• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A flexible hard carbon microsphere/MXene film as a high-performance anode for sodium-ion storage

    2022-12-13 08:03:34CAOHailiangYANGLiangtaoZHAOMinLIUPeizhiGUOChunliXUBingsheGUOJunjie
    新型炭材料 2022年6期

    CAO Hai-liang, YANG Liang-tao, ZHAO Min, LIU Pei-zhi,GUO Chun-li, XU Bing-she,3, GUO Jun-jie

    (1.Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education,Taiyuan University of Technology, Taiyuan 030024, China;2.Shenzhen Institute of Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China;3.Materials Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology, Xi'an 710021, China)

    Abstract: Hard carbon is considered the most promising anode material for sodium-ion batteries, but its volume change during sodiation/desodiation limits its cycle life.Hard carbon microspheres (HCSs) with no binder were composited with a MXene film to form an electrode and its sodium storage properties were studied.The microspheres were prepared using Shanxi aged vinegar as a liquid carbon source.Two-dimensional Ti3C2Tx MXene (T is a functional group) was used as a multifunctional conductive binder to fabricate the flexible electrodes.Remarkably, because of the three-dimensional conductive network, the HCS/Ti3C2Tx film electrode has a high capacity of 346 mAh g?1, excellent rate performance and outstanding cycling stability over 1 000 cycles.This remarkable electrochemical performance indicates that the flexible film is a very promising anode for next-generation sodium-ion batteries.

    Key words: Sodium-ion batteries;Hard carbon microspheres;MXene;Anode;Flexibility

    1 Introduction

    Lithium-ion batteries (LIBs) have been the leading chemical power source because of their advantages in energy density, power density, and cycling life[1–2].However, the uneven distribution of lithium resource risks the supply chain of raw materials for LIBs, especially for stationary energy storage[3].Consequently, sodium-ion batteries (SIBs) have been considered as an important complement system to LIBs due to the earth abundant sodium resource and the same rocking-chair storage mechanism[4–6].However,the advanced materials of LIBs are not effectively in accordance with that of SIBs because of the difference in size and local environment between Li+and Na+.The sodium ion (0.102 nm) has a larger radius than that of lithium ion (0.076 nm), resulting in the sluggish diffusion kinetics[7–8].To date, extensive efforts have been devoted to explore cathode materials for SIBs, including layered transition metal oxides,prussian blue analogs, and polyanionic compounds[9–11].However, exploring high-performance anode materials is still challenging.

    Several materials have been studied as negative electrode for SIBs, such as carbonaceous materials, alloys, metal oxides/sulfides and phosphates[12–16].Metal oxide and alloy electrodes usually show poor cycling durability because of their large volume expansion during the sodiation/desodiation processes[17–18].Among various negative electrode materials, hard carbon (HC) has been recognized as a promising negative electrode material for sodium ion storage[19–20].Until now, HCs from different precursors have been reported, including biomass wastes, carbohydrates and polymers[21–23].Our group reported a hard carbon microfiber derived from renewable papers, which showed a specific capacity of 319.6 mAh g?1[24].Tirado et al.reported microspherical carbon particles prepared using mixture precursors of resorcinol and formaldehyde, which showed a capacity of 285 mAh g?1[25].However, the undesirable and inactive impurities derived from these precursors as well as irregular geometric morphologies compromise the sodium ion storage performance of HCs[26].

    In addition, MXenes, a family of two-dimensional transition metal carbides and nitrides, have received attractive attentions in energy storage and conversion[27–28].MXenes are considered as promising candidate materials for supercapacitors and secondary rechargeable batteries because of their tunable surface terminations, metallic conductivity, and surface hydrophilicity[29].Moreover, MXenes flakes can be adopted to fabricate free-standing, flexible electrodes,holding a great promise for fabricating flexible devices.The flexible MXene film electrodes can be easily obtained through rolling or vacuum filtration.Recently, Xu et al.studied MXene as a conductive binder to prepare flexible porous composite electrodes for supercapacitors, which show excellent flexibility and electrochemical performance[30].Therefore,it is reasonable to expect that the combination of MXene and HC can not only fabricate free-standing flexible electrodes, but also promote the electrochemical properties of the electrodes, expanding the application of HC.

    We here chose Shanxi aged vinegar as the liquid carbon source to synthesize hard carbon microspheres(HCS) using hydrothermal method followed by subsequent carbonization treatment.The HCS pyrolyzed at 1 400 °C displays the highest specific capacity and good cycling stability.The Ti3C2TxMXene nanosheets were used as multifunctional binder to fabricate flexible and free-standing HCS/MXene(HCS/MX) film electrode with excellent cycling stability.Compared with the conventional PVDF-bonded HCS electrode, the flexible HCS/MX electrode exhibits superior performances in term of capacity,and long cycling ability for SIBs.The results demonstrate that the as-obtained film electrode is a promising negative electrode of SIBs.

    2 Experimental

    2.1 Materials synthesis

    The Shanxi aged vinegar (Donghu) was purchased and used as liquid carbon precursor.80 mL vinegar was placed in a 100 mL autoclave, and treated hydrothermally at 180 °C for 12 h to obtain a black powder.Then, the powder was washed three times using ethanol and DI water, and dried overnight in a vacuum oven.The obtained powder was pyrolyzed at 1 000, 1 200, 1 400 and 1 600 °C respectively, for 2 h with a ramping rate of 3 °C min?1.The resulting materials were labeled as HCS-X, where X is the carbonization temperature.

    The Ti3C2TxMXene used in this work was synthesized by etching MAX phase following the reported method[31].Firstly, 1.85 g of LiF was dissolved in 40 mL 9 mol L?1mixed acid solution (V(HCl)∶V(HF)=37∶3) during stirring process.Then, 1.85 g of Ti3AlC2powder was gradually added into the acidic solution in 15 min.Secondly, the etching reaction run for 24 h at 35 °C in an oil bath.After the etching procedure, DI water was adopted to wash the obtained resultant at 3 500 r min?1until a pH value of 6 was achieved.Then, the sediment was collected after the last centrifugation cycle and sonicated for 30 mins under Ar bubbling.The MXene aqueous solution was collected through centrifugation of the supernatant at 3 500 r/min for 30 min.Finally, the concentration of the MXene aqueous solution was adjusted to 1 mg mL?1for further use.

    The HCS/MX film electrodes were prepared by a vacuum-assisted filtration of the mixture of HCS-1400 and Ti3C2TxMXenes solution.First of all, the HCS-1400 solution dispersed in N,N-dimethylformamide(DMF) with the concentration of 1 mg mL?1was prepared in advance.Then the Ti3C2Txsolution and HCS dispersion were mixed homogeneously at different ratios through ultrasonic treatment.The HCS/MX films were fabricated by vacuum filtration of the mixed dispersion.The flexible film was obtained after dried overnight.The mass ratio of HCS-1400 and Ti3C2Txsolution is 1∶1, 2∶1, and 4∶1.The corresponding film was labeled as HCS/MX-1, HCS/MX-2 and HCS/MX-4, respectively.

    2.2 Materials characterization

    The microstructure was characterized using a Japanese science Ultima Ⅳ X-ray diffraction (XRD)with a CuKα radiation source (40 kV, 100 mA,λ=0.154 178 nm).Raman spectra were examined on a Thermo Fischer DXR spectrometer with a 532 nm laser excitation.Morphology and microstructure investigations were carried out by using the transmission electron microscopy (TEM, JEOL JEM-2010)and scanning electron microscope (SEM, LYRA3 XMH TESCAN).

    2.3 Electrochemical measurements

    CR2032 coin cells were assembled to test the electrochemical properties of HCS and HCS/MX film electrodes.For electrode preparation, a slurry of 80% HCS samples, 10% Super P, and 10% polyvinylidenefluoride (PVDF) binder in N-methylpyrrolidone was casted on the Cu foil, followed by drying at 100 °C for 12 h in a vacuum oven.The HCS/MX films were cut into 12 mm diameter circles, and directly used as working electrodes.A Na foil and glass fiber were used as the counter electrode and separator,respectively.1 mol L?1NaClO4in a mixture of ethylene carbonate and diethyl carbonate (1∶1 in volume)was employed as the electrolyte.The active material of the electrode is ~1.0 mg cm?2.A LAND CT2001 battery test system was used to conduct the charge and discharge tests.Cyclic voltammetry (CV) measurements were carried out on Princeton Applied Research Versa STAT 3 electrochemical workstation.

    3 Results and discussion

    3.1 Morphology and structure of HCS

    In this work, Shanxi aged vinegar was used as liquid carbon source.The HCS material can be obtained through hydrothermal treatment of aged vinegar solution, followed by carbonization treatment.The scanning electron microscope (SEM) image in Fig.1a displays the spherical morphology of HCS-1400 with the size ranges from 2 to 5 μm.Transmission electron microscope (TEM) image (Fig.1b) demonstrates the microstructure of HCS-1400 is primarily amorphous with a few “graphitic” domains.X-ray diffraction (XRD) and Raman spectra were further carried out to study the crystallinity of the samples.Fig.1c shows 2 broad peaks at about 23° and 43°which are assigned to (002) and (100) reflections of graphite, respectively, indicating the disordered structure characteristic of HC[24,32].It is worth noting that the (002) peak shifts to higher angle with the rise of carbonization temperature, demonstrating the smaller interlayer distance (d002).The calculated interlayer distances (d002) by Scherrer equation are 0.389, 0.378,0.371 and 0.362 nm for HCS-1000, HCS-1200, HCS-1400 and HCS-1600, respectively.The Raman spectra (Fig.1d) of disordered carbons normally exhibits a broad peak at around 1 345 cm?1calledD-band(amorphous carbon) and a hump peak at about 1 590 cm?1referred to theGband (crystalline graphite)[33–34].TheID/IGratios of HCS-1000, HCS-1200, HCS-1400 and HCS-1600 were 1.10, 1.15, 1.25 and 1.35, respectively, showing an increasing trend.Moreover,the half width of the 2 bands decreases with increasing carbonization temperature, indicating that the degree of order of carbon layer rises.These Raman results match well with previous reports.

    Fig.1 (a) A representative SEM image of HCS-1400.(b) TEM image of HCS-1400.(c) XRD patterns and (d) Raman spectra of HCS carbonized at different temperatures

    3.2 Electrochemical performance of HCS

    The electrochemical properties of HCS were tested in half cells.Fig.2a shows the first galvanostatic charge/discharge curves of HCS-1000, HCS-1200,HCS-1400, HCS-1600 at a current density of 30 mA g?1with voltage window of 0.01-3.0 V (vs.Na+/Na).HCS-1000 and HCS-1200 exhibit discharge and charge specific capacities of 318.2 and 218.6 mAh g?1, 318.4 and 241.5 mAh g?1, respectively.However, the specific capacities of HCS-1400 electrode increase to 401.8 and 298.2 mAh g?1, corresponding to an initial coulombic efficiency (ICE) of 74.2%.Nevertheless, the capacity of HCS-1600 electrode is only 259 and 201.8 mAh g?1, despite the ICE increases to 78 %.The irreversible capacity mainly assigned to the formation of a solid-state interface film by the side reactions between the electrolyte and the surface functional groups.The discharge capacity is composed of two parts: the plateau capacity below 0.1 V and slope capacity above 0.1 V.As shown in Fig.2b, the slope capacity of HCS-1000 and HCS-1200 is much higher than the plateau capacity.By contrast, the plateau capacity raises from 71 (HCS-1000) and 86 (HCS-1200) mAh g?1to 171.5 mAh g?1for HCS-1400, and then decreased to 100.4 mAh g?1for HCS-1600.According to the previous research,the slope capacity refers to the adsorption and desorption of sodium ions on surface defects, and plateau capacity corresponds to insertion and desertion of sodium ions into graphitic interlayers[8,24,32].

    Fig.2 Electrochemical performances of the HCS electrodes.(a) The first charge/discharge profiles.(b) Slope and plateau capacity contribution.(c) Rate performance of HCS at different current density.(d) Cycling stability of HCS

    Fig.2c manifests the rate performance to evaluate the kinetic activity of HCS electrodes.Surprisingly, HCS-1400 displays the best average rate capabilities than that of other HCS samples.HCS-1400 delivers charge capacities of 299, 257.5 and 193 mAh g?1at 30, 50 and 100 mA g?1, respectively.It can still delivers 64 mAh g?1when the rate elevates to 1000 mA g?1.Importantly, when the current density recovers to 30 mA g?1, the reversible capacity is as high as 283.2 mAh g?1, implying the outstanding stability of hard carbon.The cycle life of HCS samples is evaluated at the current density of 100 mA g?1for 100 cycles.As shown in Fig.2d, the HCS-1400 demonstrated outstanding cycling durability, and its specific capacity can be retained as 193.5 mAh g?1after 100 cycles, corresponding to a capacity retention of 95.8%.It can be found that the HCS-1400 shows excellent electrochemical properties among the hard carbon anode materials.

    3.3 Characterization of HCS/MX

    In addition, Ti3C2TxMXene as a functional binder was adopted to promote the electrochemical properties of HCS.Fig.3a illustrates the fabrication of the HCS/MX film.The MXene-bonded HCS films can be simply prepared by vacuum filtration of the mixture solution of HCS-1400 and Ti3C2Txnanosheets.As expected, the HCS/MX films are flexible, free-standing and can be used as anode electrode directly without binder and current collector.Three ratios of HCS-1400: Ti3C2Txof 1∶1, 2∶1 and 4∶1 were employed, which are labeled as HCS/MX-1, HCS/MX-2,and HCS/MX-4, respectively.Fig.3b displays the TEM image of Ti3C2Txflakes.Ultrathin MXene sheets with size of several micrometers can be observed.Fig.3c presents the XRD patterns of the Ti3C2Txand HCS/MX films.The XRD pattern of pure Ti3C2TxMXene film exhibits a (002) diffraction peak at 2θ=7.24°, corresponding to an interlayer distance of 1.22 nm[35].For the HCS/MX films show the features of both HCS-1400 and MXene.Importantly, the Ti3C2Tx-bonded HCS films are flexible and free-standing, as shown in the inset in Fig.3d.Fig.3d and e show the top and cross-sectional SEM images of the HCS/MX-2 film, respectively.The HCS-1400 microspheres are evenly embedded in the three-dimensional (3D) networks fabricated by Ti3C2Txsheets.This structure is beneficial for the rapid transportation of electron and boosts the stability of the electrode.

    Fig.3 (a) Schematic for the preparation of HCS/MX film.(b) TEM image of MXene nanosheets.Structure characterization of the HCS/MX electrode.(c) XRD patterns, (d) SEM images from top view and (e) cross-sectional view.The insert in (d) is a photo of the flexible HCS/MX film

    3.4 Electrochemical behaviors of HCS/MX

    To evaluate the electrochemical properties of the HCS/MX films electrodes, the flexible films were directly used as working electrodes.Fig.4a and b show the cyclic voltammetry (CV) curves of the initial three cycles at 0.1 mV s?1for the HCS-1400 and HCS/MX-2 electrode.A pair of cathodic and anodic peaks located at 0-0.2 V, corresponding to the insertion/extraction of Na+in the carbon interlayers[24].The overall peak intensity and the stability of the film electrode is better than that of the HCs electrode.Fig.4c presents the first galvanostatic charge/discharge profiles of HCS/MX film electrodes conducted at a 30 mA g?1.The charge and discharge specific capacity of HCS/MX-1 and HCS/MX-4 is 208.7 and 374.7 mAh g?1, 310.8 and 475 mAh g?1, respectively.However, the discharge and charge capacity of HCS/MX-2 is as high as 596.1 and 346 mAh g?1, corresponding to an ICE of 58%.

    Fig.4 Na-storage behavior of HCS/MX film electrodes.(a) CV curves for initial three cycles of HCS-1400 and (b) HCS/MX-2 film.(c) Charge/discharge performance at 30 mA g?1.(d) Rate capability and (e) cycle performance at 200 mA g?1 for all the film electrodes.(f) Cycling stability of HCS/MX-2 film at 500 mA g?1

    The rate capability of the HCS/MX electrodes was investigated at different current rates ranging from 30 to 2 000 mA g?1( Fig.4d).Apparently,HCS/MX-2 presents the best rate capability compared to other electrodes.It shows capacity of 346,313, 283, 239, 185, 139, and 81 mAh g?1at 30, 50,100, 200, 500, 1 000 and 2 000 mA g?1, respectively.Importantly, when the current density gets back to 30 mA g?1, reversible capacity again reaches to 345 mAh g?1, demonstrating the remarkable reversibility.Subsequently, the cycling stability of HC/MX film electrodes is measured at 200 mA g?1for 200 cycles.As shown in Fig.4e, HCS/MX-2 shows superior cycling stability.The 200.6 mAh g?1reversible capacity can be retained after 200 cycles, corresponding to a capacity retention of 99.3%.More importantly,the HCS/MX-2 can even cycle over 1 000 cycles at a high current density of 500 mA g?1(Fig.4f).The obtained reversible capacity at the end of 100, 200, 500,800 and 1 000 cycles is 185, 177, 162, 156 and 155 mAh g?1, respectively, corresponding to a capacity retention of 83.3%.The outstanding cycling durability of the flexible HCS/MX electrode can be mainly attributed to the 3D conductive networks constructed by MXene nanosheets.Furthermore, the SEM images of HCS/MX-2 after 100 cycles also demonstrate the structural stability of the film electrode during the insertion and extraction of Na+(Fig.5).

    Fig.5 SEM images of HCS/MX-2 film from (a) top view and (b) crosssectional view after 100 charge/discharge cycles

    To investigate the kinetics of the electrodes, the HCS/MX-2 electrode was scanned at different scan rates ranging from 0.1 to 1 mV s?1.As presented in Fig.6a, the CV profiles generally behave a similar shape.The integral capacity includes contribution from two parts, namely, Na+insertion/extraction and pseudo-capacitance.The equationi=avbis employed to determine the dominant mechanism, in whichaandbare 2 adjustable parameters values, andvis a scan rate.According to previous report[36], the value ofbcan be obtained by the slope oflog(i) vs.log(v).A value of b close to 0.5 reveals a diffusion-controlled process, while a value of 1.0 suggests an ideal capacitive behavior.As shown in Fig.6b, the value ofbwas calculated to be 0.50 and 0.56 for anodic and cathodic process, respectively, demonstrating a diffusion-controlled process.Based on the reported results, the ratio of capacitive contribution can be calculated using equation[37–38]:i=k1v+k2v1/2, wherek1vandk2v1/2correspond to capacitive and diffusion-controlled process,respectively.As shown in Fig.6c, the HC/MX-2 electrode shows a 44% capacitive contribution at 0.1 mV s?1.However, the proportion of capacitive contribution gradually increases to a maximum value of 75% at 1.0 mV s?1, implying that the most of capacities are mainly controlled by capacitive process at high current density.

    Fig.6 (a) CV curves of HCS/MX-2 film electrode at different scan rates.(b) Relationship between the scan rates and peak currents in logarithmic format.(c) Diffusion and capacitive- controlled contributions

    4 Conclusion

    Monodispersed hard carbon spherules were successfully prepared using Shanxi aged vinegar as the carbon source.The electrochemical properties of the HCS materials as SIBs negative electrodes were investigated.The results suggest that the carbonization temperature has an impact on the electrochemical performances of HCS electrodes.HCS-1400 showed the best electrochemical performance.In addition, we also successfully fabricated the flexible HCS/MX film electrodes using Ti3C2TxMXene as a multifunctional binder.Notably, HCS/MX-2 film electrode exhibits a high specific capacity of 346 mAh g?1, outstanding rate performance and cycling stability.Encouragingly,it retains 200.6 mAh g?1(99.3% capactiy retention)after 200 cycles at a current density of 200 mA g?1.Importantly, the capacity retention reaches 83.3%after 1 000 cycles even at a high current density of 500 mA g?1.These results indicate that the uniquely structured MXene can be empolyed as a binder and structural stabilizer.Such electrodes can be used for flexible SIBs andenhace of the energy density of the devices.

    Acknowledgements

    This work was supported by the National Natural Science Foundation of China (U1810204,U1910210, U21A20174), Natural Science Foundation of Shanxi Province (201901D211046,20210302123115), Special Foundation for Youth San Jin scholars.

    99热网站在线观看| 久久精品夜夜夜夜夜久久蜜豆| 国产精品av视频在线免费观看| 18禁裸乳无遮挡免费网站照片| 日韩,欧美,国产一区二区三区 | 免费电影在线观看免费观看| 99热6这里只有精品| 久久久久久久久久黄片| 亚洲成av人片在线播放无| 免费人成在线观看视频色| 亚洲国产精品久久男人天堂| 国产av一区在线观看免费| 最近最新中文字幕大全电影3| 国产色婷婷99| 国产成人午夜福利电影在线观看| 高清视频免费观看一区二区 | 欧美最新免费一区二区三区| 欧美三级亚洲精品| 久久热精品热| 中文欧美无线码| 免费播放大片免费观看视频在线观看 | 午夜精品一区二区三区免费看| 色视频www国产| 午夜福利成人在线免费观看| 毛片女人毛片| 亚洲va在线va天堂va国产| 国产精品久久久久久av不卡| 午夜福利视频1000在线观看| 噜噜噜噜噜久久久久久91| 91久久精品国产一区二区三区| 亚洲精品色激情综合| 久久精品人妻少妇| 国产在视频线在精品| 成年av动漫网址| 成人亚洲精品av一区二区| 直男gayav资源| 99热6这里只有精品| 韩国av在线不卡| 国产精品久久久久久久久免| 国产乱人偷精品视频| 亚洲在线观看片| 国产又色又爽无遮挡免| 亚洲欧美成人精品一区二区| 日日摸夜夜添夜夜添av毛片| www.av在线官网国产| 夫妻性生交免费视频一级片| 国产一级毛片七仙女欲春2| 亚洲国产高清在线一区二区三| 日韩欧美 国产精品| 亚洲精品乱码久久久久久按摩| 久久99蜜桃精品久久| 亚洲欧美成人综合另类久久久 | 女人被狂操c到高潮| 欧美另类亚洲清纯唯美| 99久久成人亚洲精品观看| 亚洲av成人精品一区久久| 99久久精品一区二区三区| 国产探花极品一区二区| 三级男女做爰猛烈吃奶摸视频| 人妻夜夜爽99麻豆av| 亚洲精品,欧美精品| 2022亚洲国产成人精品| 五月伊人婷婷丁香| 日韩大片免费观看网站 | 精品人妻熟女av久视频| 99热6这里只有精品| 女的被弄到高潮叫床怎么办| 高清在线视频一区二区三区 | 精品人妻偷拍中文字幕| 2021天堂中文幕一二区在线观| 草草在线视频免费看| av又黄又爽大尺度在线免费看 | a级毛色黄片| 亚洲国产精品国产精品| 久久这里有精品视频免费| 久久亚洲国产成人精品v| 三级经典国产精品| 亚洲精品乱码久久久久久按摩| eeuss影院久久| 久久久久久久久久黄片| 免费看美女性在线毛片视频| 91精品伊人久久大香线蕉| 男人和女人高潮做爰伦理| 非洲黑人性xxxx精品又粗又长| 蜜桃亚洲精品一区二区三区| 最近最新中文字幕大全电影3| 青春草视频在线免费观看| 高清视频免费观看一区二区 | 免费观看在线日韩| 亚洲精品,欧美精品| 亚洲av免费在线观看| 热99在线观看视频| 高清日韩中文字幕在线| 欧美性感艳星| 一边摸一边抽搐一进一小说| 热99re8久久精品国产| 亚洲国产精品国产精品| 99久久精品一区二区三区| 黄色配什么色好看| 天堂中文最新版在线下载 | 麻豆精品久久久久久蜜桃| 青春草国产在线视频| 中文字幕免费在线视频6| 大又大粗又爽又黄少妇毛片口| 特级一级黄色大片| 高清午夜精品一区二区三区| 男人舔奶头视频| 亚洲欧洲国产日韩| 变态另类丝袜制服| 最近中文字幕高清免费大全6| 毛片女人毛片| 美女高潮的动态| 亚洲人成网站高清观看| 亚洲国产精品合色在线| 我的老师免费观看完整版| 97人妻精品一区二区三区麻豆| 免费电影在线观看免费观看| 丰满乱子伦码专区| 卡戴珊不雅视频在线播放| 最近2019中文字幕mv第一页| 桃色一区二区三区在线观看| 亚洲精品乱码久久久v下载方式| 国产色婷婷99| 大香蕉久久网| 成年女人看的毛片在线观看| 中文欧美无线码| 丰满人妻一区二区三区视频av| 国国产精品蜜臀av免费| 两个人视频免费观看高清| 男人和女人高潮做爰伦理| 亚洲一区高清亚洲精品| av黄色大香蕉| 国产成人午夜福利电影在线观看| 岛国毛片在线播放| 亚洲成色77777| 永久免费av网站大全| 中文欧美无线码| 日韩欧美三级三区| 天美传媒精品一区二区| 免费观看的影片在线观看| 青春草国产在线视频| 日韩欧美国产在线观看| 久久久欧美国产精品| 日韩,欧美,国产一区二区三区 | or卡值多少钱| 精品久久久久久久末码| 午夜激情福利司机影院| 最近最新中文字幕大全电影3| 伊人久久精品亚洲午夜| .国产精品久久| 欧美日本亚洲视频在线播放| 日韩中字成人| 一边亲一边摸免费视频| 岛国在线免费视频观看| 老司机影院成人| 18禁动态无遮挡网站| 赤兔流量卡办理| 最近中文字幕2019免费版| 2021天堂中文幕一二区在线观| 97超视频在线观看视频| 日本av手机在线免费观看| 欧美色视频一区免费| 精品久久久久久成人av| 免费av观看视频| 精品国产露脸久久av麻豆 | 日韩视频在线欧美| 黄色配什么色好看| 男人舔奶头视频| 丰满人妻一区二区三区视频av| 欧美激情在线99| 麻豆乱淫一区二区| 高清在线视频一区二区三区 | 亚洲精品亚洲一区二区| 免费电影在线观看免费观看| 在线观看美女被高潮喷水网站| 美女内射精品一级片tv| 欧美xxxx性猛交bbbb| 国产综合懂色| 免费看光身美女| 日韩av在线免费看完整版不卡| 最新中文字幕久久久久| 久久久久久国产a免费观看| 国模一区二区三区四区视频| 亚洲成人久久爱视频| 亚洲av不卡在线观看| 中文字幕av在线有码专区| 三级男女做爰猛烈吃奶摸视频| 午夜福利在线在线| 99久久中文字幕三级久久日本| 欧美一区二区亚洲| 亚洲国产精品成人久久小说| 亚洲不卡免费看| 搞女人的毛片| 国产女主播在线喷水免费视频网站 | 免费在线观看成人毛片| 蜜桃久久精品国产亚洲av| 麻豆成人av视频| 日本免费一区二区三区高清不卡| 亚洲国产精品专区欧美| 欧美性感艳星| 日韩av在线大香蕉| 韩国高清视频一区二区三区| 别揉我奶头 嗯啊视频| 国产亚洲精品av在线| 日本黄大片高清| 99热网站在线观看| 我要搜黄色片| 热99re8久久精品国产| 亚洲av成人精品一区久久| 麻豆成人av视频| 大话2 男鬼变身卡| 久久精品夜夜夜夜夜久久蜜豆| 中文字幕熟女人妻在线| 能在线免费看毛片的网站| 国产91av在线免费观看| 国产午夜精品论理片| 国产精品一区二区性色av| 亚洲伊人久久精品综合 | 99热全是精品| 观看免费一级毛片| 国产精品国产高清国产av| 国产乱人视频| 亚洲熟妇中文字幕五十中出| 性插视频无遮挡在线免费观看| 在线免费十八禁| 高清在线视频一区二区三区 | 亚洲精品成人久久久久久| 综合色av麻豆| 国产片特级美女逼逼视频| 色尼玛亚洲综合影院| 国产探花极品一区二区| 国产亚洲5aaaaa淫片| 亚洲精品国产成人久久av| 亚洲欧美中文字幕日韩二区| 国产色婷婷99| 精品熟女少妇av免费看| 亚洲精品乱久久久久久| av国产久精品久网站免费入址| 欧美成人精品欧美一级黄| 亚洲欧美成人精品一区二区| 日韩av不卡免费在线播放| 国产欧美另类精品又又久久亚洲欧美| 亚洲婷婷狠狠爱综合网| 亚洲精品456在线播放app| 一个人看视频在线观看www免费| 亚洲电影在线观看av| 黄片wwwwww| 天美传媒精品一区二区| 一级黄片播放器| 国产欧美日韩精品一区二区| 亚洲中文字幕一区二区三区有码在线看| 久久99热这里只有精品18| av视频在线观看入口| 超碰97精品在线观看| 免费一级毛片在线播放高清视频| 欧美区成人在线视频| 我的女老师完整版在线观看| 少妇猛男粗大的猛烈进出视频 | 少妇被粗大猛烈的视频| 国产视频首页在线观看| 麻豆成人午夜福利视频| 亚洲不卡免费看| 网址你懂的国产日韩在线| 黄片wwwwww| 国产精品久久视频播放| 麻豆乱淫一区二区| 国产精品不卡视频一区二区| 国产极品天堂在线| 偷拍熟女少妇极品色| 久久精品国产亚洲网站| 欧美变态另类bdsm刘玥| 汤姆久久久久久久影院中文字幕 | 国内揄拍国产精品人妻在线| 亚洲高清免费不卡视频| 国产 一区 欧美 日韩| 精品少妇黑人巨大在线播放 | 又爽又黄无遮挡网站| 欧美日本视频| 亚洲自拍偷在线| 观看美女的网站| 高清在线视频一区二区三区 | 亚洲熟妇中文字幕五十中出| av女优亚洲男人天堂| 午夜视频国产福利| 日韩av在线免费看完整版不卡| 一级毛片久久久久久久久女| 人妻系列 视频| 国产精品人妻久久久久久| 欧美日本亚洲视频在线播放| АⅤ资源中文在线天堂| 久久久国产成人免费| 成人一区二区视频在线观看| 久久精品人妻少妇| 免费看美女性在线毛片视频| 晚上一个人看的免费电影| 亚洲成色77777| www.色视频.com| 午夜免费激情av| 亚洲av成人精品一区久久| 大话2 男鬼变身卡| АⅤ资源中文在线天堂| 精品人妻熟女av久视频| 在线播放无遮挡| 深夜a级毛片| 亚洲欧美日韩卡通动漫| 日本三级黄在线观看| 岛国毛片在线播放| 日本黄大片高清| 亚洲18禁久久av| 狂野欧美激情性xxxx在线观看| 亚洲国产色片| 精品久久久久久久人妻蜜臀av| 日本午夜av视频| 性插视频无遮挡在线免费观看| 久久人妻av系列| 欧美三级亚洲精品| 亚洲欧洲日产国产| 非洲黑人性xxxx精品又粗又长| 欧美变态另类bdsm刘玥| 国产亚洲5aaaaa淫片| 搡老妇女老女人老熟妇| 丝袜喷水一区| 亚洲中文字幕一区二区三区有码在线看| 日韩大片免费观看网站 | 国产在线一区二区三区精 | 99热网站在线观看| 日本一二三区视频观看| 成人一区二区视频在线观看| 国产亚洲5aaaaa淫片| 精品免费久久久久久久清纯| 亚洲天堂国产精品一区在线| 久久久精品94久久精品| 男女视频在线观看网站免费| 亚洲在线观看片| 人人妻人人澡欧美一区二区| 久久精品久久精品一区二区三区| 亚洲天堂国产精品一区在线| 中文天堂在线官网| 18禁在线播放成人免费| 免费在线观看成人毛片| 两性午夜刺激爽爽歪歪视频在线观看| www日本黄色视频网| 好男人视频免费观看在线| 大又大粗又爽又黄少妇毛片口| 国产极品天堂在线| 欧美zozozo另类| 亚洲人成网站高清观看| 中文字幕av成人在线电影| 视频中文字幕在线观看| 国产av一区在线观看免费| 色网站视频免费| 国产精品一区二区三区四区久久| 最近的中文字幕免费完整| 欧美激情国产日韩精品一区| 免费av毛片视频| 中文乱码字字幕精品一区二区三区 | 日韩av在线免费看完整版不卡| 高清日韩中文字幕在线| 亚洲五月天丁香| 联通29元200g的流量卡| 久久欧美精品欧美久久欧美| 观看美女的网站| videos熟女内射| 91av网一区二区| 精品人妻熟女av久视频| 精品酒店卫生间| av免费在线看不卡| 国产真实乱freesex| 日日摸夜夜添夜夜添av毛片| 少妇被粗大猛烈的视频| 大香蕉97超碰在线| 欧美日本视频| 国产精品av视频在线免费观看| 97热精品久久久久久| 久久久久久久久中文| 久久亚洲精品不卡| 亚洲国产色片| 精品少妇黑人巨大在线播放 | 日本三级黄在线观看| 我的老师免费观看完整版| 免费观看人在逋| 亚洲精品一区蜜桃| 中文字幕av成人在线电影| 亚洲国产精品成人综合色| 一级爰片在线观看| 国产真实伦视频高清在线观看| 性色avwww在线观看| 18+在线观看网站| 最新中文字幕久久久久| 国产片特级美女逼逼视频| 亚洲欧美成人精品一区二区| 国产成人91sexporn| 国产精品一区www在线观看| 黄色一级大片看看| 亚洲av成人av| 老司机福利观看| 91久久精品电影网| 日日摸夜夜添夜夜爱| 精品久久久噜噜| av免费观看日本| 一本一本综合久久| 搞女人的毛片| 久久人人爽人人爽人人片va| 女的被弄到高潮叫床怎么办| 男的添女的下面高潮视频| av卡一久久| 国产伦理片在线播放av一区| 七月丁香在线播放| 国产视频内射| 午夜福利在线观看免费完整高清在| 搡老妇女老女人老熟妇| 一级爰片在线观看| av在线观看视频网站免费| 一个人观看的视频www高清免费观看| 大又大粗又爽又黄少妇毛片口| 久久欧美精品欧美久久欧美| 插阴视频在线观看视频| 亚洲成av人片在线播放无| 日韩制服骚丝袜av| 99热6这里只有精品| 成人亚洲欧美一区二区av| or卡值多少钱| 中文在线观看免费www的网站| 免费看a级黄色片| 国产精品嫩草影院av在线观看| 九草在线视频观看| 国产av不卡久久| 内地一区二区视频在线| 波多野结衣高清无吗| 亚洲五月天丁香| 日日摸夜夜添夜夜添av毛片| 亚洲欧美成人综合另类久久久 | 麻豆久久精品国产亚洲av| 免费观看性生交大片5| 国产淫语在线视频| 亚洲欧美成人综合另类久久久 | 精品人妻视频免费看| 国产亚洲精品久久久com| 国产成人freesex在线| 国产成人福利小说| 久久久久久久久久久丰满| 欧美日本亚洲视频在线播放| 国产淫片久久久久久久久| 国产毛片a区久久久久| 丰满乱子伦码专区| 国产又黄又爽又无遮挡在线| 黄片wwwwww| 国产黄色视频一区二区在线观看 | 亚洲精品影视一区二区三区av| 国产精品久久久久久精品电影小说 | 三级经典国产精品| 成年女人永久免费观看视频| 国产av一区在线观看免费| 男女视频在线观看网站免费| 免费av观看视频| 欧美精品国产亚洲| 尤物成人国产欧美一区二区三区| 日本与韩国留学比较| 99在线视频只有这里精品首页| 人人妻人人澡人人爽人人夜夜 | 久久这里只有精品中国| a级毛色黄片| 1000部很黄的大片| 一级毛片我不卡| 欧美激情久久久久久爽电影| 丰满乱子伦码专区| 久久久a久久爽久久v久久| 看非洲黑人一级黄片| 国产精品国产三级国产专区5o | 国产亚洲av嫩草精品影院| 日本熟妇午夜| 嫩草影院精品99| 国产探花在线观看一区二区| 免费av毛片视频| 欧美成人精品欧美一级黄| 2022亚洲国产成人精品| 国产人妻一区二区三区在| 欧美三级亚洲精品| 一级毛片久久久久久久久女| 中文在线观看免费www的网站| 寂寞人妻少妇视频99o| 有码 亚洲区| 国产一级毛片在线| 黄色日韩在线| 免费电影在线观看免费观看| 日韩欧美精品免费久久| 中文字幕制服av| 久久鲁丝午夜福利片| 神马国产精品三级电影在线观看| 欧美成人a在线观看| 人人妻人人看人人澡| 一边亲一边摸免费视频| 国产亚洲av片在线观看秒播厂 | 人妻制服诱惑在线中文字幕| 狂野欧美激情性xxxx在线观看| 亚洲三级黄色毛片| 国产成年人精品一区二区| 国产乱人偷精品视频| 免费播放大片免费观看视频在线观看 | 亚洲婷婷狠狠爱综合网| 一个人看视频在线观看www免费| 日韩强制内射视频| 一级毛片aaaaaa免费看小| av免费在线看不卡| 亚洲图色成人| 在线观看一区二区三区| 啦啦啦啦在线视频资源| 久久久午夜欧美精品| 国产美女午夜福利| 永久免费av网站大全| 成人无遮挡网站| 小说图片视频综合网站| 一二三四中文在线观看免费高清| 亚洲性久久影院| 狂野欧美激情性xxxx在线观看| 精品国内亚洲2022精品成人| 黑人高潮一二区| 日韩欧美国产在线观看| 色综合亚洲欧美另类图片| 欧美高清性xxxxhd video| 久久精品国产自在天天线| 老司机福利观看| 国产一区二区在线观看日韩| 非洲黑人性xxxx精品又粗又长| 亚洲精品亚洲一区二区| 国产淫片久久久久久久久| 午夜福利高清视频| 亚洲成人久久爱视频| 欧美精品一区二区大全| 1024手机看黄色片| 欧美三级亚洲精品| 2021少妇久久久久久久久久久| 夜夜看夜夜爽夜夜摸| 丰满少妇做爰视频| 国产精品1区2区在线观看.| 男女视频在线观看网站免费| 国产精品.久久久| 亚洲国产精品成人综合色| www.av在线官网国产| 国产免费视频播放在线视频 | 在线a可以看的网站| 午夜福利在线观看吧| 黄色日韩在线| 好男人视频免费观看在线| 国语自产精品视频在线第100页| 男女视频在线观看网站免费| 大香蕉久久网| 欧美成人一区二区免费高清观看| 插逼视频在线观看| 一本久久精品| 午夜福利在线观看免费完整高清在| 国产精华一区二区三区| 成年女人看的毛片在线观看| 男人和女人高潮做爰伦理| 国产成人精品久久久久久| 国产精品嫩草影院av在线观看| 国产成人精品久久久久久| 日韩亚洲欧美综合| 永久免费av网站大全| 国产黄色视频一区二区在线观看 | 久久久色成人| ponron亚洲| 午夜激情福利司机影院| 亚洲真实伦在线观看| 国产v大片淫在线免费观看| av国产免费在线观看| 中文字幕亚洲精品专区| 成人国产麻豆网| 别揉我奶头 嗯啊视频| 精品一区二区免费观看| 国产精品麻豆人妻色哟哟久久 | 精品久久久久久电影网 | 天堂中文最新版在线下载 | 久久精品夜色国产| 2022亚洲国产成人精品| 成人鲁丝片一二三区免费| 国产精品无大码| 国产精品伦人一区二区| 国产不卡一卡二| 国产精品永久免费网站| 亚洲综合色惰| 欧美一级a爱片免费观看看| 亚洲内射少妇av| 秋霞伦理黄片| 中文字幕熟女人妻在线| 国产伦在线观看视频一区| 99国产精品一区二区蜜桃av| .国产精品久久| 春色校园在线视频观看| 一区二区三区高清视频在线| 国产精品一区www在线观看| 又粗又爽又猛毛片免费看| 久久久国产成人精品二区| 日韩精品有码人妻一区| 国产av一区在线观看免费| 亚州av有码| 秋霞伦理黄片| 综合色丁香网| 国产黄片美女视频| 久久久久九九精品影院| 欧美精品一区二区大全| 麻豆精品久久久久久蜜桃| 少妇丰满av| 亚洲国产精品国产精品| 在线免费观看的www视频| av专区在线播放| 18禁在线播放成人免费| 久久久久国产网址| 97热精品久久久久久| 国产女主播在线喷水免费视频网站 | 亚洲国产精品sss在线观看| 女人被狂操c到高潮| 久久久久精品久久久久真实原创| 老师上课跳d突然被开到最大视频| 中文精品一卡2卡3卡4更新|