• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A new dynamic subgrid-scale model using artificial neural network for compressible flow

    2022-12-19 03:34:32HanQiXinliangLiNingLuoChangpingYu

    Han Qi , Xinliang Li , Ning Luo , , Changping Yu a,

    a LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

    b School of Engineering Science, University of Chinese Academy of Sciences, Beijing 10 0 049, China

    c State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology, Xuzhou 221116, China

    Keywords: Subgrid-scale kinetic energy Eddy-viscosity model Compressible flow

    ABSTRACT The subgrid-scale (SGS) kinetic energy has been used to predict the SGS stress in compressible flow and it was resolved through the SGS kinetic energy transport equation in past studies. In this paper, a new SGS eddy-viscosity model is proposed using artificial neural network to obtain the SGS kinetic energy precisely, instead of using the SGS kinetic energy equation. Using the infinite series expansion and reserving the first term of the expanded term, we obtain an approximated SGS kinetic energy, which has a high correlation with the real SGS kinetic energy. Then, the coefficient of the modelled SGS kinetic energy is resolved by the artificial neural network and the modelled SGS kinetic energy is more accurate through this method compared to the SGS kinetic energy obtained from the SGS kinetic energy equation. The coefficients of the SGS stress and SGS heat flux terms are determined by the dynamic procedure. The new model is tested in the compressible turbulent channel flow. From the a posterior tests, we know that the new model can precisely predict the mean velocity, the Reynolds stress, the mean temperature and turbulence intensities, etc.

    Large-eddy simulation (LES) has been widely used in predicting turbulence and gradually applied to high Reynolds number cases. In LES, the eddy-viscosity model is a very popular model due to its strong stability. The Smagorinsky model (SM) [1] is most pop- ular eddy-viscosity model and is used to many different cases, but the SM shows excessive dissipation and cannot predict the tran- sitional flow. Thus, many different types of eddy-viscosity models are proposed. The wall-adapting local eddy-viscosity model [2] was proposed by Metais, which shows correct behavior in the near- wall region. Vreman obtained a low dissipation model [3] that can predict transitional flow well. Considering the helicity effects, Yu et al. [ 4,5 ] supplied a new eddy-viscosity model and it was ap- plied to predict compressible transitional flows Qi et al. proposed an eddy-viscosity model based on the vorticity gradient tensor for rotating turbulent flows [6] . The subgrid-scale (SGS) kinetic energy equation model (k-equation model) is also a type of eddy-viscosity model, which was added the SGS kinetic energy equation to ob- tain the eddy viscosity. Thek-equation model was proposed by Schumann [ 7 ] through dimensional analysis and Yoshizawa [ 8 ] also obtained thek-equation model by the two-scale direct interaction approximation. Then thek-equation model was applied to com- pressible flows [9] . Chai et al. [ 10 ] supplied ak-equation model where the SGS terms in the equation are modelled independently and the coefficients of the SGS models are determined dynamically . Except for the eddy-viscosity model, the structural model is an important type of SGS models, such as scale-similarity model and gradient model. The scale-similarity model was obtained based on the scale-similarity hypothesis [11] . The gradient model is derived from Taylor expansions for SGS stress [ 12 , 13 ]. The structural model has a high correlation with the real SGS stress but is unstable.

    In addition, some LES methods have been introduced to help improving the predicting effects in LES. Using the Germano iden- tity, Germano et al. [ 14 ] supplied the dynamic procedure which can dynamically determine the coefficient of the SGS models. Then, Lilly [ 15 ], Ghosal et al. [ 16 ] and Meneveau et al. [ 17 ] obtained a scale-dependent dynamic SGS model and generalized the dy- namic procedure to any scalar flux model. Except for the dynamic methods, some other LES methods have been proposed recently. Chen et al. [ 18 ] suggested to constrain the SGS stress model by Reynolds stress for LES of incompressible wall-bounded turbulence to improve the prediction of the averaged quantities, and then Jiang et al. [ 19 ] generalized this method to compressible cases. Do- maradzki et al. [ 20 ] proposed a new method where the total SGS energy transfer is used to constrain the SGS models and update model constants.

    Recently, artificial neural networks (ANNs) have been increas- ingly applied to develop turbulence models [ 21 ]. Ling et al. [ 22 ] supplied a new Reynolds stress anisotropic tensor through a new multiplicative-layer neural network with an invariant tensor firstly, which can obtain obvious improvement in simulation result. Us- ing machine learning and through optimal evaluation theory anal- ysis, Vollant et al. [ 23 ] obtained a new SGS scalar flux model which can predict results much closer to the DNS results. With the ANN method, Xie et al. [ 24 ] supplied the coefficients of the mixed model which combined the Smagorinsky model and the gradient model for compressible isotropic turbulence and the new method have better behaviours than the traditional LES models. Through the relationship between the resolved-scale velocity gradient ten- sor and the SGS stress tensor, Zhou et al. [ 25 ] proposed a new SGS model using the ANN method for isotropic turbulence. Park and Choi [ 26 ] obtained an SGS model for LES of turbulent channel flows using a fully connected neural network . The new model can have good performance and is not affected by the grid resolution Yuan et al. [27] .

    In this paper, a new dynamic eddy-viscosity model (NDKM) is proposed for LES of compressible flow. In this new model, the eddy-viscosity is supplied by the SGS kinetic energy, which is ob- tained by the infinite series expansion. And the coefficient of the modelled SGS kinetic energy is determined by the artificial neural network.

    Filter the Navier-Stokes (N-S) equations and the filtered N-S equations for compressible in LES can be written as

    And(ˉ·)represents spatial filtering with a low-pass filter at scaleΔandrepresents density-weighted (Favre) filteringIn the filtered N-S equations,andare the filtered den- sity, velocity, pressure and total energy, respectively. The filtered pressure is determined by, whereRis the specific gas constant. In the equations,Pris the molecular Prandtl number and the molecular viscosityμtakes the formac- cording to Sutherland’s law, in whichTsis 110.3 K, the Reynolds numberRetakes the formRe=ρ∞U∞L/μ∞.

    Based on Boussinesq type hypothesis, the eddy-viscosity model can be written as

    For the SGS heat flux model, the commonly used SGS diffusion model is as

    andPrsgsis the SGS Prandtl number.

    In the compressible dk-equation model, the modelled SGS stress and SGS heat flux can be written as

    In compressible dk-equation model,ksgsis solved by the SGS ki- netic energy equation. In the following, we will introduce another method to obtainksgs.

    First, we introduce the infinite series expansion [28] as

    where

    In Eq. (17) ,G(x,y) is the kernel of the filter and designated as the box filter inaprioriand the grid filter inaposterior.

    When applying the infinite series expansion to SGS kinetic en- ergy, one can obtain

    where Ckis the coefficient andΔkis the grid width in thexkdi- rection.

    For avoiding the complexity of additional boundary conditions and due to the other higher-order terms are small enough com- pared to the first term, we only reserve the first term and it can be expressed as

    For obtaining the coefficientCk, we will use artificial neural net- work in the next part.

    The coefficientCsandPrsgsare determined dynamically by the Germano identity. For any terma=, we assume thatA=holds on the test filter level, wheredenotes test filter- ing. The Germano identity is then defined byL=A?Assume that the model foraisa=Cm, wheremis a function of the resolved (grid filter level) quantities; then at the test filter level,A=CM, whereMtakes similar form tombut is a function of the test-filtered quantities. Substituting the models forAanda, the Germano identity becomes

    The model coefficientCcan be solved dynamically as

    The coefficientCvaries with time and space. To avoid compu- tational instability,Cis regularized using a combination of least- square method and volume averaging. For the coefficient of SGS stressCsis

    where

    For the coefficient of SGS heat flux model, it can be determined dynamically as

    where

    In our study, we use an ANN to construct the coefficientCkin compressible turbulent channel flow. The data selected for train- ing and testing in this study are obtained from the direct numeri- cal simulation (DNS) data of a temporally compressible isothermal- wall turbulent channel flow [29] . In this case, the Mach num- berMa= 1.5 , the Reynolds numberRe= 30 0 0 , and the friction Reynolds numberReτ=uτδ/ν= 220 (uτandδare the friction ve- locity and the half width of the channel). The computation domain for the DNS of channel flow is a box with a size of 4 π×2 ×4/3 π, and the grids for DNS are 900 ×201 ×300 andΔz+= 3 ×0.32 ×3 , whereandare the mesh spacings of wall units in streamwise, wall-normal, and spanwise directions. During the course of training and test- ing, the DNS data are filtered in streamwise and spanwise direc- tions with a box filter. The input features of the ANN are critical to the performance of predicting the coefficientCk. A set of in- put variables are dimensionless quantities, where several variables may be selected in compressible wall-bounded turbulence, such asΔ+,y+,ReΔ, and. In this paper,is the nor- malized filter width,is the dimensionless normal distance,ReΔ=is the mesh Reynolds number, and. The filtered wall friction ve- locity isis the wall shear stress and 〈·〉 is denoted as the spatial average along the homogeneous directions. Figure 1 shows schematic diagram of the artificial neu- ral network for predicting the model coefficientsCk. Table 1 shows a set of inputs and outputs for different ANN models. In this pa- per, a total of four layers (an input layer, two hidden layers and an output layer) with neurons in the ratioM: 100: 100: 1 andMis the number of input variables listed in Table 1 . The activa- tion functions of the hidden layers and output layer are the hy- perbolic tangent function (σh(x)=(ex?e?x)/(ex+ e?x)) and lin- ear function (σo(x)=x). The mean-squared error (MSE) function is chosen as the loss function of the ANNwhereanddenote the true and predicted values of the ANN.)

    Table 1 A set of inputs and outputs for different ANN models.

    In this study, we select 2 ×104samples from 20 snapshots of the filtered DNS data with a ratio of the filter width Δ/ ΔDNSrang- ing from 2 to 20 (Δ/ ΔDNS∈ {2, 4, …, 20}). The cross-validation strategy is used and the dataset is divided into a training set and testing set to suppress parameter overfitting of the ANN. We randomly extract seventy percent of the samples from the total dataset and are used as the training set, while the others are used for testing. The weights of the ANN are initialized by the Glorot- uniform algorithm and optimized by the Adam algorithm [30] for 1 ×104iterations, with a batch size and learning rate of 10 0 0 and 0.01, respectively. To determine the optimal hyperparameters, such as the numbers of layers and neurons and the types of activation functions, we choose the grid search method as the hyperparame- ter pruning method of the ANN.

    For seeing the rationality of the selected hyperparameters, in Table 2 , we supply the correlation coefficientC(Ck), the relative er- rorEr(Ck), and the ratio of the root-mean-square valueR(Ck), which are defined, respectively, as

    Table 2 Correlation coefficient(C), relative error(Er), and ratio of root-mean-square value

    From the results in Table 2 , we know that the selected hyper- parameters are reasonable and the ANN models are well trained.

    (R) of the coefficientCkin different datasets for different ANN models.

    Figure 2 shows comparisons of the coefficientCkreconstructed by different ANN models along the normal direction with different filter widths. From the figures, we know that the modelled SGS kinetic energy modified by the ANNs models can have similar re- sults and have good agreement with the DNS results. We choose the ANN3 model in the following testing because the ANN3 model has the best behaviours in the three ANN models.

    In this section, the new model is tested in compressible turbu- lent channel flow. The case setting of the LES in this part is same as that of the DNS in previous part. The governing equations are solved by a high-precision non-dimensional finite difference solver in Cartesian coordinates: the third-orderR- scheme is chosen as the time integrating method, and a sixth-order central difference scheme is used for the discretization of both the convective and viscous terms. The grid filter width isΔ=(ΔxΔyΔz)1/3withΔx,ΔyandΔzrepresenting the local grid width, and the test-filter width is set as 2Δ. Table 3 shows the grid setting and the main pa- rameters for the simulations in the compressible turbulent channel flow.

    Table 3 The grid setting and the main parameters for the simulations in the compressible turbulent channel flow (Ma = 1 . 5 and Re = 30 0 0).

    Figure 3 shows the profiles of Van Driest transformed mean velocityand the mean temperature=(Tw?〈T〉)/Tτobtained from DNS, the NDKM and the dk-equation model.Tτ=BqTwis the friction temperature,is the nondimensional heat flux, andqwis the wall-normal heat flux. From the figures, we know that the NDKM can have perfect agreement with the DNS results, but the dk-equation model shows deviations aty+>30.

    The profiles of the total Reynolds stress and the total turbu- lent heat flux from DNS and different SGS models are shown in Fig. 4 . In Fig. 4 a, the NDKM can have perfect behavior at almost regions but the dk-equation model shows worse results. In Fig. 4 b, the NDKM has good performance but the results from the NDKM are a little higher than results from DNS at 15

    Fig. 1. Schematic diagram of the artificial neural network for predicting the model coefficient C k .

    Fig. 2. Comparisons of the coefficient C k reconstructed by different ANN models along the normal direction with different filter widths: (a) Δ/ ΔDNS = 4 ; (b) Δ/ ΔDNS = 8 ; (c) Δ/ ΔDNS = 12 ; (d) Δ/ ΔDNS = 16 (the Model in the pictures means that C k is 1/12 and.

    Fig. 3. The profiles of Van Driest transformed mean velocity and the mean temperature from different SGS models and results from DNS is as comparison (‘Coleman et al.’ is data from Coleman et al. [29]).

    Fig. 4. The profiles of the total Reynolds stress normalized by ρw and u τ, and the total turbulent heat flux normalized by ρw , u τand T w from DNS and different SGS models.

    The profiles of the resolved turbulence intensities from DNS, the NDKM and dk-equation model are shown in Fig. 5 a, 5b and 5c. From the figures, we know that the NDKM shows better predic- tions than the dk-equation at almost regions. Figure 5 d shows the turbulent kinetic energy from DNS and different SGS models. In the figure, we know that the NDKM can well predict the total tur- bulent kinetic energy and the SGS part. We also can infer that the NDKM can obtain better SGS kinetic energy than the dk-equation model.

    Fig. 5. The profiles of the resolved turbulence intensities normalized by the friction velocity u τand the turbulent kinetic energy from DNS and different SGS models: (a) Streamwise turbulence intensity; (b) Wall-normal turbulence intensity; (c) Spanwise turbulence intensity; (d) The turbulent kinetic energy.

    Fig. 6. The profiles of the resolved RMS density fluctuations normalized by averaged density ρa(bǔ) v , and the resolved RMS temperature fluctuations normalized by averaged temperature T a v from DNS and different SGS models: (a) density fluctuations; (b) temperature fluctuations.

    Fig. 7. The profiles of the van Driest transformed mean velocity U vd and mean temperature T+ av obtained from different SGS models and DNS. The DNS results are from Coleman et al. [29] .

    Fig. 8. The profiles of the total Reynolds stress and the turbulent heat flux normalized by ρw , u τand T w from different SGS models and DNS. The DNS results are from Coleman et al. [29] .

    Figure 6 shows that the profiles of the resolved RMS density fluctuations and the resolved RMS temperature fluctuations from DNS and different SGS models. From the figures, we know that the NDKM can well predict the resolved RMS density fluctuations and the resolved RMS temperature fluctuations. The dk-equation model can also show good behaviours but still behaves a little worse than the NDKM.

    Next, we will test the new model in the case ofMa= 3.0 andRe= 4880 . The size of the computational domain, the Prandtl numberPr, the boundary conditions, the ratio of specifific heats and the setting of LES solver are the same with the case ofMa= 1.5 andRe= 30 0 0 . The grid setting and the main parameters for this case are shown in Table 4 .

    Table 4 The grid setting and the main parameters for the simulations in the compressible turbu- lent channel flow (Ma = 3 . 0 and Re = 4880).

    Figure 7 shows the profiles of the Van Driest transformed mean velocity U vd and mean temperatureT+av obtained from different SGS models and DNS. Figure 8 shows the profiles of the total Reynolds stress and the turbulent heat flux from different SGS models and DNS. From the figures, we can see that the NDKM can also obtain better results than dk-equation model in the case of higher Mach number.

    In this paper, we propose a new eddy-viscosity model for large- eddy simulation of compressible flow. In this new model, the eddy viscosity is obtained by the subgrid-scale kinetic energy. The SGS kinetic energy is an unclosed term and for resolving this quan- tity, we apply the infinity series expansion to it. Since the other higher-order terms are small enough compared to the first term, and for avoiding the complexity of additional boundary conditions, the first term of the expanded quantity is reserved as the modelled SGS kinetic energy. And the coefficient of the modelled SGS kinetic energy is determined by the artificial neural network. The coef- ficients of the eddy-viscosity model are determined dynamically by the Germano identity. The new model is tested in compress- ible turbulent channel flow and it shows that the new model can show better behavior than the dynamic SGS kinetic energy equa- tion model, including the mean velocity profile, the mean temper- ature profile, the RMS quantities, the total Reynolds stress and the turbulent heat flux, etc. Compared to the SGS kinetic energy equa- tion model, the NDKM can obtain precise SGS kinetic energy and has higher computational efficiency.

    In summary, a new SGS eddy-viscosity model is proposed using the artificial neural network to predict the SGS kinetic energy for LES of compressible flow, and it can present good results. In future researches, the new model will be applied to high Mach number flows in complex geometries.

    Declaration of Competing Interest

    The authors declare that they have no competing interests and all author(s) read and approved the final manuscript.

    Acknowledgements

    This work was supported by the National Key Research and Development Program of China (Grant Nos. 2020YFA0711800 , 2019YFA0405302) and NSFC Projects (Grant Nos. 12072349, 91852203), National Numerical Windtunnel Project, Science Chal- lenge Project (Grant No. TZ2016001), and Strategic Priority Re- search Program of Chinese Academy of Sciences (Grant No. XDC010 0 0 0 0 0). The authors thank the National Supercomputer Center in Tianjin (NSCC-TJ) and the National Supercomputer Center in GuangZhou (NSCC-GZ) for providing computer time .

    www日本在线高清视频| 狂野欧美白嫩少妇大欣赏| 国产精品九九99| www日本黄色视频网| 欧美av亚洲av综合av国产av| 日韩欧美精品v在线| 日本免费一区二区三区高清不卡| 成人av一区二区三区在线看| 夜夜看夜夜爽夜夜摸| 国产亚洲精品av在线| 黑人操中国人逼视频| 色老头精品视频在线观看| 日韩精品青青久久久久久| 免费电影在线观看免费观看| 狠狠狠狠99中文字幕| 久99久视频精品免费| 久久伊人香网站| 啦啦啦韩国在线观看视频| 麻豆成人av在线观看| 人人妻人人澡欧美一区二区| 亚洲熟妇中文字幕五十中出| 亚洲国产精品成人综合色| 中文字幕精品亚洲无线码一区| 制服人妻中文乱码| 国产精品一区二区三区四区免费观看 | 国产成人精品无人区| 91在线精品国自产拍蜜月 | 我要搜黄色片| 久久久国产精品麻豆| 久久中文字幕一级| 亚洲欧美日韩卡通动漫| 国产成人精品无人区| 99久久无色码亚洲精品果冻| 免费观看人在逋| 日本免费a在线| 日本 欧美在线| 一进一出抽搐动态| 久久这里只有精品19| 国产真实乱freesex| 国产精品美女特级片免费视频播放器 | 日韩欧美在线二视频| 法律面前人人平等表现在哪些方面| 国产久久久一区二区三区| 日本在线视频免费播放| 九色国产91popny在线| 精品一区二区三区av网在线观看| 欧美高清成人免费视频www| 超碰成人久久| 亚洲色图av天堂| 国产乱人伦免费视频| 亚洲乱码一区二区免费版| 97人妻精品一区二区三区麻豆| 日韩精品青青久久久久久| 99久久精品热视频| 欧美在线一区亚洲| 午夜精品在线福利| 国产97色在线日韩免费| 欧美极品一区二区三区四区| 国产精品 国内视频| 国产伦人伦偷精品视频| 18美女黄网站色大片免费观看| 美女cb高潮喷水在线观看 | 成年女人看的毛片在线观看| 亚洲精品一区av在线观看| 一a级毛片在线观看| 免费高清视频大片| 国产一区二区在线av高清观看| 欧美zozozo另类| 午夜激情福利司机影院| 色尼玛亚洲综合影院| 日韩欧美在线乱码| 丰满人妻熟妇乱又伦精品不卡| 欧美日韩国产亚洲二区| 国产精品久久久久久久电影 | 国产精品亚洲一级av第二区| 国产高潮美女av| 丁香欧美五月| 亚洲av免费在线观看| 国产av不卡久久| 午夜亚洲福利在线播放| 亚洲五月婷婷丁香| 在线免费观看不下载黄p国产 | 黄色丝袜av网址大全| 亚洲av成人精品一区久久| 国产欧美日韩精品一区二区| 欧美绝顶高潮抽搐喷水| 搞女人的毛片| 国产精品一区二区三区四区免费观看 | 国产激情久久老熟女| 欧美中文综合在线视频| 国产av一区在线观看免费| 亚洲精品乱码久久久v下载方式 | 国产成人av激情在线播放| 99热精品在线国产| www日本在线高清视频| 亚洲 国产 在线| 美女大奶头视频| 国产精品日韩av在线免费观看| 观看美女的网站| 亚洲成av人片免费观看| 中文字幕精品亚洲无线码一区| 狂野欧美激情性xxxx| 久久伊人香网站| 黑人操中国人逼视频| 老汉色∧v一级毛片| 2021天堂中文幕一二区在线观| 亚洲精品色激情综合| 亚洲九九香蕉| tocl精华| 亚洲av成人精品一区久久| 一个人看视频在线观看www免费 | 亚洲中文字幕日韩| 午夜福利高清视频| 一区福利在线观看| 日本精品一区二区三区蜜桃| 精品久久久久久久毛片微露脸| 男女之事视频高清在线观看| 久久天躁狠狠躁夜夜2o2o| 毛片女人毛片| x7x7x7水蜜桃| 特大巨黑吊av在线直播| 99精品在免费线老司机午夜| 婷婷亚洲欧美| 欧美日本亚洲视频在线播放| 国产亚洲欧美在线一区二区| 国产成人精品无人区| 亚洲成人久久爱视频| 在线看三级毛片| 亚洲人成伊人成综合网2020| 亚洲欧洲精品一区二区精品久久久| 99久久99久久久精品蜜桃| 老熟妇乱子伦视频在线观看| 在线视频色国产色| 国产一区二区激情短视频| 欧美乱妇无乱码| 久久久久国产一级毛片高清牌| svipshipincom国产片| 91在线观看av| 老司机在亚洲福利影院| 此物有八面人人有两片| 变态另类丝袜制服| 精品一区二区三区视频在线 | 欧美3d第一页| 久久人妻av系列| 国产毛片a区久久久久| 老熟妇仑乱视频hdxx| 久久亚洲精品不卡| 亚洲av日韩精品久久久久久密| 免费观看人在逋| 99riav亚洲国产免费| 欧美中文综合在线视频| 欧美日本视频| 亚洲精品在线美女| 欧美+亚洲+日韩+国产| 午夜a级毛片| 久久久国产精品麻豆| 香蕉国产在线看| 首页视频小说图片口味搜索| 精品久久久久久久久久免费视频| 一二三四在线观看免费中文在| 国产爱豆传媒在线观看| 国产一区二区在线观看日韩 | 一区二区三区高清视频在线| 久久精品aⅴ一区二区三区四区| 深夜精品福利| 日本a在线网址| 美女cb高潮喷水在线观看 | 国产一区二区三区视频了| 久久欧美精品欧美久久欧美| 免费电影在线观看免费观看| 亚洲欧美日韩卡通动漫| 老司机午夜福利在线观看视频| 搡老熟女国产l中国老女人| 三级国产精品欧美在线观看 | 亚洲成a人片在线一区二区| 国产伦精品一区二区三区四那| 国内精品美女久久久久久| 一a级毛片在线观看| 国产黄a三级三级三级人| 亚洲五月天丁香| 久久久水蜜桃国产精品网| 91在线精品国自产拍蜜月 | 亚洲九九香蕉| 国产精品亚洲av一区麻豆| 亚洲国产精品久久男人天堂| 亚洲午夜精品一区,二区,三区| 中文字幕人成人乱码亚洲影| 男女之事视频高清在线观看| av女优亚洲男人天堂 | 变态另类丝袜制服| 中文字幕精品亚洲无线码一区| 亚洲在线自拍视频| 黑人巨大精品欧美一区二区mp4| avwww免费| av在线蜜桃| 一区二区三区高清视频在线| 亚洲av成人av| 精品欧美国产一区二区三| 欧美黄色淫秽网站| 国产激情欧美一区二区| www日本在线高清视频| 搡老岳熟女国产| 亚洲无线在线观看| 黄色片一级片一级黄色片| 国产成人av激情在线播放| 欧美日韩精品网址| 日本免费一区二区三区高清不卡| 九色成人免费人妻av| 欧美xxxx黑人xx丫x性爽| 国产aⅴ精品一区二区三区波| 日本免费一区二区三区高清不卡| 国产伦人伦偷精品视频| 欧美大码av| 午夜福利高清视频| 日本a在线网址| 熟女少妇亚洲综合色aaa.| 看黄色毛片网站| 2021天堂中文幕一二区在线观| 色播亚洲综合网| 国内精品久久久久久久电影| 精品久久久久久久人妻蜜臀av| 精品电影一区二区在线| 丁香欧美五月| 欧美一区二区国产精品久久精品| 两性夫妻黄色片| 午夜成年电影在线免费观看| 国产亚洲精品一区二区www| 欧美日本亚洲视频在线播放| a级毛片a级免费在线| 美女高潮的动态| 老司机深夜福利视频在线观看| www日本黄色视频网| 床上黄色一级片| 亚洲精品久久国产高清桃花| 久久久久国产一级毛片高清牌| 又黄又爽又免费观看的视频| 美女午夜性视频免费| 亚洲黑人精品在线| 免费看日本二区| 久久午夜综合久久蜜桃| av天堂中文字幕网| 国产不卡一卡二| 亚洲精华国产精华精| 国产av一区在线观看免费| 一区二区三区激情视频| 久久天堂一区二区三区四区| 久久久色成人| 看黄色毛片网站| 人人妻人人澡欧美一区二区| 舔av片在线| 亚洲欧美激情综合另类| 成人精品一区二区免费| 老熟妇仑乱视频hdxx| 99久久精品热视频| 亚洲av日韩精品久久久久久密| 最近在线观看免费完整版| 黑人欧美特级aaaaaa片| 欧美三级亚洲精品| 长腿黑丝高跟| 真人一进一出gif抽搐免费| 久久人妻av系列| 国产一级毛片七仙女欲春2| 国产精品一区二区三区四区久久| 亚洲黑人精品在线| 精品一区二区三区av网在线观看| 成年女人看的毛片在线观看| 99热只有精品国产| 久久草成人影院| 久久久久久人人人人人| 男人的好看免费观看在线视频| 不卡av一区二区三区| 成年女人永久免费观看视频| 国产探花在线观看一区二区| 国产精品免费一区二区三区在线| 欧美日韩亚洲国产一区二区在线观看| 午夜福利18| 成人av在线播放网站| 日本成人三级电影网站| 色播亚洲综合网| 亚洲无线观看免费| 老汉色av国产亚洲站长工具| 99久久成人亚洲精品观看| 日韩成人在线观看一区二区三区| 国内精品久久久久久久电影| 国产亚洲av高清不卡| 性色av乱码一区二区三区2| 国产精品 欧美亚洲| 色老头精品视频在线观看| 一区二区三区高清视频在线| 国产伦精品一区二区三区视频9 | a级毛片a级免费在线| 久久热在线av| 91麻豆精品激情在线观看国产| 99久久综合精品五月天人人| 亚洲欧美日韩无卡精品| 国产视频内射| 好男人电影高清在线观看| 禁无遮挡网站| 一区二区三区激情视频| 国产精华一区二区三区| 国产视频一区二区在线看| 亚洲av熟女| 国产伦在线观看视频一区| 色综合站精品国产| 可以在线观看毛片的网站| 亚洲av免费在线观看| 黄色丝袜av网址大全| 一a级毛片在线观看| 日本黄色片子视频| 午夜福利18| 99热6这里只有精品| 悠悠久久av| a在线观看视频网站| 老熟妇乱子伦视频在线观看| 亚洲国产精品成人综合色| 特级一级黄色大片| 观看美女的网站| 在线观看舔阴道视频| 久久久久久久午夜电影| 久久久久久久久中文| 国产午夜精品久久久久久| 夜夜躁狠狠躁天天躁| 欧美午夜高清在线| 观看免费一级毛片| 99精品欧美一区二区三区四区| 丰满人妻熟妇乱又伦精品不卡| 国产一区在线观看成人免费| 亚洲欧美精品综合久久99| 日本与韩国留学比较| 午夜激情欧美在线| 久久久久亚洲av毛片大全| 亚洲人成电影免费在线| 午夜福利高清视频| 美女 人体艺术 gogo| 亚洲电影在线观看av| 又大又爽又粗| 亚洲人成网站在线播放欧美日韩| 一本久久中文字幕| 国产一级毛片七仙女欲春2| 一本久久中文字幕| 亚洲中文字幕一区二区三区有码在线看 | 99久久精品一区二区三区| 亚洲18禁久久av| 国产精品一区二区免费欧美| 一二三四社区在线视频社区8| 午夜福利欧美成人| 国产精品久久电影中文字幕| 婷婷六月久久综合丁香| 天堂影院成人在线观看| 久久久久久久久久黄片| 国产成人av激情在线播放| 99热只有精品国产| 啦啦啦观看免费观看视频高清| 男女床上黄色一级片免费看| 中文字幕久久专区| 国产亚洲欧美在线一区二区| 9191精品国产免费久久| 日本免费a在线| 亚洲专区字幕在线| 国产一区二区在线av高清观看| 日本一本二区三区精品| 免费高清视频大片| 一级毛片高清免费大全| 国产精品自产拍在线观看55亚洲| 亚洲专区字幕在线| 69av精品久久久久久| 亚洲国产精品合色在线| 免费人成视频x8x8入口观看| 麻豆成人av在线观看| 又大又爽又粗| 日本黄大片高清| 欧美成狂野欧美在线观看| 亚洲精品在线美女| 精品熟女少妇八av免费久了| 久久久久亚洲av毛片大全| 亚洲人成伊人成综合网2020| 亚洲成人精品中文字幕电影| 色av中文字幕| 一进一出好大好爽视频| 两个人看的免费小视频| 国产黄a三级三级三级人| 窝窝影院91人妻| 久久久久久国产a免费观看| 一级毛片高清免费大全| 久久中文字幕人妻熟女| 亚洲国产精品合色在线| 欧美成人一区二区免费高清观看 | 三级毛片av免费| 国产三级中文精品| 国产单亲对白刺激| 国产精品av视频在线免费观看| 国产精品永久免费网站| 99精品欧美一区二区三区四区| 久久久精品大字幕| 色综合站精品国产| 亚洲专区字幕在线| 色播亚洲综合网| 一二三四在线观看免费中文在| 一边摸一边抽搐一进一小说| 999精品在线视频| 一级作爱视频免费观看| 午夜福利在线在线| 精品久久蜜臀av无| 国产精品久久久久久精品电影| 99久久成人亚洲精品观看| 免费电影在线观看免费观看| 日日夜夜操网爽| 淫秽高清视频在线观看| 99国产精品一区二区三区| 亚洲av熟女| 变态另类成人亚洲欧美熟女| 真人一进一出gif抽搐免费| 国内少妇人妻偷人精品xxx网站 | 久久99热这里只有精品18| 天堂影院成人在线观看| 九色成人免费人妻av| 在线国产一区二区在线| 狠狠狠狠99中文字幕| 欧美日韩精品网址| 亚洲成av人片免费观看| 日韩精品青青久久久久久| 国产伦一二天堂av在线观看| 嫩草影视91久久| 日本五十路高清| 国产伦精品一区二区三区视频9 | 九色成人免费人妻av| 日本在线视频免费播放| 亚洲自拍偷在线| 精品无人区乱码1区二区| 日本免费一区二区三区高清不卡| 嫁个100分男人电影在线观看| 超碰成人久久| 九九久久精品国产亚洲av麻豆 | 色尼玛亚洲综合影院| 99re在线观看精品视频| 亚洲成a人片在线一区二区| 精品国产超薄肉色丝袜足j| 桃红色精品国产亚洲av| 欧美三级亚洲精品| 毛片女人毛片| 三级男女做爰猛烈吃奶摸视频| 亚洲性夜色夜夜综合| 精品一区二区三区视频在线 | 国产一级毛片七仙女欲春2| 精品欧美国产一区二区三| 怎么达到女性高潮| 亚洲激情在线av| 亚洲第一欧美日韩一区二区三区| ponron亚洲| 性色avwww在线观看| 超碰成人久久| 视频区欧美日本亚洲| 9191精品国产免费久久| 国产黄a三级三级三级人| 国产人伦9x9x在线观看| 亚洲片人在线观看| 国产毛片a区久久久久| 国产91精品成人一区二区三区| 国产精品久久电影中文字幕| 搡老岳熟女国产| 亚洲一区高清亚洲精品| 国产一区二区三区视频了| 国产精华一区二区三区| 国产亚洲av高清不卡| 久久久久久久精品吃奶| 亚洲自偷自拍图片 自拍| 极品教师在线免费播放| 两性午夜刺激爽爽歪歪视频在线观看| 国产伦精品一区二区三区视频9 | 国产精华一区二区三区| 亚洲国产高清在线一区二区三| 亚洲av熟女| h日本视频在线播放| 欧美成人一区二区免费高清观看 | 99久久无色码亚洲精品果冻| 特级一级黄色大片| or卡值多少钱| 一级毛片高清免费大全| 国产午夜精品久久久久久| 久久热在线av| 色综合亚洲欧美另类图片| 亚洲熟妇熟女久久| 男人和女人高潮做爰伦理| 国产av在哪里看| 亚洲男人的天堂狠狠| 99热只有精品国产| 中文资源天堂在线| 这个男人来自地球电影免费观看| 亚洲国产高清在线一区二区三| 美女 人体艺术 gogo| 国产又色又爽无遮挡免费看| 欧美一级a爱片免费观看看| 99国产综合亚洲精品| 亚洲专区国产一区二区| 国产成人aa在线观看| 97人妻精品一区二区三区麻豆| 午夜久久久久精精品| 久久久国产精品麻豆| 国产精品一区二区三区四区免费观看 | a级毛片在线看网站| 成人av一区二区三区在线看| 特大巨黑吊av在线直播| 一二三四社区在线视频社区8| 国产伦一二天堂av在线观看| 桃红色精品国产亚洲av| 亚洲真实伦在线观看| svipshipincom国产片| 国产一区二区激情短视频| 757午夜福利合集在线观看| 亚洲成av人片免费观看| 欧美av亚洲av综合av国产av| 99热这里只有是精品50| 制服丝袜大香蕉在线| 亚洲中文字幕日韩| bbb黄色大片| 99国产极品粉嫩在线观看| 色视频www国产| av国产免费在线观看| 国产成人啪精品午夜网站| 免费无遮挡裸体视频| 成人永久免费在线观看视频| 欧美成人性av电影在线观看| 网址你懂的国产日韩在线| 一边摸一边抽搐一进一小说| 久久精品91蜜桃| 欧美日韩一级在线毛片| 日本与韩国留学比较| 亚洲男人的天堂狠狠| 国产精品久久久人人做人人爽| 99久久成人亚洲精品观看| 波多野结衣高清作品| 日日摸夜夜添夜夜添小说| 天天添夜夜摸| 婷婷亚洲欧美| 香蕉国产在线看| 日韩欧美国产一区二区入口| 人妻久久中文字幕网| 啦啦啦免费观看视频1| 亚洲成a人片在线一区二区| 久久精品夜夜夜夜夜久久蜜豆| 最新美女视频免费是黄的| 日韩三级视频一区二区三区| 午夜日韩欧美国产| 亚洲精品中文字幕一二三四区| av天堂中文字幕网| 99在线视频只有这里精品首页| 伊人久久大香线蕉亚洲五| 国产单亲对白刺激| 色综合亚洲欧美另类图片| 啦啦啦韩国在线观看视频| 舔av片在线| 亚洲最大成人中文| 免费看十八禁软件| 老熟妇仑乱视频hdxx| 欧美色欧美亚洲另类二区| 国产成人系列免费观看| 特大巨黑吊av在线直播| 久久久成人免费电影| 中文字幕最新亚洲高清| 88av欧美| 波多野结衣巨乳人妻| 国产高清有码在线观看视频| 成人特级黄色片久久久久久久| 精品熟女少妇八av免费久了| av天堂在线播放| 亚洲av电影不卡..在线观看| 一进一出好大好爽视频| 国产在线精品亚洲第一网站| 国产一区二区激情短视频| 亚洲国产欧美网| 日本免费a在线| 免费无遮挡裸体视频| 性色avwww在线观看| 1000部很黄的大片| 老司机午夜十八禁免费视频| 丁香欧美五月| 成人18禁在线播放| 亚洲熟妇中文字幕五十中出| 成人精品一区二区免费| 观看美女的网站| 国产亚洲av高清不卡| 非洲黑人性xxxx精品又粗又长| 美女午夜性视频免费| 校园春色视频在线观看| 国产91精品成人一区二区三区| 特级一级黄色大片| 精品熟女少妇八av免费久了| 他把我摸到了高潮在线观看| 搡老熟女国产l中国老女人| 午夜精品在线福利| 日本 av在线| 日韩欧美在线乱码| 亚洲成av人片免费观看| avwww免费| 欧美乱码精品一区二区三区| 亚洲色图 男人天堂 中文字幕| 国产不卡一卡二| netflix在线观看网站| 午夜精品在线福利| 男女做爰动态图高潮gif福利片| 好看av亚洲va欧美ⅴa在| 麻豆国产av国片精品| 久久这里只有精品中国| 国产熟女xx| 别揉我奶头~嗯~啊~动态视频| 国产精品久久久久久精品电影| 亚洲自偷自拍图片 自拍| 在线观看日韩欧美| 国产91精品成人一区二区三区| 成人高潮视频无遮挡免费网站| 中文字幕精品亚洲无线码一区| 国产成年人精品一区二区| 国语自产精品视频在线第100页| 最新在线观看一区二区三区| 亚洲熟妇熟女久久|