed to the anisotropic dif- fusivity tensor Eq. (8) in this case. Three dimensional simulations provide similar insights for the distributions Eq. (28) and confirm the analytical calculations shown in Fig. 5 .

    Fig. 5. 3D surfaces specified by the direction distributions: (a) h 1 (θ, ?) = sin ?, (b) h 2 (θ, ?) = and by their corresponding direc- tional diffusivities κh 1 (θ, ?) and κh 2 (θ, ?) in panels (c) and (d), respectively.

    Fig. 6. Mean squared displacements of a passive particle under 2D anisotropic stirring as a function of time for three distributions: (a) , (b) f 2 (θ) =

    In previous sections, we have derived the full diffusivity ten- sor and introduced an angular function to characterize the overall diffusive impact by a colony of swimmers with directional prefer- ences. In biological and clinical research, anisotropic diffusion has also been documented in a great body of literature [31,32] and this phenomenon allows technologies like diffusion tensor imag- ing (DTI) to focus on the diffusivity tensor and to uncover even more microstructural details in traditional MRI data for neu- ropathological diagnosis and treatment [33] . For practical purposes in these areas, the tensoris often further reduced to various scalar indices for measuring the extent of anisotropic structures with technical treatments aimed to avoid estimation biases [34].

    Most of these measures are computed from the eigenvalues of the full diffusivity tensor, denoted asλi,i= 1,2,···,dinddi- mensions. Eigenvalues and their associated eigenvectors represent the effective diffusivities in the principle directions, respectively and are invariant under coordinate transforms. Common examples include fractional anisotropy (FA), relative anisotropy (RA) and vol- ume ratio (VR) which are defined as follows:

    Table 1 (2D cases) and Table 2 (3D cases) list the values of these rotation-invariant measures for anisotropy for the distribu- tion functions Eqs. (19) and (28) . Similar to what was demon- strated in Figs. 3 and 4 , in two dimensions we recover the identical quantifications of anisotropy forf1 andf2 , whereasf3 is indistin- guishable from the isotropic case. Furthermore, the indices FA and RA seem to suggest a larger deviation from isotropy than VR does. This reinforces the applicability of the framework and analytics introduced in previous sections and suggests their potential abil- ity to reveal more details of dynamical features and mechanisms beyond such scalar measures as well as general second-order statistics.

    Table 1 Comparison of scalar measures Eq. (30) for diffusive anisotropy for 2D distributions Eq. (19) .

    Table 2 Comparison of scalar measures Eq. (30) for diffusive anisotropy for 3D distributions Eq. (28) .

    In this paper, we propose an anisotropic extension to the stochastic hydrodynamic model for biogenic mixing motivated by the non-uniform spatial preference in the swimming motion of marine species, or any dilute colony of active swimmers in a flu- idic environment in general. In particular, the diffusivity tensor of a submerged passive scalar field is calculated and discussed in de- tail based on classical results in statistical fluid mechanics connect- ing mean squared particle displacements and Darwin drifts due to swimming bodies. These analyses and results provide a simpli- fied, theoretical framework and reference to explain the underlying mechanisms in various mixing phenomena observed in nature and in engineering.

    Future work will be dedicated to taking into account more realistic factors to apply the model to broader practical settings studied in the literature. For example, we can further random- ize the parameter for the swimming pathλ[35] . In addition, preliminary results show that the anisotropic initial distribution of the swimmers, which is ubiquitous in nature [36] , also has a great impact on the mean-squared displacement of the particle. Moreover, we will strive to find a good quantification to char- acterize the anisotropy in three dimensions analogous to its 2D counterpart discussed, due to the challenges posed by the com- plicated interactions between the entries in the diffusion tensor Eq. (24) .

    Declaration of Competing Interest

    The authors declare that they have no known competing finan- cial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgement

    This work was supported by the National Natural Science Foun- dation of China (Grant No. 12071429).

    免费av毛片视频| 老司机福利观看| 深夜精品福利| 黄色女人牲交| 黄色女人牲交| 最近最新免费中文字幕在线| 别揉我奶头~嗯~啊~动态视频| 一级作爱视频免费观看| 免费在线观看黄色视频的| www.精华液| 不卡av一区二区三区| 国产av在哪里看| 99国产精品免费福利视频| 亚洲黑人精品在线| 国内久久婷婷六月综合欲色啪| 女性被躁到高潮视频| 涩涩av久久男人的天堂| 18禁美女被吸乳视频| 视频区图区小说| 两个人看的免费小视频| 久热爱精品视频在线9| 欧美av亚洲av综合av国产av| 一夜夜www| e午夜精品久久久久久久| 中文字幕高清在线视频| 国产av在哪里看| 午夜福利在线免费观看网站| x7x7x7水蜜桃| 级片在线观看| 精品国产乱子伦一区二区三区| 久久精品国产综合久久久| 香蕉久久夜色| 在线观看免费高清a一片| 国产精品一区二区免费欧美| 国产精品电影一区二区三区| 欧美成人午夜精品| 精品乱码久久久久久99久播| 一区在线观看完整版| 黄片播放在线免费| 侵犯人妻中文字幕一二三四区| avwww免费| 亚洲aⅴ乱码一区二区在线播放 | 成年版毛片免费区| 久久亚洲精品不卡| 桃红色精品国产亚洲av| 99精品在免费线老司机午夜| 久久欧美精品欧美久久欧美| 中文字幕另类日韩欧美亚洲嫩草| 校园春色视频在线观看| 美女国产高潮福利片在线看| 无遮挡黄片免费观看| 国产免费现黄频在线看| 亚洲一区高清亚洲精品| 在线十欧美十亚洲十日本专区| 亚洲成人精品中文字幕电影 | 国产亚洲欧美精品永久| 精品久久久久久电影网| 精品一区二区三区四区五区乱码| tocl精华| 亚洲人成电影免费在线| 女人被狂操c到高潮| 国产精品电影一区二区三区| 午夜影院日韩av| 99国产综合亚洲精品| 国产亚洲欧美98| 午夜福利影视在线免费观看| 美女大奶头视频| 满18在线观看网站| 欧美大码av| 日韩中文字幕欧美一区二区| 天堂√8在线中文| 国产熟女午夜一区二区三区| 久久精品国产综合久久久| 午夜影院日韩av| 一夜夜www| 欧美日韩亚洲国产一区二区在线观看| 黑人巨大精品欧美一区二区mp4| 欧美午夜高清在线| 一进一出抽搐动态| 国产免费男女视频| 久久精品国产清高在天天线| 精品熟女少妇八av免费久了| 国产伦一二天堂av在线观看| 日韩欧美一区视频在线观看| 久久午夜亚洲精品久久| 欧美乱码精品一区二区三区| 精品一区二区三卡| 亚洲人成电影观看| 中文字幕高清在线视频| 国产精品香港三级国产av潘金莲| 久久性视频一级片| 成人精品一区二区免费| 在线观看一区二区三区| 91国产中文字幕| 亚洲色图综合在线观看| 97碰自拍视频| 成在线人永久免费视频| 国产亚洲欧美精品永久| 精品一区二区三区视频在线观看免费 | 他把我摸到了高潮在线观看| 波多野结衣一区麻豆| 亚洲 欧美一区二区三区| 日本免费一区二区三区高清不卡 | 日本wwww免费看| 韩国av一区二区三区四区| 色在线成人网| 久久久久久久久久久久大奶| 国产aⅴ精品一区二区三区波| 日本黄色视频三级网站网址| 黑丝袜美女国产一区| 亚洲免费av在线视频| 99国产精品一区二区三区| av在线播放免费不卡| 视频在线观看一区二区三区| 看黄色毛片网站| 国产三级在线视频| 日韩高清综合在线| av国产精品久久久久影院| 国产深夜福利视频在线观看| 日本免费a在线| 性欧美人与动物交配| 久久国产亚洲av麻豆专区| 一级毛片高清免费大全| 国产黄色免费在线视频| 老司机福利观看| 麻豆av在线久日| 99热国产这里只有精品6| 欧美日韩亚洲国产一区二区在线观看| 淫妇啪啪啪对白视频| 一级片'在线观看视频| 嫩草影院精品99| 国产精品久久视频播放| 国产亚洲欧美98| 久久影院123| 水蜜桃什么品种好| 亚洲激情在线av| cao死你这个sao货| 在线av久久热| 色婷婷av一区二区三区视频| 大码成人一级视频| 制服人妻中文乱码| 一本综合久久免费| 亚洲一区二区三区色噜噜 | 国产免费现黄频在线看| 免费久久久久久久精品成人欧美视频| 国产成人欧美| cao死你这个sao货| 中文字幕高清在线视频| 国产一卡二卡三卡精品| 最新在线观看一区二区三区| 久久香蕉精品热| 国产午夜精品久久久久久| 99国产精品一区二区三区| 国产真人三级小视频在线观看| 高清毛片免费观看视频网站 | 亚洲av美国av| 久久久久国产一级毛片高清牌| 亚洲精品一卡2卡三卡4卡5卡| 国产精品一区二区三区四区久久 | 91av网站免费观看| 日韩大尺度精品在线看网址 | 丝袜美腿诱惑在线| 国产日韩一区二区三区精品不卡| 新久久久久国产一级毛片| 免费人成视频x8x8入口观看| 久久 成人 亚洲| 啦啦啦免费观看视频1| 亚洲人成电影观看| 免费日韩欧美在线观看| 欧美激情极品国产一区二区三区| 国产成人啪精品午夜网站| 一二三四在线观看免费中文在| 免费高清视频大片| 性欧美人与动物交配| 在线观看免费视频日本深夜| 中文字幕另类日韩欧美亚洲嫩草| 免费在线观看日本一区| 一区二区日韩欧美中文字幕| 国产成人av教育| 国产乱人伦免费视频| 啦啦啦 在线观看视频| 性欧美人与动物交配| 国产精品亚洲一级av第二区| 一夜夜www| 黄片播放在线免费| 亚洲国产精品999在线| www.www免费av| 色播在线永久视频| 国产主播在线观看一区二区| 满18在线观看网站| 男人操女人黄网站| 自线自在国产av| 国产欧美日韩一区二区三| 极品教师在线免费播放| 1024视频免费在线观看| bbb黄色大片| 黄片播放在线免费| 欧美日韩精品网址| av天堂在线播放| 成人亚洲精品一区在线观看| 无人区码免费观看不卡| 麻豆一二三区av精品| 国产成+人综合+亚洲专区| 一级a爱视频在线免费观看| 国产又爽黄色视频| 欧美在线一区亚洲| 女人被狂操c到高潮| 老司机亚洲免费影院| 亚洲 国产 在线| 午夜福利,免费看| 午夜亚洲福利在线播放| a在线观看视频网站| www国产在线视频色| 久久 成人 亚洲| 亚洲三区欧美一区| 亚洲国产毛片av蜜桃av| 视频区欧美日本亚洲| 老司机午夜福利在线观看视频| 在线观看www视频免费| 国产亚洲精品久久久久5区| 国产精品一区二区免费欧美| 国产高清激情床上av| 午夜老司机福利片| 九色亚洲精品在线播放| 欧美激情高清一区二区三区| 一区二区三区国产精品乱码| 男女床上黄色一级片免费看| 多毛熟女@视频| 黑人巨大精品欧美一区二区蜜桃| 国产精品成人在线| 水蜜桃什么品种好| 亚洲七黄色美女视频| 99精品在免费线老司机午夜| 亚洲片人在线观看| 免费在线观看亚洲国产| 欧美日韩亚洲高清精品| 亚洲人成电影观看| 欧美日韩精品网址| 日本a在线网址| 一级毛片精品| www.999成人在线观看| 大码成人一级视频| 国产亚洲精品第一综合不卡| 操出白浆在线播放| 不卡一级毛片| 日韩大码丰满熟妇| 国产精品久久久久成人av| 长腿黑丝高跟| 伦理电影免费视频| 亚洲精品久久成人aⅴ小说| 美女 人体艺术 gogo| 在线观看66精品国产| 香蕉丝袜av| 国产99久久九九免费精品| 久久狼人影院| 免费在线观看亚洲国产| 亚洲全国av大片| a在线观看视频网站| 欧美性长视频在线观看| 黑丝袜美女国产一区| 久久久久久久久免费视频了| 精品人妻在线不人妻| 亚洲免费av在线视频| 亚洲成人久久性| 老鸭窝网址在线观看| 精品久久久精品久久久| 黄色视频不卡| 亚洲在线自拍视频| 欧美午夜高清在线| av网站在线播放免费| 亚洲av成人不卡在线观看播放网| 中文字幕人妻熟女乱码| 在线观看66精品国产| 欧美日韩乱码在线| 一级毛片精品| 成年人免费黄色播放视频| 国产精品 欧美亚洲| 日韩成人在线观看一区二区三区| aaaaa片日本免费| 国产成人欧美| tocl精华| 亚洲精品国产区一区二| 在线观看免费日韩欧美大片| 午夜两性在线视频| 一级,二级,三级黄色视频| 亚洲专区字幕在线| videosex国产| 成人精品一区二区免费| 久久久水蜜桃国产精品网| 国产av一区在线观看免费| 亚洲第一av免费看| 精品久久蜜臀av无| 女人高潮潮喷娇喘18禁视频| 精品一区二区三区四区五区乱码| 99久久久亚洲精品蜜臀av| 国产成人影院久久av| 女性被躁到高潮视频| 叶爱在线成人免费视频播放| 欧美乱码精品一区二区三区| 国产精品自产拍在线观看55亚洲| 亚洲午夜理论影院| 日韩视频一区二区在线观看| 国产亚洲精品综合一区在线观看 | 久久影院123| 精品一品国产午夜福利视频| 久久欧美精品欧美久久欧美| www.www免费av| 曰老女人黄片| 51午夜福利影视在线观看| 热re99久久国产66热| 国产精品一区二区三区四区久久 | 亚洲久久久国产精品| 美女扒开内裤让男人捅视频| 波多野结衣av一区二区av| 欧美日韩福利视频一区二区| 每晚都被弄得嗷嗷叫到高潮| 欧美乱妇无乱码| 亚洲av五月六月丁香网| 国产成人精品无人区| 美国免费a级毛片| 午夜福利免费观看在线| 9191精品国产免费久久| 俄罗斯特黄特色一大片| 成人永久免费在线观看视频| 欧美日韩亚洲综合一区二区三区_| 黄色毛片三级朝国网站| videosex国产| 91在线观看av| 午夜福利在线免费观看网站| 在线观看舔阴道视频| 露出奶头的视频| 脱女人内裤的视频| 国产精品九九99| 黄色怎么调成土黄色| 亚洲第一青青草原| 黄色a级毛片大全视频| 国产91精品成人一区二区三区| 免费av中文字幕在线| 国产精品香港三级国产av潘金莲| www.精华液| av在线播放免费不卡| 99久久综合精品五月天人人| 国产不卡一卡二| 成熟少妇高潮喷水视频| 亚洲片人在线观看| 亚洲精品国产色婷婷电影| 国产不卡一卡二| 亚洲欧美精品综合久久99| 亚洲国产精品999在线| 在线av久久热| 美女午夜性视频免费| 国产精品亚洲av一区麻豆| 免费看a级黄色片| 久久这里只有精品19| 欧美一区二区精品小视频在线| 久久香蕉激情| 亚洲一区二区三区色噜噜 | 国产精品一区二区精品视频观看| 日韩人妻精品一区2区三区| 老熟妇乱子伦视频在线观看| 老鸭窝网址在线观看| 欧美日韩精品网址| 国产黄色免费在线视频| 妹子高潮喷水视频| 久9热在线精品视频| 国产成人欧美| 三级毛片av免费| 好男人电影高清在线观看| 99热国产这里只有精品6| 老汉色∧v一级毛片| 久久性视频一级片| 国产精品综合久久久久久久免费 | 亚洲第一欧美日韩一区二区三区| 在线观看一区二区三区| 伦理电影免费视频| 日本精品一区二区三区蜜桃| 99精品在免费线老司机午夜| 国产精品爽爽va在线观看网站 | 桃色一区二区三区在线观看| 丁香欧美五月| 久久久国产一区二区| 国产不卡一卡二| 国产成人啪精品午夜网站| 久久精品aⅴ一区二区三区四区| 午夜成年电影在线免费观看| 亚洲精品一二三| 黄片播放在线免费| 国产精品九九99| 男男h啪啪无遮挡| 亚洲av日韩精品久久久久久密| 热re99久久国产66热| 午夜福利在线免费观看网站| 亚洲自偷自拍图片 自拍| 久久精品国产亚洲av高清一级| 日韩精品中文字幕看吧| 午夜福利在线观看吧| 精品少妇一区二区三区视频日本电影| 一区二区三区精品91| 身体一侧抽搐| 热99re8久久精品国产| av天堂在线播放| 性欧美人与动物交配| 国产真人三级小视频在线观看| 熟女少妇亚洲综合色aaa.| 在线观看一区二区三区| 国产aⅴ精品一区二区三区波| 99精品欧美一区二区三区四区| 看免费av毛片| 国产av精品麻豆| 两性午夜刺激爽爽歪歪视频在线观看 | 伦理电影免费视频| 十八禁网站免费在线| av国产精品久久久久影院| 欧美日韩中文字幕国产精品一区二区三区 | 正在播放国产对白刺激| 天堂动漫精品| 精品卡一卡二卡四卡免费| 91av网站免费观看| av免费在线观看网站| 国产成人影院久久av| 欧美亚洲日本最大视频资源| 免费在线观看亚洲国产| 亚洲国产看品久久| 两个人看的免费小视频| 久久久久久久午夜电影 | 母亲3免费完整高清在线观看| 少妇 在线观看| 欧美成狂野欧美在线观看| 欧美一区二区精品小视频在线| 午夜精品久久久久久毛片777| 在线观看www视频免费| 母亲3免费完整高清在线观看| 麻豆一二三区av精品| 亚洲片人在线观看| 中文欧美无线码| 免费一级毛片在线播放高清视频 | 男人舔女人下体高潮全视频| 欧美成狂野欧美在线观看| 美女国产高潮福利片在线看| 日韩视频一区二区在线观看| 久久国产精品人妻蜜桃| 天天影视国产精品| 一进一出抽搐动态| 国产视频一区二区在线看| 一夜夜www| 99国产精品99久久久久| 99热只有精品国产| 精品久久久久久成人av| 乱人伦中国视频| 国产精品偷伦视频观看了| 欧美不卡视频在线免费观看 | 精品国产一区二区久久| 日韩中文字幕欧美一区二区| 亚洲av熟女| 亚洲精品成人av观看孕妇| 欧美日韩视频精品一区| 亚洲伊人色综图| 人妻久久中文字幕网| 亚洲成人国产一区在线观看| 看黄色毛片网站| 久久99一区二区三区| 国产精品亚洲一级av第二区| 99久久国产精品久久久| 午夜福利欧美成人| 精品一区二区三区av网在线观看| 久久久精品欧美日韩精品| 一边摸一边抽搐一进一出视频| 18禁裸乳无遮挡免费网站照片 | 国产1区2区3区精品| 国产亚洲精品久久久久5区| 国产精品免费视频内射| 久99久视频精品免费| 亚洲国产毛片av蜜桃av| 丰满迷人的少妇在线观看| 亚洲精品粉嫩美女一区| 色婷婷久久久亚洲欧美| 欧美精品一区二区免费开放| 国产av在哪里看| www.精华液| 长腿黑丝高跟| 99国产精品一区二区三区| 又大又爽又粗| 久久欧美精品欧美久久欧美| 午夜福利免费观看在线| 精品久久久精品久久久| 这个男人来自地球电影免费观看| 亚洲五月色婷婷综合| 久久精品91无色码中文字幕| 级片在线观看| 精品久久久精品久久久| 91成年电影在线观看| 一级毛片高清免费大全| 一二三四社区在线视频社区8| 国产精品永久免费网站| 一区二区日韩欧美中文字幕| 精品久久久久久成人av| 99re在线观看精品视频| 中出人妻视频一区二区| 成人三级黄色视频| 最新在线观看一区二区三区| 国产三级在线视频| 亚洲一区高清亚洲精品| 成人三级黄色视频| 精品欧美一区二区三区在线| 国产又爽黄色视频| 精品日产1卡2卡| 精品国产一区二区三区四区第35| www国产在线视频色| 免费少妇av软件| 欧美成人免费av一区二区三区| 天天影视国产精品| 成人亚洲精品av一区二区 | 99精品久久久久人妻精品| 每晚都被弄得嗷嗷叫到高潮| 中文字幕人妻熟女乱码| 91字幕亚洲| 老司机午夜十八禁免费视频| 午夜影院日韩av| 中文字幕色久视频| 婷婷六月久久综合丁香| 啦啦啦在线免费观看视频4| 狠狠狠狠99中文字幕| 色哟哟哟哟哟哟| 国产成人欧美在线观看| www.999成人在线观看| 老司机深夜福利视频在线观看| 亚洲人成电影观看| 久久久国产欧美日韩av| 丰满迷人的少妇在线观看| 久久中文字幕一级| 少妇 在线观看| 欧美成狂野欧美在线观看| 国产一区二区三区视频了| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美日韩亚洲高清精品| 后天国语完整版免费观看| 亚洲成人久久性| 热99re8久久精品国产| 日本五十路高清| 操美女的视频在线观看| 亚洲国产毛片av蜜桃av| 久久草成人影院| 在线视频色国产色| 91麻豆av在线| 婷婷六月久久综合丁香| 最近最新中文字幕大全电影3 | 多毛熟女@视频| 久久中文看片网| 精品国内亚洲2022精品成人| 久久久国产精品麻豆| 午夜91福利影院| 日本免费a在线| 欧美日韩精品网址| 午夜免费激情av| 999久久久精品免费观看国产| 久9热在线精品视频| 波多野结衣高清无吗| 成人亚洲精品av一区二区 | 欧美性长视频在线观看| 欧美人与性动交α欧美精品济南到| 日韩 欧美 亚洲 中文字幕| 淫妇啪啪啪对白视频| 俄罗斯特黄特色一大片| 欧美日韩黄片免| 成人亚洲精品av一区二区 | 高清欧美精品videossex| tocl精华| 亚洲精品久久成人aⅴ小说| 色播在线永久视频| 男人的好看免费观看在线视频 | 久久人人爽av亚洲精品天堂| 亚洲国产精品一区二区三区在线| 999久久久国产精品视频| 国产片内射在线| 中文字幕另类日韩欧美亚洲嫩草| 亚洲国产欧美日韩在线播放| 欧洲精品卡2卡3卡4卡5卡区| 成在线人永久免费视频| 不卡一级毛片| 午夜成年电影在线免费观看| 黄色视频,在线免费观看| 国产无遮挡羞羞视频在线观看| 成熟少妇高潮喷水视频| 午夜福利免费观看在线| 日韩中文字幕欧美一区二区| 色综合欧美亚洲国产小说| 亚洲精品国产精品久久久不卡| 黄色成人免费大全| 久久久国产成人精品二区 | 欧美激情久久久久久爽电影 | 黑人操中国人逼视频| 久久午夜亚洲精品久久| 亚洲精品久久成人aⅴ小说| 韩国av一区二区三区四区| 亚洲色图 男人天堂 中文字幕| 精品一品国产午夜福利视频| 黑人操中国人逼视频| 国产av又大| 黄色女人牲交| 免费在线观看视频国产中文字幕亚洲| av福利片在线| a级片在线免费高清观看视频| 欧美性长视频在线观看| 国产成人一区二区三区免费视频网站| 男人舔女人下体高潮全视频| 黄片播放在线免费| 嫩草影院精品99| 九色亚洲精品在线播放| 国产欧美日韩一区二区精品| 欧美日本亚洲视频在线播放| 久久久久久久久免费视频了| 啪啪无遮挡十八禁网站| 久久人人精品亚洲av| 高潮久久久久久久久久久不卡| a级毛片在线看网站|