• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    LDM-Satellite: A New Scheme for Packet Loss Classification over LEO Satellite Network

    2022-12-09 09:50:22NingLiQiaodiZhuZhongliangDeng
    China Communications 2022年12期

    Ning Li,Qiaodi Zhu,Zhongliang Deng

    School of Electronic Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China

    Abstract: The packet loss classification has always been a hot and difficult issue in TCP congestion control research.Compared with the terrestrial network,the probability of packet loss in LEO satellite network increases dramatically.What’s more,the problem of concept drifting is also more serious,which greatly affects the accuracy of the loss classification model.In this paper,we propose a new loss classification scheme based on concept drift detection and hybrid integration learning for LEO satellite networks,named LDM-Satellite,which consists of three modules:concept drift detection,lost packet cache and hybrid integration classification.As far,this is the first paper to consider the influence of concept drift on the loss classification model in satellite networks.We also innovatively use multiple base classifiers and a naive Bayes classifier as the final hybrid classifier.And a new weight algorithm for these classifiers is given.In ns-2 simulation,LDM-Satellite has a better AUC(0.9885)than the single-model machine learning classification algorithms.The accuracy of loss classification even exceeds 98%,higher than traditional TCP protocols.Moreover,compared with the existing protocols used for satellite networks,LDM-Satellite not only improves the throughput rate but also has good fairness.

    Keywords: LEO Satellite Networ;TCP congestion control;concept drift detection;ensemble learning;loss classification

    I.INTRODUCTION

    Satellite communication plays an irreplaceable role in the current and future communication systems [1].Among them,the LEO satellite has become a research hotspot in recent years due to its proximity to the ground and short propagation delay[2].However,the high link error rate in LEO satellite network results in an increasing probability of packet loss,which greatly affects the communication quality[3].

    There have been some methods for classifying the types of packet loss,wireless link errors or congestion.[4] used some network parameters,like RTTs,ROTTs,and IAT to form classification rules.Biaz[5],mBiaz[6],and Statistical Packet Loss Identification(SPLD) [7] selected the packet arrival time interval,Zigzig [8] and Spike [9] used one-way transmission time,and the Vegas predictor [10] chose The round trip time as parameter,then set a decision threshold.However,these methods have limitations because it is difficult to determine the decision threshold.In addition,only one feature cannot obtain high classification accuracy[11,12].Then,researchers proposed to combine multiple features and algorithms in data mining and machine learning.They made decision based on a driving model by learning the correlation between features.In [13],the machine learning classification method was first proposed.[14] used a Naive Bayes model to classify the loss types.However,the classification accuracy of these single model is greatly affected by the number of samples and features.[15]analyzed the classification accuracy of multiple machine learning models,the classification accuracy of the ensembl learning method is the highest.

    Although the ensemble classification model has the best performance,the classification accuracy is greatly affected by the concept drift [16,17].When concept drift occurs,the probability of packet loss increases,and along with the changing data flow distribution,the distribution of lost packets also changes,resulting in a reduction in the accuracy of the current classification model [18].If the occurrence of concept drift can be detected in advance and the classification model adjusted effectively,the cause of packet loss will be confirmed faster [19,20].Gama et al.[21]proposed a drift detection method (DDM) for binary classification.However,this method based on error rate cost high.EDDM [22] is an optimized version of DDM,which is improved based on the average distance and standard deviation between two consecutive errors.[23] proposed a frame detection concept drift(ADWIN)based on a sliding window that changes according to whether concept drift occurs [24].However,existing research based on concept drift only consider ground scenarios where the network environment is stable and the data distribution does not change dynamically.The data distribution in the LEO satellite network changes frequently and the concept drift is greater.

    We proposed a new packet loss classification scheme (LDM-Satellite) for LEO satellite networks.As we know,this is the first article to consider concept drift in the research of loss classification.Base on the distribution characteristics of the data flow in the network and the hybrid ensemble learning framework,with the goal of maximizing the difference of multiple base classifiers,we construct a new weight algorithm,by weighting multiple base classifiers,determining the type of packet loss.

    The rest of the paper is organized as follows: Section II introduces the overall framework of the proposed LDM-Satellite.Section III is the principle and specific implementation of each module.Section IV is the experimental results,including the performance comparison of LDM-Satellite classification accuracy and Goodput.Finally,Section V is summary.

    II.LDM-SATELLITE FRAMEWORK DESIGN

    The framework of LDM-Satellite is shown in Figure 1.It includes three parts: concept drift detection module,packet loss data cache module,and classifier integration module.

    Figure 1.LDM-Satellite architecture.

    Figure 2.D_ cache caches data samples in the most recent time T.

    The data stream first passes the concept drift detection module.If no concept drift occurs,hand over the lost data packet to the classifier in integration module to determine the type of loss,and then update the weight of the corresponding base classifier.If concept drift,it indicates that the network topology has changed,or the communication link has been switched,etc.,causing the distribution characteristics of the data flow changed.Therefore,we can directly update the base classification model without waiting until the accuracy of the ensemble classifier obtained,which greatly improve the classification efficiency of the model.In addition,for updating the model online,every time after classification,here we do not directly discard the collected lost packets,but first move them to the cache.It always remembers the information of lost packets from the current to the past T time.When concept drift,these samples in the cache are used to train new base classifier.The specific introductions of the three modules are in Section III.

    III.LDM-SATELLITE MODULE IMPLEMENTATION

    3.1 Concept Drift Detection Module

    Based on the dual threshold detection method,we proposes a corresponding window adjustment strategy in this paper,which makes the decision more timely and effective.

    After passing through the window,the data stream S is divided into continuous data blocks S={D1,D2,···Dt,Dt+1,···}.The sample in each data block isXt=where(i=1···n)represents n samples features.We use the unidirectional delay of the packet,the time interval between the last normally arrived packet and the first outof-order packet received,and the number of consecutive lost packet to be the features of the lost packet.ytis the class label of the sample at time t.After features are determined,dual thresholds are set according to the minimum classification error ratepminand the minimum standard deviationδmin.Based on these thresholds,we can detect the concept drift precisely.

    The size of sliding window is adjusted according to the detect result.However,if the window is too large,the time point where concept drift occurs may be missed.If the window is too small,the detection is inefficient.In view of the above problems,this paper proposes a segmented window adjustment strategy,which is different from the previous single adjustment method.This strategy sets more accurate and effective window adjustment methods for different judgment results.Details as follows:

    1.Whenpt+δt

    2.Whenpmin+αδmin

    3.Whenpt+δt >βpmin+δmin,concept drift has occurred.We need to compress window,so setwt+1=μwt.At this time,the data distribution in the network environment have changed,so the model is no longer applicable.There needs a new base classifier.

    Whereα,βis weighting factors and they are two constants,α<β.wtis the current window size andwt+1is the window size at the next moment.FurthermoreWbis the base window size.μrepresents the window change factor,Calculated as follows:

    Wherepmaxis the maximum value of classification error rate.

    3.2 Lost Data Cache Module

    When concept drift occurs,a new base classifier needs trained.Considering the time correlation between data samples,a data cache D_cache is set here.Following the ”first in first out” principle,we save the information of the lost packets.When concept drift detected,we use these samples to train the base classifier.

    If the packet lost and the current cache queue Q is not full,adding the information of this lost packet to the Q,as shown in Figure 2.Otherwise,in order to ensure the freshness of the data and the adaptation of the classification model,we removing information of old data before time T from the queue.If there is no packet lost,unnecessary information need not cached,so we directly discard it.The samples that cached in the D_ cache will be used for online training of the base classifier.

    3.3 Hybrid Integration Module of Classifier

    In this paper,we build a hybrid integration framework with multiple base classifiers and a naive Bayes classifier.Moreover,a weight algorithm of base classifier based on incremental learning is proposed.Finally,we combine the weighted classification result of base classifiers and naive Bayes classifier,which is used for online classifying the type of packet loss.The following is the explanation of this module in depth through the offline training of the base classifier and the online update based on concept drift detection.

    1.Offline training phase

    The hybrid integration framework that we proposed is shown in Figure 3,whereDirepresents the current i-th sample data block,Ciis the i-th base classifier,wiis the weight of this classifier,and K represents the number of classifiers that used for ensemble.If the current number of base classifiers is less than K,then useDito construct a new base classifierCiand assign corresponding weights to it.Otherwise,use the most recent K data blocks to construct a naive Bayes classifierC′.For the sample X inDi,in the naive Bayes classifier,the sample category is determined by the maximum posterior probability.The probability that sample X belongs to categoryymis:

    Figure 3.Hybrid integration framework.

    Where P(X)is constant,therefore,formula(2)can be simplified to:

    Where P(Ym)is the prior probability of categoryYm.In Naive Bayes,it is assumed that the features of the sample are independent of each other,so:

    WhereP(χi |Ym) is the conditional probability of the i-th featurexiwhen the sample belongs to theYmclass.According to formula (2) (3) (4),the decision equation of the naive Bayes classifier can be derived:

    The weight allocation algorithm based on incremental learning is as follows: first,the base classifierKiis trained with the data blockDi,and each training sample is given a weightαj,where j is the number of times the sample is processed.The mean square error of the available base classifierKion the sample setDiis:

    Where|Di|is the number of samples in the data setDi.Then assign weights to each base classifier based on the classification results:

    In order to prevent the denominator in Equation(7)from being 0,add a small enough positive valueε.Then update the weightαjof the samples in the data setDi.By increasing the weight of the wrongly classified samples,the base classifier will focus more on the wrongly classified samples.The sample weights are updated as follows:

    Finally,all samples in the data blocksDi?1,Di?2,···,D1,are used as training samples for the base classifierKi.After each training is completed,new weights are assigned to the samples according to Equation (8).The weight ofαjis based on the classification errorδiof the current sample in Equation (6),and the weightwiof each base classifier is updated according to Equation(7).At this point,we obtain the simple Bayesian and base classifiers that required for classification.

    2.Online classification stage

    When distinguishing the type of packet loss online,the classifier in the ensemble module is updated in real time based on the concept drift detection result and the online sample classification result.When a concept drift occurs,the new base classifier is trained,and the classifier with the worst replacement performance is selected based on the weight.Figure 4 is a block diagram of the online update of the classifier.

    Figure 4.Block diagram of online update of classification model.

    When detect concept drift,the data in the cache module is used to train a new base classifierand base on the above formula (6) (7) to set weight.Then update the base classifier queue at the same time.Finally integrate multiple base classifiers with weights and naive Bayes classifiers to get the final classifier:

    The former part of formula (9) is the result of the classifier,whereCiis the i-th base classifier currently ensemble,wiis its weight,through the function sign()and transformation,the final classification result is 1 or 0.That is,packet loss due to congestion or wireless error.The second part is the naive Bayes classifier,which not only eliminates the influence of noisy data,but also weights the classification results of the base classifier to improve the accuracy of packet loss classification.

    IV.EXPERIMENTAL RESULTS

    We use the simulation environment of Figure 5 to evaluate LDM-Satellite.In this scenario,in addition to multiple LEO satellites and inter-satellite links in the satellite network,there are multiple sending and receiving ends connected to the earth station.Each cable and satellite link uses HOL priority scheduling queues.We set the number of user connections N=20,the capacity of the satellite link c=1300 segments/s,corresponding to the TCP field of 1000 bytes,the value is close to 10Mb/s.The buffer size of the satellite uplink is 50 segments,the maximum congestion window size is maxCwnd=64 segments,and the buffer size of each receiving end is recCwnd=512 segments.The value of RTT is set to 50ms.The packet loss rate caused by link errors in the satellite link varies from 10?5to 10?1.

    Figure 5.Simulation scenario of the satellite network.

    Figure 6.Confusion matrix for packet loss classification.

    The training data set of this paper was obtained through the network simulator NS-2[25].In our study,collecting 35,441 lost data packets(22,426 are due to congestion).Figure 6 is the confusion matrix of LDMSatellite’s classification results on this data set,where 1 represents congestion(CL),0 represents wireless error(LE),dark blue represents the result of correct classification,and white represents the result of incorrect classification.

    Figure 7.Comparison of ROC curves of LDM-Satellite and other machine learning methods.

    According to the classification result of Figure 6,the precision rate Precision=0.984 and the recall rate Recall=0.987.In order to evaluate the classification performance better,based on the accuracy rate and recall rate,we calculate the f1_score,which is more than 0.985.Therefore,it is proved that the classification accuracy of LDM-Satellite is high.Moreover,we compare LDM-Satellite with several common classification algorithms such as LogisticRegression,DecisionTree,RandomForest,and GradientBoosting in Figure7.We can see from the ROC curve that LDMSatellite is significantly better than other classification algorithms.

    In order to compare their performance in more detail,we get Table 1.Two new TCP variant protocols,Veno and WestWood are added.As shown,the classification performance of the machine learning algorithms is far superior to the traditional TCP variant protocol.LDM-Satellite and Gradient Boosting these two ensemble methods have a higher AUC value than other single classifier.In terms of time consumption,Decision Tree takes the shortest time,but the misclassification rate is too high.Traditional TCP protocol classify lost packet based on multiple arriving ACKs or certain variables,such as RTT’s single threshold.These variable information need to be obtained before classification,so it takes too long.Moreover,the parameters are affected by many factors,so the final classification result is unstable,and the reason for the loss cannot be accurately got.

    Table 1.Comparison of various classification methods.

    Table 2 is the classification performance under different packet loss rates,from comparing the TCP protocol with the LDM-Satellite and other commonly used TCP protocols,such as TCP Reno,TCP Veno,and TCP WestWood+.The random packet loss rate is 10?5to 10?1.We can see that,as packet loss rate increases,TCP Reno and TCP WestWood+will randomly lose packet.The probability that a packet is misclassified as congestion increases.The classification performance of TCP Veno is closely related to the value ofβ,hereβis 5.For the proposed LDMSatellite,the accuracy rate of loss classification exceeds 98%,which can effectively avoid unnecessary reduction of congestion windows and improve network transmission performance.

    Table 2.Comparison of classification results under different packet loss rates.

    Figure 8 is throughput rates of LDM-Satellite and WestWood+,Veno,and Reno in different scenarios.In (a),the RTT is 50ms and the packet loss rate is set to 2%.It can be seen that the Goodput of all protocols is low when the bandwidth is low.However,as the bandwidth increases,the performance of LDM-Satellite is far superior to the others.In(b),the bandwidth and packet loss rate are 10Mbps and 2%,respectively.As Delay increases,the overall Goodput of TCP variants gradually declines,but Goodput of LDM-Satellite is always higher.Because the traditional TCP protocol adjusts the size of the congestion control window through predefined rules,which is too conservative.LDM-Satellite can quickly adjust the congestion window size based on concept drift detection and high-precision classification.Therefore,LDM-Satellite greatly improves Goodput under different bandwidth and delay scenarios.

    At the end of the experiment,we compare the throughput and fairness of the LDM-Satellite with the TCP protocols that are suitable for satellite networks,such as Hybly,Peach+,etc.The results are shown in Figure 9 and Figure 10.From Figure 9,in the case of low link error rate,Goodput of all protocols is relatively high,among which LDM-Satellite,Hybla and NewReno are closer to the link capacity c=1300 segments/s.In addition,as the packet loss rate increases,according to the adjustment of the congestionwindow,the value of Goodput decreases.However,LDM-Satellite has a better Goodput,especially when the packet loss rate is very high,for example,when the packet loss rate is 10?1,the Goodput of LDM-Satellite can reach 92%with the link capacity c.

    Figure 8.Comparison of throughput rates between LDMSatellite and WestWood+,Veno,Reno in different scenarios.(a)Under different bandwidths RTT is 50ms,loss rate is 2%.(b)Under different delaysbandwidth is 10Mbps,loss rate is 2%.

    Figure 9.Comparison of Goodput with different protocols for LEO.

    Figure 10.Fairness comparison between LDM-Satellite and multiple LEO satellite TCP.

    Figure 10 is a fairness index chart of LDM-Satellite and various TCP protocols for satellite networks.It presents,as the packet loss rate increases,the Fairness value of each version of the TCP protocol increases,and all are close to 1.LDM-Satellite guarantees better fairness and will not occupy network bandwidth too aggressively.

    V.CONCLUSION

    In this article,we propose a new loss classification strategy of TCP packet (LDM-Satellite) for LEO satellite networks,which fully considers the impact of satellite network dynamics on data distribution characteristics.Since the ensemble classification model is greatly affected by concept drift,this is the first paper that innovatively proposes to detect the concept drift of the data stream before classification.By detecting and then classifying,the current packet loss type can be more accurately determined according to the network status.In addition,this paper also builds a hybrid integration framework of base classifiers and a Naive Bayes classifier,and integrates multiple classifiers by a new weight distribution algorithm.In simulation experiments,our method has higher accuracy than other classification algorithms.Under different packet loss rates,LDM-Satellite performs better.Compared with TCP protocols such as cherry,Hybla,and peach+,it effectively improves Goodput.What’s more,LDMSatellite also has better fairness for other protocols and fairness in resource allocation.

    ACKNOWLEDGEMENT

    The authors wish to thank every responsible reviewer for his/her comments.The authors also wish to acknowledge the Wireless Network Positioning and Communication Integration Research Center in BUPT for financial support.

    日本欧美视频一区| 日韩国内少妇激情av| 久9热在线精品视频| avwww免费| 乱人伦中国视频| 久久久久亚洲av毛片大全| 国产欧美日韩一区二区三区在线| 免费在线观看影片大全网站| 老司机靠b影院| av天堂在线播放| 久久国产乱子伦精品免费另类| 日韩成人在线观看一区二区三区| 国产精品久久久av美女十八| 欧美在线黄色| avwww免费| 国产精品久久久人人做人人爽| 亚洲第一av免费看| 午夜福利,免费看| 成在线人永久免费视频| 国产av精品麻豆| 满18在线观看网站| 电影成人av| 制服诱惑二区| 在线观看日韩欧美| 18禁黄网站禁片午夜丰满| 精品久久久久久电影网| 日本一区二区免费在线视频| 国产亚洲欧美98| 99久久综合精品五月天人人| 首页视频小说图片口味搜索| 欧美黄色淫秽网站| 老司机福利观看| 国产精品 欧美亚洲| 一个人免费在线观看的高清视频| 狠狠狠狠99中文字幕| 在线观看午夜福利视频| 亚洲免费av在线视频| 日本一区二区免费在线视频| 亚洲第一欧美日韩一区二区三区| 成年女人毛片免费观看观看9| 精品日产1卡2卡| 精品日产1卡2卡| 丰满迷人的少妇在线观看| 看片在线看免费视频| 精品久久久精品久久久| 99国产精品99久久久久| 亚洲欧美一区二区三区久久| 国产成+人综合+亚洲专区| 欧美日韩精品网址| 国产99白浆流出| 女人高潮潮喷娇喘18禁视频| 日韩精品免费视频一区二区三区| 黄片小视频在线播放| 午夜福利在线免费观看网站| 国产成人精品无人区| 久久精品亚洲av国产电影网| 两人在一起打扑克的视频| 多毛熟女@视频| 真人做人爱边吃奶动态| 国产成+人综合+亚洲专区| 色哟哟哟哟哟哟| 最好的美女福利视频网| 婷婷六月久久综合丁香| 国产一区二区三区综合在线观看| 精品久久久久久久毛片微露脸| 一个人免费在线观看的高清视频| 亚洲一码二码三码区别大吗| 三级毛片av免费| www.www免费av| 亚洲国产精品999在线| av欧美777| 日本精品一区二区三区蜜桃| 51午夜福利影视在线观看| 女警被强在线播放| 欧美成狂野欧美在线观看| 99久久精品国产亚洲精品| 老司机福利观看| 国产1区2区3区精品| 国产免费男女视频| 国产视频一区二区在线看| 天天躁夜夜躁狠狠躁躁| 在线观看一区二区三区激情| 国产欧美日韩一区二区三| 淫秽高清视频在线观看| cao死你这个sao货| 99热国产这里只有精品6| 亚洲成国产人片在线观看| 最近最新中文字幕大全电影3 | 亚洲专区字幕在线| 一级黄色大片毛片| 午夜精品国产一区二区电影| 国产真人三级小视频在线观看| 国产三级黄色录像| 电影成人av| aaaaa片日本免费| 亚洲情色 制服丝袜| netflix在线观看网站| 欧美国产精品va在线观看不卡| 精品高清国产在线一区| 九色亚洲精品在线播放| 国产av在哪里看| 亚洲成人国产一区在线观看| 亚洲av电影在线进入| a在线观看视频网站| 亚洲一区高清亚洲精品| 久久久久久久久免费视频了| 国产精品乱码一区二三区的特点 | 欧美成人午夜精品| 涩涩av久久男人的天堂| 黄片小视频在线播放| 69av精品久久久久久| 很黄的视频免费| 久久热在线av| 欧美不卡视频在线免费观看 | 日韩三级视频一区二区三区| a级毛片在线看网站| 久99久视频精品免费| 法律面前人人平等表现在哪些方面| 国产亚洲精品综合一区在线观看 | 国产精品国产av在线观看| 亚洲av电影在线进入| 日本一区二区免费在线视频| 日本三级黄在线观看| 咕卡用的链子| 国产精品一区二区精品视频观看| 亚洲伊人色综图| 欧美午夜高清在线| 国产av精品麻豆| 久久99一区二区三区| 精品一区二区三区四区五区乱码| 黄片播放在线免费| 亚洲午夜精品一区,二区,三区| 日韩精品青青久久久久久| 国产一区在线观看成人免费| 亚洲av电影在线进入| 波多野结衣一区麻豆| 久久人妻av系列| 中文字幕av电影在线播放| 午夜两性在线视频| 国产一区在线观看成人免费| 国产伦人伦偷精品视频| 一进一出抽搐动态| 久久人妻av系列| 亚洲精品一卡2卡三卡4卡5卡| 新久久久久国产一级毛片| 国产一区二区在线av高清观看| 久久精品成人免费网站| 中文字幕色久视频| 国产成人精品久久二区二区免费| 老熟妇仑乱视频hdxx| 成年人免费黄色播放视频| 久久精品亚洲av国产电影网| 成人三级做爰电影| 丝袜美足系列| 老司机靠b影院| 男女床上黄色一级片免费看| av网站免费在线观看视频| 99久久综合精品五月天人人| 窝窝影院91人妻| 精品一区二区三区视频在线观看免费 | 国产成人欧美在线观看| 人人澡人人妻人| 一区二区三区激情视频| 亚洲片人在线观看| 少妇裸体淫交视频免费看高清 | 国产区一区二久久| 黄色怎么调成土黄色| 亚洲熟女毛片儿| 1024香蕉在线观看| 成人手机av| 正在播放国产对白刺激| 国产精品1区2区在线观看.| 一区福利在线观看| av在线天堂中文字幕 | 国产欧美日韩一区二区三| 日本免费a在线| 久9热在线精品视频| 久久午夜综合久久蜜桃| 国产精品久久久久成人av| 99久久久亚洲精品蜜臀av| 日本 av在线| 国产精品av久久久久免费| 国产欧美日韩一区二区精品| 高清在线国产一区| 欧美精品啪啪一区二区三区| 女人高潮潮喷娇喘18禁视频| 亚洲中文av在线| 久久九九热精品免费| 多毛熟女@视频| 成年版毛片免费区| 久久精品aⅴ一区二区三区四区| 免费观看人在逋| 国产97色在线日韩免费| 一级毛片高清免费大全| 一进一出抽搐gif免费好疼 | 午夜成年电影在线免费观看| 亚洲一区二区三区不卡视频| 自线自在国产av| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲成人免费电影在线观看| 在线观看免费视频网站a站| 人成视频在线观看免费观看| 精品久久久久久成人av| 超碰成人久久| 精品久久久久久,| 99精国产麻豆久久婷婷| 中国美女看黄片| 国产区一区二久久| 亚洲欧美一区二区三区久久| 亚洲少妇的诱惑av| 99国产精品免费福利视频| 一边摸一边抽搐一进一小说| 国产精品久久电影中文字幕| 亚洲自偷自拍图片 自拍| 男女午夜视频在线观看| 亚洲性夜色夜夜综合| 在线观看午夜福利视频| 免费av中文字幕在线| 欧美日韩瑟瑟在线播放| 99re在线观看精品视频| 久久久久久久午夜电影 | 亚洲精品一卡2卡三卡4卡5卡| 国产在线观看jvid| 日本免费a在线| 中出人妻视频一区二区| www日本在线高清视频| 乱人伦中国视频| av在线天堂中文字幕 | 高清欧美精品videossex| 欧美在线黄色| 久久中文字幕一级| 久久久国产成人免费| 日日夜夜操网爽| 亚洲av成人不卡在线观看播放网| 国产欧美日韩一区二区三| 免费看十八禁软件| 夫妻午夜视频| 日本黄色视频三级网站网址| 深夜精品福利| 国产成人影院久久av| 久久影院123| 一区二区三区激情视频| 日韩欧美三级三区| 日韩有码中文字幕| 日日摸夜夜添夜夜添小说| 国产高清视频在线播放一区| 中文字幕人妻丝袜一区二区| 黄片大片在线免费观看| 国产av一区在线观看免费| 欧美精品啪啪一区二区三区| 国产一区在线观看成人免费| 亚洲av熟女| 国产精品久久电影中文字幕| 亚洲色图av天堂| 男人舔女人的私密视频| av欧美777| 91av网站免费观看| 中文字幕另类日韩欧美亚洲嫩草| 精品一区二区三区四区五区乱码| 一级毛片精品| 丝袜在线中文字幕| 久久久国产精品麻豆| 很黄的视频免费| 欧美日韩国产mv在线观看视频| 久久香蕉精品热| 在线免费观看的www视频| 中国美女看黄片| 精品第一国产精品| 精品一区二区三区视频在线观看免费 | 99精品欧美一区二区三区四区| 操出白浆在线播放| 欧美日韩国产mv在线观看视频| 一a级毛片在线观看| 久久精品91无色码中文字幕| 成人18禁高潮啪啪吃奶动态图| 大型黄色视频在线免费观看| 久久久国产精品麻豆| 国产区一区二久久| 热99国产精品久久久久久7| 国产xxxxx性猛交| 在线观看免费日韩欧美大片| 91老司机精品| 一区二区三区激情视频| 99在线人妻在线中文字幕| 久久久精品国产亚洲av高清涩受| 亚洲色图综合在线观看| 女人被躁到高潮嗷嗷叫费观| 国产三级黄色录像| 在线av久久热| av免费在线观看网站| 欧美激情 高清一区二区三区| 国产熟女午夜一区二区三区| 一级毛片高清免费大全| 欧美日本亚洲视频在线播放| av超薄肉色丝袜交足视频| 免费在线观看日本一区| 97碰自拍视频| 日日干狠狠操夜夜爽| 欧美中文综合在线视频| 亚洲精品一卡2卡三卡4卡5卡| 国产主播在线观看一区二区| 国产成人影院久久av| 看片在线看免费视频| 国产av在哪里看| 欧美成人性av电影在线观看| 久久热在线av| 亚洲精品在线观看二区| 亚洲狠狠婷婷综合久久图片| 一级片'在线观看视频| 九色亚洲精品在线播放| 亚洲成av片中文字幕在线观看| 午夜精品久久久久久毛片777| 亚洲午夜理论影院| 美女午夜性视频免费| 一边摸一边抽搐一进一小说| 一级毛片精品| 天天影视国产精品| 在线观看午夜福利视频| 久久影院123| 男人舔女人的私密视频| 欧美激情高清一区二区三区| 日本三级黄在线观看| 午夜视频精品福利| 国产成人精品在线电影| 人妻久久中文字幕网| 日本黄色视频三级网站网址| 成人免费观看视频高清| 久久久久久亚洲精品国产蜜桃av| 亚洲欧美日韩另类电影网站| 欧美黑人欧美精品刺激| 日本wwww免费看| 一边摸一边抽搐一进一出视频| 亚洲,欧美精品.| 日韩有码中文字幕| 欧美精品啪啪一区二区三区| 18禁国产床啪视频网站| 久99久视频精品免费| 日韩国内少妇激情av| 亚洲激情在线av| 国产av又大| 美国免费a级毛片| 一进一出好大好爽视频| 别揉我奶头~嗯~啊~动态视频| 757午夜福利合集在线观看| 国产精品二区激情视频| 久久久国产成人精品二区 | 国产成年人精品一区二区 | 乱人伦中国视频| 久久精品亚洲av国产电影网| 韩国av一区二区三区四区| av视频免费观看在线观看| 久99久视频精品免费| 欧美 亚洲 国产 日韩一| 亚洲熟妇中文字幕五十中出 | 午夜影院日韩av| 嫁个100分男人电影在线观看| 在线国产一区二区在线| 日韩欧美一区二区三区在线观看| 三级毛片av免费| 一级黄色大片毛片| 国产有黄有色有爽视频| 高清在线国产一区| 乱人伦中国视频| av网站免费在线观看视频| 免费在线观看日本一区| 天天躁狠狠躁夜夜躁狠狠躁| 丝袜人妻中文字幕| 日日爽夜夜爽网站| 啦啦啦免费观看视频1| 欧美精品一区二区免费开放| 久久精品国产综合久久久| 久久精品国产亚洲av香蕉五月| 日本撒尿小便嘘嘘汇集6| 亚洲 欧美 日韩 在线 免费| 天天添夜夜摸| 午夜成年电影在线免费观看| 伊人久久大香线蕉亚洲五| 日韩大码丰满熟妇| 一区二区三区国产精品乱码| 婷婷六月久久综合丁香| 精品国产一区二区久久| 777久久人妻少妇嫩草av网站| 亚洲精品国产精品久久久不卡| 亚洲avbb在线观看| 99久久久亚洲精品蜜臀av| 高清黄色对白视频在线免费看| 精品久久久久久久久久免费视频 | 男女之事视频高清在线观看| 国产精品一区二区免费欧美| 久久国产乱子伦精品免费另类| tocl精华| 亚洲av五月六月丁香网| 亚洲性夜色夜夜综合| 人人澡人人妻人| avwww免费| 97超级碰碰碰精品色视频在线观看| 999久久久精品免费观看国产| 欧美日韩乱码在线| 日韩大尺度精品在线看网址 | 亚洲成av片中文字幕在线观看| 久久久国产成人精品二区 | 久久精品成人免费网站| 精品卡一卡二卡四卡免费| 国产精品二区激情视频| 国产精品永久免费网站| 日韩精品青青久久久久久| 久久午夜亚洲精品久久| 搡老熟女国产l中国老女人| 一二三四社区在线视频社区8| 色尼玛亚洲综合影院| 国产成人系列免费观看| 在线观看午夜福利视频| 好看av亚洲va欧美ⅴa在| 亚洲久久久国产精品| 桃色一区二区三区在线观看| 一边摸一边做爽爽视频免费| 少妇裸体淫交视频免费看高清 | x7x7x7水蜜桃| 成人特级黄色片久久久久久久| 在线看a的网站| 热re99久久国产66热| 久久精品影院6| 伦理电影免费视频| 久久国产精品男人的天堂亚洲| av福利片在线| 九色亚洲精品在线播放| 51午夜福利影视在线观看| 麻豆一二三区av精品| 国产精品免费一区二区三区在线| 熟女少妇亚洲综合色aaa.| 涩涩av久久男人的天堂| 国产精品美女特级片免费视频播放器 | 视频区欧美日本亚洲| 久久热在线av| avwww免费| 操美女的视频在线观看| 欧美日韩亚洲高清精品| 超色免费av| 一边摸一边抽搐一进一出视频| 久久久精品欧美日韩精品| 夜夜躁狠狠躁天天躁| 精品一区二区三卡| 久久久精品国产亚洲av高清涩受| 日本黄色视频三级网站网址| 人成视频在线观看免费观看| 欧美日本亚洲视频在线播放| 久久久久九九精品影院| 欧美 亚洲 国产 日韩一| 天天添夜夜摸| 91大片在线观看| 美女午夜性视频免费| aaaaa片日本免费| 欧美亚洲日本最大视频资源| 亚洲久久久国产精品| 免费不卡黄色视频| 欧美在线黄色| av天堂久久9| 免费在线观看完整版高清| 免费av中文字幕在线| 国产精品国产av在线观看| 丰满迷人的少妇在线观看| 午夜福利,免费看| 高潮久久久久久久久久久不卡| 99国产精品免费福利视频| 久久国产亚洲av麻豆专区| 丝袜美腿诱惑在线| 又黄又爽又免费观看的视频| 大型av网站在线播放| 亚洲午夜精品一区,二区,三区| 成人亚洲精品一区在线观看| 亚洲一区二区三区不卡视频| 中文字幕人妻丝袜制服| 亚洲精品一卡2卡三卡4卡5卡| a在线观看视频网站| 精品国产亚洲在线| 99热国产这里只有精品6| 老熟妇仑乱视频hdxx| 精品国产一区二区久久| 亚洲国产精品sss在线观看 | 激情视频va一区二区三区| 一区在线观看完整版| 久久人人97超碰香蕉20202| 亚洲人成电影免费在线| 国产三级在线视频| 很黄的视频免费| 国产成人系列免费观看| 国产精品永久免费网站| 天堂动漫精品| 精品卡一卡二卡四卡免费| 黄片小视频在线播放| 免费在线观看日本一区| 黑丝袜美女国产一区| 亚洲av成人一区二区三| 最近最新中文字幕大全免费视频| 久久香蕉精品热| 久久久国产成人免费| 国产野战对白在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 男女做爰动态图高潮gif福利片 | 免费久久久久久久精品成人欧美视频| 宅男免费午夜| 啦啦啦在线免费观看视频4| 黄色视频,在线免费观看| 欧美国产精品va在线观看不卡| 亚洲五月天丁香| 超碰97精品在线观看| 很黄的视频免费| avwww免费| 成人18禁在线播放| 欧美激情极品国产一区二区三区| 国产精品久久久久成人av| 亚洲国产欧美一区二区综合| 欧美国产精品va在线观看不卡| 国产成人精品无人区| 老熟妇乱子伦视频在线观看| 久久九九热精品免费| 老司机靠b影院| 亚洲欧美激情综合另类| 国产av一区二区精品久久| 夜夜躁狠狠躁天天躁| videosex国产| 欧美 亚洲 国产 日韩一| 高清毛片免费观看视频网站 | 露出奶头的视频| 99国产精品一区二区三区| 黄片大片在线免费观看| 亚洲全国av大片| x7x7x7水蜜桃| 国产又爽黄色视频| 国内久久婷婷六月综合欲色啪| 午夜福利一区二区在线看| 人人妻人人添人人爽欧美一区卜| 视频区欧美日本亚洲| 欧美国产精品va在线观看不卡| 男女下面插进去视频免费观看| 亚洲欧美日韩另类电影网站| 操出白浆在线播放| 色在线成人网| 亚洲一区高清亚洲精品| 1024香蕉在线观看| 看片在线看免费视频| 亚洲欧美一区二区三区黑人| 亚洲 欧美 日韩 在线 免费| 老司机午夜十八禁免费视频| 他把我摸到了高潮在线观看| 麻豆一二三区av精品| 亚洲国产精品一区二区三区在线| 亚洲中文字幕日韩| 免费在线观看黄色视频的| 亚洲av成人不卡在线观看播放网| 一级片'在线观看视频| av欧美777| 精品久久久久久电影网| 波多野结衣av一区二区av| av天堂久久9| 人人妻人人爽人人添夜夜欢视频| 久久人人爽av亚洲精品天堂| 亚洲熟妇熟女久久| 超碰成人久久| 中文欧美无线码| 亚洲欧美日韩无卡精品| 在线播放国产精品三级| 成人免费观看视频高清| 欧美不卡视频在线免费观看 | 国产日韩一区二区三区精品不卡| av有码第一页| 日韩免费高清中文字幕av| 国产黄色免费在线视频| 波多野结衣高清无吗| 午夜久久久在线观看| 亚洲精品美女久久久久99蜜臀| 无限看片的www在线观看| 成人手机av| 91字幕亚洲| 久久久国产一区二区| 1024香蕉在线观看| 日日爽夜夜爽网站| 男女下面插进去视频免费观看| 99久久久亚洲精品蜜臀av| 精品欧美一区二区三区在线| 久久精品国产清高在天天线| av电影中文网址| 欧美乱妇无乱码| 欧美一区二区精品小视频在线| 一级片'在线观看视频| 黄色视频不卡| 岛国在线观看网站| 操出白浆在线播放| 午夜福利欧美成人| 国产日韩一区二区三区精品不卡| 久久久久久久午夜电影 | 亚洲狠狠婷婷综合久久图片| 色婷婷久久久亚洲欧美| 国产熟女午夜一区二区三区| 在线观看一区二区三区激情| 黄色怎么调成土黄色| 69av精品久久久久久| 中文亚洲av片在线观看爽| 精品国产一区二区久久| 他把我摸到了高潮在线观看| av电影中文网址| 18禁美女被吸乳视频| 97人妻天天添夜夜摸| 18禁黄网站禁片午夜丰满| 在线观看免费视频网站a站| 精品一区二区三区av网在线观看| 日本a在线网址| 99久久久亚洲精品蜜臀av| 亚洲精品国产一区二区精华液| 亚洲中文av在线| 亚洲精品一卡2卡三卡4卡5卡| 麻豆国产av国片精品| 亚洲国产精品sss在线观看 | 777久久人妻少妇嫩草av网站| 男人操女人黄网站|