• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    LDM-Satellite: A New Scheme for Packet Loss Classification over LEO Satellite Network

    2022-12-09 09:50:22NingLiQiaodiZhuZhongliangDeng
    China Communications 2022年12期

    Ning Li,Qiaodi Zhu,Zhongliang Deng

    School of Electronic Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China

    Abstract: The packet loss classification has always been a hot and difficult issue in TCP congestion control research.Compared with the terrestrial network,the probability of packet loss in LEO satellite network increases dramatically.What’s more,the problem of concept drifting is also more serious,which greatly affects the accuracy of the loss classification model.In this paper,we propose a new loss classification scheme based on concept drift detection and hybrid integration learning for LEO satellite networks,named LDM-Satellite,which consists of three modules:concept drift detection,lost packet cache and hybrid integration classification.As far,this is the first paper to consider the influence of concept drift on the loss classification model in satellite networks.We also innovatively use multiple base classifiers and a naive Bayes classifier as the final hybrid classifier.And a new weight algorithm for these classifiers is given.In ns-2 simulation,LDM-Satellite has a better AUC(0.9885)than the single-model machine learning classification algorithms.The accuracy of loss classification even exceeds 98%,higher than traditional TCP protocols.Moreover,compared with the existing protocols used for satellite networks,LDM-Satellite not only improves the throughput rate but also has good fairness.

    Keywords: LEO Satellite Networ;TCP congestion control;concept drift detection;ensemble learning;loss classification

    I.INTRODUCTION

    Satellite communication plays an irreplaceable role in the current and future communication systems [1].Among them,the LEO satellite has become a research hotspot in recent years due to its proximity to the ground and short propagation delay[2].However,the high link error rate in LEO satellite network results in an increasing probability of packet loss,which greatly affects the communication quality[3].

    There have been some methods for classifying the types of packet loss,wireless link errors or congestion.[4] used some network parameters,like RTTs,ROTTs,and IAT to form classification rules.Biaz[5],mBiaz[6],and Statistical Packet Loss Identification(SPLD) [7] selected the packet arrival time interval,Zigzig [8] and Spike [9] used one-way transmission time,and the Vegas predictor [10] chose The round trip time as parameter,then set a decision threshold.However,these methods have limitations because it is difficult to determine the decision threshold.In addition,only one feature cannot obtain high classification accuracy[11,12].Then,researchers proposed to combine multiple features and algorithms in data mining and machine learning.They made decision based on a driving model by learning the correlation between features.In [13],the machine learning classification method was first proposed.[14] used a Naive Bayes model to classify the loss types.However,the classification accuracy of these single model is greatly affected by the number of samples and features.[15]analyzed the classification accuracy of multiple machine learning models,the classification accuracy of the ensembl learning method is the highest.

    Although the ensemble classification model has the best performance,the classification accuracy is greatly affected by the concept drift [16,17].When concept drift occurs,the probability of packet loss increases,and along with the changing data flow distribution,the distribution of lost packets also changes,resulting in a reduction in the accuracy of the current classification model [18].If the occurrence of concept drift can be detected in advance and the classification model adjusted effectively,the cause of packet loss will be confirmed faster [19,20].Gama et al.[21]proposed a drift detection method (DDM) for binary classification.However,this method based on error rate cost high.EDDM [22] is an optimized version of DDM,which is improved based on the average distance and standard deviation between two consecutive errors.[23] proposed a frame detection concept drift(ADWIN)based on a sliding window that changes according to whether concept drift occurs [24].However,existing research based on concept drift only consider ground scenarios where the network environment is stable and the data distribution does not change dynamically.The data distribution in the LEO satellite network changes frequently and the concept drift is greater.

    We proposed a new packet loss classification scheme (LDM-Satellite) for LEO satellite networks.As we know,this is the first article to consider concept drift in the research of loss classification.Base on the distribution characteristics of the data flow in the network and the hybrid ensemble learning framework,with the goal of maximizing the difference of multiple base classifiers,we construct a new weight algorithm,by weighting multiple base classifiers,determining the type of packet loss.

    The rest of the paper is organized as follows: Section II introduces the overall framework of the proposed LDM-Satellite.Section III is the principle and specific implementation of each module.Section IV is the experimental results,including the performance comparison of LDM-Satellite classification accuracy and Goodput.Finally,Section V is summary.

    II.LDM-SATELLITE FRAMEWORK DESIGN

    The framework of LDM-Satellite is shown in Figure 1.It includes three parts: concept drift detection module,packet loss data cache module,and classifier integration module.

    Figure 1.LDM-Satellite architecture.

    Figure 2.D_ cache caches data samples in the most recent time T.

    The data stream first passes the concept drift detection module.If no concept drift occurs,hand over the lost data packet to the classifier in integration module to determine the type of loss,and then update the weight of the corresponding base classifier.If concept drift,it indicates that the network topology has changed,or the communication link has been switched,etc.,causing the distribution characteristics of the data flow changed.Therefore,we can directly update the base classification model without waiting until the accuracy of the ensemble classifier obtained,which greatly improve the classification efficiency of the model.In addition,for updating the model online,every time after classification,here we do not directly discard the collected lost packets,but first move them to the cache.It always remembers the information of lost packets from the current to the past T time.When concept drift,these samples in the cache are used to train new base classifier.The specific introductions of the three modules are in Section III.

    III.LDM-SATELLITE MODULE IMPLEMENTATION

    3.1 Concept Drift Detection Module

    Based on the dual threshold detection method,we proposes a corresponding window adjustment strategy in this paper,which makes the decision more timely and effective.

    After passing through the window,the data stream S is divided into continuous data blocks S={D1,D2,···Dt,Dt+1,···}.The sample in each data block isXt=where(i=1···n)represents n samples features.We use the unidirectional delay of the packet,the time interval between the last normally arrived packet and the first outof-order packet received,and the number of consecutive lost packet to be the features of the lost packet.ytis the class label of the sample at time t.After features are determined,dual thresholds are set according to the minimum classification error ratepminand the minimum standard deviationδmin.Based on these thresholds,we can detect the concept drift precisely.

    The size of sliding window is adjusted according to the detect result.However,if the window is too large,the time point where concept drift occurs may be missed.If the window is too small,the detection is inefficient.In view of the above problems,this paper proposes a segmented window adjustment strategy,which is different from the previous single adjustment method.This strategy sets more accurate and effective window adjustment methods for different judgment results.Details as follows:

    1.Whenpt+δt

    2.Whenpmin+αδmin

    3.Whenpt+δt >βpmin+δmin,concept drift has occurred.We need to compress window,so setwt+1=μwt.At this time,the data distribution in the network environment have changed,so the model is no longer applicable.There needs a new base classifier.

    Whereα,βis weighting factors and they are two constants,α<β.wtis the current window size andwt+1is the window size at the next moment.FurthermoreWbis the base window size.μrepresents the window change factor,Calculated as follows:

    Wherepmaxis the maximum value of classification error rate.

    3.2 Lost Data Cache Module

    When concept drift occurs,a new base classifier needs trained.Considering the time correlation between data samples,a data cache D_cache is set here.Following the ”first in first out” principle,we save the information of the lost packets.When concept drift detected,we use these samples to train the base classifier.

    If the packet lost and the current cache queue Q is not full,adding the information of this lost packet to the Q,as shown in Figure 2.Otherwise,in order to ensure the freshness of the data and the adaptation of the classification model,we removing information of old data before time T from the queue.If there is no packet lost,unnecessary information need not cached,so we directly discard it.The samples that cached in the D_ cache will be used for online training of the base classifier.

    3.3 Hybrid Integration Module of Classifier

    In this paper,we build a hybrid integration framework with multiple base classifiers and a naive Bayes classifier.Moreover,a weight algorithm of base classifier based on incremental learning is proposed.Finally,we combine the weighted classification result of base classifiers and naive Bayes classifier,which is used for online classifying the type of packet loss.The following is the explanation of this module in depth through the offline training of the base classifier and the online update based on concept drift detection.

    1.Offline training phase

    The hybrid integration framework that we proposed is shown in Figure 3,whereDirepresents the current i-th sample data block,Ciis the i-th base classifier,wiis the weight of this classifier,and K represents the number of classifiers that used for ensemble.If the current number of base classifiers is less than K,then useDito construct a new base classifierCiand assign corresponding weights to it.Otherwise,use the most recent K data blocks to construct a naive Bayes classifierC′.For the sample X inDi,in the naive Bayes classifier,the sample category is determined by the maximum posterior probability.The probability that sample X belongs to categoryymis:

    Figure 3.Hybrid integration framework.

    Where P(X)is constant,therefore,formula(2)can be simplified to:

    Where P(Ym)is the prior probability of categoryYm.In Naive Bayes,it is assumed that the features of the sample are independent of each other,so:

    WhereP(χi |Ym) is the conditional probability of the i-th featurexiwhen the sample belongs to theYmclass.According to formula (2) (3) (4),the decision equation of the naive Bayes classifier can be derived:

    The weight allocation algorithm based on incremental learning is as follows: first,the base classifierKiis trained with the data blockDi,and each training sample is given a weightαj,where j is the number of times the sample is processed.The mean square error of the available base classifierKion the sample setDiis:

    Where|Di|is the number of samples in the data setDi.Then assign weights to each base classifier based on the classification results:

    In order to prevent the denominator in Equation(7)from being 0,add a small enough positive valueε.Then update the weightαjof the samples in the data setDi.By increasing the weight of the wrongly classified samples,the base classifier will focus more on the wrongly classified samples.The sample weights are updated as follows:

    Finally,all samples in the data blocksDi?1,Di?2,···,D1,are used as training samples for the base classifierKi.After each training is completed,new weights are assigned to the samples according to Equation (8).The weight ofαjis based on the classification errorδiof the current sample in Equation (6),and the weightwiof each base classifier is updated according to Equation(7).At this point,we obtain the simple Bayesian and base classifiers that required for classification.

    2.Online classification stage

    When distinguishing the type of packet loss online,the classifier in the ensemble module is updated in real time based on the concept drift detection result and the online sample classification result.When a concept drift occurs,the new base classifier is trained,and the classifier with the worst replacement performance is selected based on the weight.Figure 4 is a block diagram of the online update of the classifier.

    Figure 4.Block diagram of online update of classification model.

    When detect concept drift,the data in the cache module is used to train a new base classifierand base on the above formula (6) (7) to set weight.Then update the base classifier queue at the same time.Finally integrate multiple base classifiers with weights and naive Bayes classifiers to get the final classifier:

    The former part of formula (9) is the result of the classifier,whereCiis the i-th base classifier currently ensemble,wiis its weight,through the function sign()and transformation,the final classification result is 1 or 0.That is,packet loss due to congestion or wireless error.The second part is the naive Bayes classifier,which not only eliminates the influence of noisy data,but also weights the classification results of the base classifier to improve the accuracy of packet loss classification.

    IV.EXPERIMENTAL RESULTS

    We use the simulation environment of Figure 5 to evaluate LDM-Satellite.In this scenario,in addition to multiple LEO satellites and inter-satellite links in the satellite network,there are multiple sending and receiving ends connected to the earth station.Each cable and satellite link uses HOL priority scheduling queues.We set the number of user connections N=20,the capacity of the satellite link c=1300 segments/s,corresponding to the TCP field of 1000 bytes,the value is close to 10Mb/s.The buffer size of the satellite uplink is 50 segments,the maximum congestion window size is maxCwnd=64 segments,and the buffer size of each receiving end is recCwnd=512 segments.The value of RTT is set to 50ms.The packet loss rate caused by link errors in the satellite link varies from 10?5to 10?1.

    Figure 5.Simulation scenario of the satellite network.

    Figure 6.Confusion matrix for packet loss classification.

    The training data set of this paper was obtained through the network simulator NS-2[25].In our study,collecting 35,441 lost data packets(22,426 are due to congestion).Figure 6 is the confusion matrix of LDMSatellite’s classification results on this data set,where 1 represents congestion(CL),0 represents wireless error(LE),dark blue represents the result of correct classification,and white represents the result of incorrect classification.

    Figure 7.Comparison of ROC curves of LDM-Satellite and other machine learning methods.

    According to the classification result of Figure 6,the precision rate Precision=0.984 and the recall rate Recall=0.987.In order to evaluate the classification performance better,based on the accuracy rate and recall rate,we calculate the f1_score,which is more than 0.985.Therefore,it is proved that the classification accuracy of LDM-Satellite is high.Moreover,we compare LDM-Satellite with several common classification algorithms such as LogisticRegression,DecisionTree,RandomForest,and GradientBoosting in Figure7.We can see from the ROC curve that LDMSatellite is significantly better than other classification algorithms.

    In order to compare their performance in more detail,we get Table 1.Two new TCP variant protocols,Veno and WestWood are added.As shown,the classification performance of the machine learning algorithms is far superior to the traditional TCP variant protocol.LDM-Satellite and Gradient Boosting these two ensemble methods have a higher AUC value than other single classifier.In terms of time consumption,Decision Tree takes the shortest time,but the misclassification rate is too high.Traditional TCP protocol classify lost packet based on multiple arriving ACKs or certain variables,such as RTT’s single threshold.These variable information need to be obtained before classification,so it takes too long.Moreover,the parameters are affected by many factors,so the final classification result is unstable,and the reason for the loss cannot be accurately got.

    Table 1.Comparison of various classification methods.

    Table 2 is the classification performance under different packet loss rates,from comparing the TCP protocol with the LDM-Satellite and other commonly used TCP protocols,such as TCP Reno,TCP Veno,and TCP WestWood+.The random packet loss rate is 10?5to 10?1.We can see that,as packet loss rate increases,TCP Reno and TCP WestWood+will randomly lose packet.The probability that a packet is misclassified as congestion increases.The classification performance of TCP Veno is closely related to the value ofβ,hereβis 5.For the proposed LDMSatellite,the accuracy rate of loss classification exceeds 98%,which can effectively avoid unnecessary reduction of congestion windows and improve network transmission performance.

    Table 2.Comparison of classification results under different packet loss rates.

    Figure 8 is throughput rates of LDM-Satellite and WestWood+,Veno,and Reno in different scenarios.In (a),the RTT is 50ms and the packet loss rate is set to 2%.It can be seen that the Goodput of all protocols is low when the bandwidth is low.However,as the bandwidth increases,the performance of LDM-Satellite is far superior to the others.In(b),the bandwidth and packet loss rate are 10Mbps and 2%,respectively.As Delay increases,the overall Goodput of TCP variants gradually declines,but Goodput of LDM-Satellite is always higher.Because the traditional TCP protocol adjusts the size of the congestion control window through predefined rules,which is too conservative.LDM-Satellite can quickly adjust the congestion window size based on concept drift detection and high-precision classification.Therefore,LDM-Satellite greatly improves Goodput under different bandwidth and delay scenarios.

    At the end of the experiment,we compare the throughput and fairness of the LDM-Satellite with the TCP protocols that are suitable for satellite networks,such as Hybly,Peach+,etc.The results are shown in Figure 9 and Figure 10.From Figure 9,in the case of low link error rate,Goodput of all protocols is relatively high,among which LDM-Satellite,Hybla and NewReno are closer to the link capacity c=1300 segments/s.In addition,as the packet loss rate increases,according to the adjustment of the congestionwindow,the value of Goodput decreases.However,LDM-Satellite has a better Goodput,especially when the packet loss rate is very high,for example,when the packet loss rate is 10?1,the Goodput of LDM-Satellite can reach 92%with the link capacity c.

    Figure 8.Comparison of throughput rates between LDMSatellite and WestWood+,Veno,Reno in different scenarios.(a)Under different bandwidths RTT is 50ms,loss rate is 2%.(b)Under different delaysbandwidth is 10Mbps,loss rate is 2%.

    Figure 9.Comparison of Goodput with different protocols for LEO.

    Figure 10.Fairness comparison between LDM-Satellite and multiple LEO satellite TCP.

    Figure 10 is a fairness index chart of LDM-Satellite and various TCP protocols for satellite networks.It presents,as the packet loss rate increases,the Fairness value of each version of the TCP protocol increases,and all are close to 1.LDM-Satellite guarantees better fairness and will not occupy network bandwidth too aggressively.

    V.CONCLUSION

    In this article,we propose a new loss classification strategy of TCP packet (LDM-Satellite) for LEO satellite networks,which fully considers the impact of satellite network dynamics on data distribution characteristics.Since the ensemble classification model is greatly affected by concept drift,this is the first paper that innovatively proposes to detect the concept drift of the data stream before classification.By detecting and then classifying,the current packet loss type can be more accurately determined according to the network status.In addition,this paper also builds a hybrid integration framework of base classifiers and a Naive Bayes classifier,and integrates multiple classifiers by a new weight distribution algorithm.In simulation experiments,our method has higher accuracy than other classification algorithms.Under different packet loss rates,LDM-Satellite performs better.Compared with TCP protocols such as cherry,Hybla,and peach+,it effectively improves Goodput.What’s more,LDMSatellite also has better fairness for other protocols and fairness in resource allocation.

    ACKNOWLEDGEMENT

    The authors wish to thank every responsible reviewer for his/her comments.The authors also wish to acknowledge the Wireless Network Positioning and Communication Integration Research Center in BUPT for financial support.

    国产色婷婷99| 99riav亚洲国产免费| 九九爱精品视频在线观看| 午夜福利在线在线| 久久人人爽人人片av| 国产伦理片在线播放av一区 | 人妻夜夜爽99麻豆av| 最近视频中文字幕2019在线8| 亚洲人成网站在线观看播放| 亚州av有码| 99热这里只有精品一区| 免费观看a级毛片全部| 久久精品国产99精品国产亚洲性色| 久久久久久九九精品二区国产| 亚洲成人av在线免费| 狠狠狠狠99中文字幕| 国产精品.久久久| 日日干狠狠操夜夜爽| 在线播放无遮挡| 九九热线精品视视频播放| 人人妻人人看人人澡| 久久久精品94久久精品| kizo精华| 欧美日韩乱码在线| 国产精品.久久久| 毛片一级片免费看久久久久| 看十八女毛片水多多多| 亚洲婷婷狠狠爱综合网| 亚洲人成网站在线播放欧美日韩| 两个人的视频大全免费| 日本欧美国产在线视频| 我的老师免费观看完整版| 国产精品美女特级片免费视频播放器| 国产成人精品久久久久久| 国产老妇伦熟女老妇高清| 国产乱人视频| 人妻系列 视频| 国产 一区精品| 精品久久久久久成人av| 中文字幕熟女人妻在线| 色尼玛亚洲综合影院| or卡值多少钱| 亚洲熟妇中文字幕五十中出| 日本五十路高清| 在线a可以看的网站| 日韩一区二区视频免费看| 精品日产1卡2卡| 精品久久国产蜜桃| 免费看光身美女| 欧美性猛交╳xxx乱大交人| 国产色爽女视频免费观看| 精品久久久久久久久亚洲| 成年免费大片在线观看| 看非洲黑人一级黄片| 国产在线精品亚洲第一网站| 国产精品一区二区三区四区久久| 国产伦理片在线播放av一区 | 国产成人午夜福利电影在线观看| 色视频www国产| 两个人视频免费观看高清| 美女黄网站色视频| 男女做爰动态图高潮gif福利片| 亚洲av一区综合| 日韩,欧美,国产一区二区三区 | www日本黄色视频网| 最近最新中文字幕大全电影3| 在线免费观看的www视频| 99热精品在线国产| 天美传媒精品一区二区| 欧美日韩一区二区视频在线观看视频在线 | 亚洲av第一区精品v没综合| 波野结衣二区三区在线| 能在线免费观看的黄片| 精华霜和精华液先用哪个| 久久久久久久亚洲中文字幕| 青春草亚洲视频在线观看| 波野结衣二区三区在线| 在线免费观看不下载黄p国产| 久久人人精品亚洲av| 亚洲久久久久久中文字幕| 床上黄色一级片| 国产精品.久久久| 国产麻豆成人av免费视频| 国产精品无大码| 日韩视频在线欧美| 最近中文字幕高清免费大全6| 国产高清不卡午夜福利| 99热全是精品| 亚洲一级一片aⅴ在线观看| 在线播放无遮挡| 给我免费播放毛片高清在线观看| 亚洲精品久久国产高清桃花| 身体一侧抽搐| 韩国av在线不卡| 丰满人妻一区二区三区视频av| 久久久久久久久中文| 欧美在线一区亚洲| 美女内射精品一级片tv| 国产三级中文精品| 久久精品国产鲁丝片午夜精品| 精品午夜福利在线看| www.av在线官网国产| 熟女人妻精品中文字幕| 九九久久精品国产亚洲av麻豆| 久久久久久伊人网av| 久久人妻av系列| 中文字幕人妻熟人妻熟丝袜美| 国产国拍精品亚洲av在线观看| 国产精品99久久久久久久久| 亚洲精品国产av成人精品| 免费观看在线日韩| 在线免费观看不下载黄p国产| 看非洲黑人一级黄片| 亚洲成av人片在线播放无| 免费观看的影片在线观看| 亚洲精品成人久久久久久| 精品久久久久久久人妻蜜臀av| 久久6这里有精品| 亚洲真实伦在线观看| 青春草视频在线免费观看| 亚洲五月天丁香| 国产爱豆传媒在线观看| 国产在视频线在精品| 91在线精品国自产拍蜜月| 波多野结衣高清无吗| 国产 一区 欧美 日韩| 综合色丁香网| 日本免费一区二区三区高清不卡| 午夜福利在线在线| 久久精品夜夜夜夜夜久久蜜豆| 91久久精品电影网| 久久精品91蜜桃| 免费无遮挡裸体视频| 免费一级毛片在线播放高清视频| 春色校园在线视频观看| 久久99热这里只有精品18| 伦理电影大哥的女人| 日韩一区二区三区影片| 国产一区二区亚洲精品在线观看| 国产精品1区2区在线观看.| 麻豆精品久久久久久蜜桃| 成年女人永久免费观看视频| 国产午夜福利久久久久久| 亚洲av电影不卡..在线观看| 亚洲精品亚洲一区二区| 午夜久久久久精精品| 日本一二三区视频观看| 国产黄色小视频在线观看| 日韩精品青青久久久久久| 亚洲av成人精品一区久久| 国产亚洲av嫩草精品影院| 少妇丰满av| 亚洲经典国产精华液单| 精品久久久久久成人av| 亚洲国产精品久久男人天堂| av在线天堂中文字幕| ponron亚洲| 亚洲人成网站高清观看| 18禁裸乳无遮挡免费网站照片| 日韩中字成人| 欧美不卡视频在线免费观看| 99久国产av精品| 国产黄片视频在线免费观看| 亚洲七黄色美女视频| 久久99蜜桃精品久久| 91狼人影院| 一级av片app| 成人午夜高清在线视频| 天堂网av新在线| 三级毛片av免费| 国产成人91sexporn| 亚洲色图av天堂| 亚洲精品456在线播放app| 搡老妇女老女人老熟妇| 免费看a级黄色片| 亚洲精华国产精华液的使用体验 | 国产激情偷乱视频一区二区| 精品久久久久久久人妻蜜臀av| 色尼玛亚洲综合影院| 天天躁日日操中文字幕| 国产蜜桃级精品一区二区三区| 久久久久久久久久久免费av| 亚洲图色成人| 亚洲精品国产av成人精品| 欧美精品国产亚洲| 在线观看av片永久免费下载| 人人妻人人看人人澡| 性欧美人与动物交配| 少妇裸体淫交视频免费看高清| 国产精品久久久久久亚洲av鲁大| 国产伦精品一区二区三区四那| 人妻少妇偷人精品九色| 国产精品精品国产色婷婷| 99国产极品粉嫩在线观看| 亚洲最大成人中文| 99久国产av精品| 插阴视频在线观看视频| 欧美3d第一页| 日韩在线高清观看一区二区三区| 久久精品91蜜桃| 日本一本二区三区精品| 麻豆国产av国片精品| 国产精品爽爽va在线观看网站| 波多野结衣高清无吗| 中文资源天堂在线| 欧洲精品卡2卡3卡4卡5卡区| 国产成人a∨麻豆精品| 亚洲国产欧美在线一区| 亚洲精品自拍成人| 伊人久久精品亚洲午夜| 尤物成人国产欧美一区二区三区| 国模一区二区三区四区视频| 中文精品一卡2卡3卡4更新| 91午夜精品亚洲一区二区三区| 欧美潮喷喷水| 亚洲av一区综合| 少妇被粗大猛烈的视频| 在线天堂最新版资源| 午夜免费男女啪啪视频观看| 亚洲精品456在线播放app| 国模一区二区三区四区视频| 一边亲一边摸免费视频| 亚洲自拍偷在线| 天天一区二区日本电影三级| 丝袜喷水一区| 桃色一区二区三区在线观看| 校园人妻丝袜中文字幕| 亚洲av免费在线观看| 久久99蜜桃精品久久| 九九在线视频观看精品| 波多野结衣巨乳人妻| 在线国产一区二区在线| 国产午夜福利久久久久久| 日日撸夜夜添| 久久久久久国产a免费观看| 丰满乱子伦码专区| 99国产精品一区二区蜜桃av| 97热精品久久久久久| 国产精品久久久久久久久免| 亚洲欧美中文字幕日韩二区| 卡戴珊不雅视频在线播放| 国产精品日韩av在线免费观看| 国产精品无大码| 亚洲成人久久性| 日韩国内少妇激情av| 日韩欧美国产在线观看| 热99re8久久精品国产| 美女内射精品一级片tv| 成人漫画全彩无遮挡| 日韩欧美三级三区| 精品人妻偷拍中文字幕| 日日撸夜夜添| 久久6这里有精品| 亚洲精品久久国产高清桃花| 国内精品宾馆在线| 青春草国产在线视频 | 色哟哟哟哟哟哟| 午夜福利高清视频| 国产精品.久久久| 少妇的逼水好多| 亚洲人成网站高清观看| 国产精品久久久久久久久免| 在线免费十八禁| 一个人观看的视频www高清免费观看| 亚洲18禁久久av| av国产免费在线观看| 成人毛片a级毛片在线播放| 亚洲色图av天堂| 国产精品电影一区二区三区| 亚洲一区高清亚洲精品| 亚洲va在线va天堂va国产| 综合色丁香网| 久久精品综合一区二区三区| 免费av毛片视频| 神马国产精品三级电影在线观看| 国产精品.久久久| 国产成人精品一,二区 | 国产成人freesex在线| 成人午夜精彩视频在线观看| 尤物成人国产欧美一区二区三区| 热99re8久久精品国产| 男人的好看免费观看在线视频| 欧美性猛交黑人性爽| 丰满人妻一区二区三区视频av| 久久欧美精品欧美久久欧美| 国产精品一区二区在线观看99 | 国产成人a区在线观看| 中文字幕免费在线视频6| 久久久久性生活片| 久久九九热精品免费| 亚洲高清免费不卡视频| 国产精品爽爽va在线观看网站| 国产精品一及| 26uuu在线亚洲综合色| 99国产极品粉嫩在线观看| 亚洲成人久久性| 欧美不卡视频在线免费观看| 国产伦理片在线播放av一区 | 天堂av国产一区二区熟女人妻| 亚洲久久久久久中文字幕| 干丝袜人妻中文字幕| 中文字幕精品亚洲无线码一区| 国产精品久久视频播放| 嫩草影院精品99| 亚洲国产精品sss在线观看| 亚洲成人久久性| 一级黄色大片毛片| 亚洲色图av天堂| 中文资源天堂在线| 国产伦一二天堂av在线观看| 老师上课跳d突然被开到最大视频| 啦啦啦啦在线视频资源| 非洲黑人性xxxx精品又粗又长| 男人的好看免费观看在线视频| av在线播放精品| 国产黄片视频在线免费观看| 搡老妇女老女人老熟妇| 亚洲内射少妇av| 国产国拍精品亚洲av在线观看| 亚洲五月天丁香| 国产伦一二天堂av在线观看| 黄色欧美视频在线观看| 欧美一级a爱片免费观看看| 国产成人a区在线观看| 黄色欧美视频在线观看| 99热这里只有是精品50| 国内精品久久久久精免费| 久久精品国产亚洲av天美| 日本撒尿小便嘘嘘汇集6| 久久精品久久久久久久性| 国产美女午夜福利| 精品无人区乱码1区二区| 国产亚洲精品久久久com| 99久久精品国产国产毛片| 午夜精品在线福利| 18禁裸乳无遮挡免费网站照片| 国产一区二区在线av高清观看| 91麻豆精品激情在线观看国产| 一区福利在线观看| 亚洲欧洲国产日韩| 色综合亚洲欧美另类图片| 国产三级在线视频| 国产精品国产高清国产av| 在线国产一区二区在线| 亚洲在线自拍视频| 男女那种视频在线观看| 国产在线精品亚洲第一网站| 精品人妻一区二区三区麻豆| 国产亚洲av片在线观看秒播厂 | 少妇的逼水好多| 久久热精品热| 亚洲18禁久久av| 美女内射精品一级片tv| 久久久色成人| 又爽又黄a免费视频| 欧美三级亚洲精品| 男女啪啪激烈高潮av片| 亚洲成人精品中文字幕电影| 欧美+亚洲+日韩+国产| 日日啪夜夜撸| 五月伊人婷婷丁香| 国内揄拍国产精品人妻在线| 91麻豆精品激情在线观看国产| 久久久成人免费电影| 中文精品一卡2卡3卡4更新| 日韩强制内射视频| 69av精品久久久久久| 亚洲七黄色美女视频| 能在线免费看毛片的网站| 精品一区二区三区视频在线| 成人美女网站在线观看视频| 成年女人看的毛片在线观看| av在线天堂中文字幕| 精品人妻熟女av久视频| 啦啦啦韩国在线观看视频| 麻豆成人av视频| 国产三级中文精品| 亚洲内射少妇av| av女优亚洲男人天堂| 美女被艹到高潮喷水动态| 伦理电影大哥的女人| 人妻夜夜爽99麻豆av| 成人三级黄色视频| 精品久久久久久久久亚洲| 亚洲自偷自拍三级| 深爱激情五月婷婷| 一边摸一边抽搐一进一小说| 午夜福利视频1000在线观看| 欧美xxxx性猛交bbbb| 一级av片app| 啦啦啦观看免费观看视频高清| 亚洲丝袜综合中文字幕| 亚洲在久久综合| 在线观看免费视频日本深夜| 岛国毛片在线播放| 中文资源天堂在线| 亚洲性久久影院| 久久亚洲国产成人精品v| 婷婷精品国产亚洲av| 天天躁夜夜躁狠狠久久av| 哪个播放器可以免费观看大片| 久久精品国产亚洲av香蕉五月| 亚洲国产欧美在线一区| 欧美日韩乱码在线| 18禁在线无遮挡免费观看视频| 亚洲欧美清纯卡通| 国产亚洲欧美98| 中文字幕免费在线视频6| 黄色欧美视频在线观看| 黄色配什么色好看| 一进一出抽搐gif免费好疼| 最好的美女福利视频网| 九九久久精品国产亚洲av麻豆| 又粗又硬又长又爽又黄的视频 | 国产精品女同一区二区软件| 国模一区二区三区四区视频| 热99re8久久精品国产| 国内久久婷婷六月综合欲色啪| 青春草视频在线免费观看| 少妇高潮的动态图| 亚洲激情五月婷婷啪啪| 男女做爰动态图高潮gif福利片| 国产男人的电影天堂91| 亚洲aⅴ乱码一区二区在线播放| 男人的好看免费观看在线视频| 精品无人区乱码1区二区| 国产91av在线免费观看| 在线国产一区二区在线| 婷婷亚洲欧美| 男女啪啪激烈高潮av片| 国产精品一及| 欧美激情在线99| 最近的中文字幕免费完整| 一本精品99久久精品77| 日韩,欧美,国产一区二区三区 | 国产高清三级在线| 日本熟妇午夜| 国产精品久久久久久亚洲av鲁大| 搡女人真爽免费视频火全软件| 久久精品国产亚洲av香蕉五月| 久久99热这里只有精品18| 一级二级三级毛片免费看| 麻豆成人午夜福利视频| 国产精品永久免费网站| 精品久久久噜噜| 色综合色国产| 免费看a级黄色片| 99久久无色码亚洲精品果冻| 能在线免费看毛片的网站| 91精品国产九色| 免费av观看视频| 成人毛片a级毛片在线播放| 我的女老师完整版在线观看| 搡老妇女老女人老熟妇| 久久九九热精品免费| 国内久久婷婷六月综合欲色啪| 国产成人午夜福利电影在线观看| 国语自产精品视频在线第100页| 欧美精品一区二区大全| 国产不卡一卡二| 精品久久国产蜜桃| 99久国产av精品国产电影| 女的被弄到高潮叫床怎么办| 国产午夜精品一二区理论片| 寂寞人妻少妇视频99o| 99热网站在线观看| 男女视频在线观看网站免费| 久久草成人影院| 日韩视频在线欧美| 欧美日韩一区二区视频在线观看视频在线 | 日本色播在线视频| 日韩强制内射视频| 美女 人体艺术 gogo| 日本一本二区三区精品| 人人妻人人澡人人爽人人夜夜 | 成人毛片a级毛片在线播放| 免费电影在线观看免费观看| 亚洲五月天丁香| 又爽又黄无遮挡网站| kizo精华| av天堂在线播放| 一本久久中文字幕| 国产伦一二天堂av在线观看| 精品久久久久久久久av| 成年av动漫网址| 欧美一区二区精品小视频在线| 免费大片18禁| 丝袜喷水一区| 国产三级在线视频| 国产精品久久久久久av不卡| 人人妻人人看人人澡| 国产黄a三级三级三级人| 亚洲国产色片| 亚洲人成网站在线观看播放| 亚洲精品日韩在线中文字幕 | 干丝袜人妻中文字幕| 赤兔流量卡办理| 亚洲av中文av极速乱| 欧美性猛交╳xxx乱大交人| 日本黄色片子视频| 国产精品乱码一区二三区的特点| av在线观看视频网站免费| 观看美女的网站| 如何舔出高潮| 国产精品一区二区在线观看99 | 久久久午夜欧美精品| 嫩草影院新地址| 国产精品不卡视频一区二区| 精品午夜福利在线看| 亚洲美女搞黄在线观看| 日本免费一区二区三区高清不卡| 我要搜黄色片| 日韩视频在线欧美| 男女下面进入的视频免费午夜| 国产亚洲av嫩草精品影院| 亚洲国产日韩欧美精品在线观看| 国产一区二区亚洲精品在线观看| 午夜爱爱视频在线播放| 麻豆成人av视频| 热99在线观看视频| 美女cb高潮喷水在线观看| 欧美最黄视频在线播放免费| 永久网站在线| 日韩强制内射视频| 精品99又大又爽又粗少妇毛片| 国产精品乱码一区二三区的特点| 村上凉子中文字幕在线| 青春草亚洲视频在线观看| 国产精品蜜桃在线观看 | 看免费成人av毛片| 色吧在线观看| 最近2019中文字幕mv第一页| 两性午夜刺激爽爽歪歪视频在线观看| 少妇人妻一区二区三区视频| 天天躁日日操中文字幕| 午夜精品一区二区三区免费看| 成人毛片60女人毛片免费| 观看美女的网站| 亚洲国产精品国产精品| 亚洲一区二区三区色噜噜| 精品久久国产蜜桃| 亚洲精品456在线播放app| 欧美日韩一区二区视频在线观看视频在线 | 国产一区二区亚洲精品在线观看| 99热全是精品| 变态另类成人亚洲欧美熟女| 一边亲一边摸免费视频| 在线免费观看不下载黄p国产| 国产成人一区二区在线| 久久婷婷人人爽人人干人人爱| 在线国产一区二区在线| 中文欧美无线码| 毛片一级片免费看久久久久| 黄色欧美视频在线观看| 国产精品福利在线免费观看| 能在线免费看毛片的网站| 欧美变态另类bdsm刘玥| 日韩精品有码人妻一区| 国产老妇伦熟女老妇高清| 熟妇人妻久久中文字幕3abv| 99久久精品热视频| 高清毛片免费看| 男人舔奶头视频| videossex国产| 在线国产一区二区在线| 日本色播在线视频| 在线免费十八禁| 99久久九九国产精品国产免费| 亚洲av男天堂| 婷婷色av中文字幕| 熟女电影av网| 青青草视频在线视频观看| 国产 一区 欧美 日韩| 国产真实伦视频高清在线观看| 久久6这里有精品| 国产伦精品一区二区三区视频9| 一级毛片我不卡| 麻豆成人av视频| 国产黄a三级三级三级人| 成人鲁丝片一二三区免费| 国产精品久久久久久久电影| 久久综合国产亚洲精品| 联通29元200g的流量卡| 看非洲黑人一级黄片| 久久精品夜色国产| 国产熟女欧美一区二区| 搡老妇女老女人老熟妇| 亚洲国产精品久久男人天堂| .国产精品久久| 国产精品精品国产色婷婷| 久久久久久久久久久丰满| 人人妻人人澡欧美一区二区| 春色校园在线视频观看| 白带黄色成豆腐渣| 最近视频中文字幕2019在线8| 特大巨黑吊av在线直播| 国产精品综合久久久久久久免费| 天美传媒精品一区二区| 亚洲av中文字字幕乱码综合| 99久久中文字幕三级久久日本| 51国产日韩欧美| 国产精品综合久久久久久久免费| 午夜激情欧美在线| 亚洲国产精品sss在线观看| 亚洲av电影不卡..在线观看| eeuss影院久久| 天堂影院成人在线观看| 只有这里有精品99| 简卡轻食公司| 亚洲电影在线观看av| 69人妻影院| 18+在线观看网站| 中文精品一卡2卡3卡4更新| 久久精品国产鲁丝片午夜精品| 欧美+亚洲+日韩+国产|