• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Impact of Tropical Cyclone Avoidance on Fishing Vessel Activity over Coastal China Based on Automatic Identification System Data during 2013–2018

    2022-12-09 03:20:52WeihuaFangCunminGuoYinanHanRongfaQing

    Weihua Fang · Cunmin Guo · Yinan Han · Rongfa Qing

    Abstract Tropical cyclones (TCs) may cause severe impacts on the activities of coastal fishing vessels.Due to the unavailability or unacceptability of detailed Automatic Identification System (AIS) data that are capable of differentiating fishing activity from navigation, as well as the lack of detailed models and observation data of TC winds, few studies have provided quantitative and reliable assessment of the impacts of TCs on fishing activities.In this study, we modeled snapshots for the TC winds of 52 TCs over the Northwest Pacific (NWP) basin from 2013 to 2018, as well as daily fishing hours and daily hours of presence (hereafter “vessel hours”) of fishing vessels.Based on these data, the spatiotemporal pattern of fishing vessel activity over off-shore China was first analyzed and mapped.Then, a TC wind hazard index and absolute and relative impact indices were proposed to assess the impact of the 52 TCs on fishing and vessel hours.Their relationship was then fitted with the cumulative distribution function (CDF) of the log-normal distribution.The results show that in the 2013?2018 period, the most active fishing areas were located in the South China Sea.In each instance, an increase was first observed in the initial several years; then a decrease followed in the yearly total fishing hours per vessel in the remaining years.The relative impact index was significantly correlated to the TC wind hazard index proposed in this study.Based on the quantitative relationship between the specified TC hazard index and the impact indices, it is possible to implement a pre-cyclone rapid loss assessment due to TC avoidance in the future.

    Keywords Fishing hours · Fishing moratorium · Impact index · Tropical cyclone · Vessel hours

    1 Introduction

    Tropical cyclone (TC) disasters may have severe impacts on the activities of coastal fishing vessels.China’s total marine economic output value reached CNY 8.34 trillion (about USD 1.26 trillion) in 2018, and the contribution rate of fisheries exceeded 50% (MNR 2019).At the same time, marine fisheries in China face the threat of TC disasters in the Northwest Pacific (NWP) every year.In 2017, disasters in China caused direct economic losses to fisheries of approximately CNY 17.36 billion (about USD 2.57 billion), of which 64.3% were caused by TCs (MARA 2018a).Approximately 80?100 TCs are generated every year around the world, and approximately 1/3 are generated in the NWP (Fang and Shi 2012).About eight TCs make landfall on the China mainland every year in average.It is necessary to clarify the spatial and temporal patterns of China’s marine fishing vessel activities and to quantify the impact of TCs on them.

    Detailed Automatic Identification System (AIS) data, capable of distinguishing between fishing activity and sailing to and from fishing grounds, are difficult to access.Most existing studies of the spatiotemporal patterns of fishing vessel activities have been based on data from public reports or datasets such as the yearbooks of the Food and Agricultural Organization of the United Nations (FAO).These data sources include global annual fishing vessel information on the country scale (Anticamara et al.2011).However, spatially explicit maps of fishing efforts over different months or seasons remain unavailable (Guiet et al.2019).Some researchers have tried to use the gravity model, which distributes total fishing effort to units, like grounds or cells, based on a weighted index of attractiveness or importance that varies among different units, to reconstruct the global spatial distribution of fishing activities (Gelchu and Pauly 2007; Watson et al.2013).This method can only estimate theoretical fishing activities, based on the assumption that fishing activities are determined by the defined weighted index.Thus, it is still difficult to quantify a realistic, detailed picture of fishing activities (Yu et al.2014).

    Consequently, studies on losses to the fishing industry caused by TCs have mostly focused on direct losses, such as shipwrecks and damage to onshore processing and storage facilities, while little attention has been paid to the losses due to fishing suspension and production reduction.For example, some studies have evaluated direct losses based on field survey data, such as the number of shipwrecks in specific research areas, while there are few quantitative assessments of the losses caused by the suspension of fishing vessel activities (Xu et al.2005; Monteclaro et al.2018).Although some studies have taken into account indicators of fishermen’s income loss due to the suspension of fishing vessel activities, most of these efforts have been based on statistical data available in provincial or national units (Ren 2009; Han et al.2016).Few have used dynamic tracking data of fishing vessels to identify the patterns of fishing vessel activities during a specific TC, but when undertaken these efforts have lacked quantitative assessments (Zheng et al.2016).The common problem of such studies is the lack of both quantitative and dynamic analyses on fishing activity reduction during TC events.It is difficult to meet the requirements of dynamic and quantitative indirect loss assessment.

    In recent years, the application of vessel monitoring systems (VMSs) and AIS has made it possible to quantify real-time fishing vessel activities at high spatial resolutions.Researchers have integrated global AIS data, and have quantitatively estimated the distribution of global daily fishing vessel activity intensity.The spatial resolution of the results has reached approximately 1 km (Kroodsma et al.2018).This dataset provides support for further clarification of the spatial and temporal characteristics of regional fishing vessel activities and enables a dynamic assessment of the impact of TCs on fishing vessel activities.

    Based on this dataset, our study had two goals.The first was to quantitatively analyze the spatiotemporal characteristics of fishing vessel activities throughout China’s coastal area.The other was to quantitatively analyze the impact of TCs on China’s offshore fishing vessel activities.Specifi-cally, we first obtained the global daily fishing vessel activity distribution product based on AIS data and analyzed the spatiotemporal characteristics of fishing vessel activities in the offshore areas of China from 2013 to 2018.Then, we defined two absolute impact indices and two relative impact indices of a single TC on fishing vessel activities.This enabled us to quantitatively analyze the impact of 52 TCs on fishing and vessel activities near China’s offshore during the 6 years between 2013 and 2018.Our study provides support for understanding the large-scale tendencies of fishing vessel activities as well as a basis to dynamically and quantitatively assess the indirect losses to fisheries caused by TCs.

    2 Materials

    The study area covers the main fishing areas near the coastline of China.The data used in this study mainly include the historical TC track and intensity dataset and daily fishing hours (total hours that all vessels were fishing in the specific grid cell during a day) and vessel hours (total hours that all vessels were present in the specific grid cell during a day) dataset.Based on the two variables, fishing ratio, which is the ratio of fishing hours to vessel hours, has been calculated to reflect the overall utilization efficiency of fishing vessels.

    2.1 Fishing Moratorium in the Study Area

    The study area is defined as the sea area within the extent of 105°E—128°E and 17°N?42°N.Due to China’s seasonal fishing moratorium policy, fishing activities in the study area are suspended from approximately May to September every year.According to the regulations of the Ministry of Agriculture of China, the starting and ending times of the fishing moratorium are shown in Table 1.The boundaries of the different fishing moratorium zones are shown with white dotted lines in Fig.1, where Line #1 and Line #2 are 35°N and 26.5°N, respectively.Line #3 is the Fujian-Guangdong

    Table 1 Fishing moratorium in the study area

    Sea Boundary Line, which is the connection line between (117°31′37.40″E, 23°09′42.60″N) and (120°50′43″E, 21°54′15″N) (MARA 2018b).

    2.2 Best Tracks in the Northwest Pacific (NWP)

    Two data sources were used.One is the best track dataset of historical TCs in the NWP from the China Meteorological Administration (CMA), as shown in Fig.1 (Ying et al.2014).The other source is the International Best Track Archive for Climate Stewardship (IBTrACS) from the World Meteorological Organization (WMO) (Knapp et al.2010).The information used in the CMA dataset includes the central positions of TCs every six hours (part of observation intervals are three hours after 2017) and the central minimum pressure.The information used in the WMO data includes the wind radii of the TC track points observed by the Joint Typhoon Warning Center (JTWC).

    2.3 Fishing Vessel Activities in the Northwest Pacific (NWP)

    The dataset of global gridded daily fishing hours and vessel hours by Kroodsma et al.was used in this study.This dataset is derived from tens of billions of AIS records around the world since 2012, using convolutional neural network (CNN) methods to distinguish between the fishing and non-fishing status of fishing vessels with an overall accuracy greater than 90% (Kroodsma et al.2018).

    The main information of the dataset includes gear types, flags, daily fishing hours (t f) (Fig.2 c, d), daily vessel hours (t v) (Fig.2 a, b), and the Maritime Mobile Service Identity (MMSI) of fishing vessels present in every grid.The spatial resolution of the data is 0.01°, and the temporal resolution is one day.

    3 Methods

    In order to analyze the fishing activity patterns and quantify the relationship between TC hazard and its impact on fishing hours and vessel hours, this study defined the fishing activity intensity indicator, the TC impact index (including absolute and relative indices) on fishing activities, TC hazard index, and the fitting function.

    3.1 Spatiotemporal Patterns of Fishing Vessel Activities

    To analyze the interannual and intra-annual changes in fishing vessel activities in the study area, the average total fishing hours and vessel hours per vessel (mt fandmt v, respectively) were calculated by year and by month using Eq.1.

    where N is the total number of fishing vessels present in the study area during the calculation year or month;t f,t vare daily fishing hours and vessel hours in each 0.01° grid cell, respectively.

    3.2 Impact of Tropical Cyclones (TCs) on Fishing Vessel Activities

    Before defining the TC absolute/relative impact indices, the impact area was first defined.Then the baseline fishing hours and vessel hours were calculated to reflect the reference value under nondisaster conditions.

    3.2.1 Boundary of the Impacted Area

    According to the standard from CMA on issuing weather warning signals, the Blue warning for TCs will be issued if vessels might or have been affected by a TC within 24 hours and the maximum gust wind speed has been greater than the minimum wind speed of Beaufort scale eight (17.2 m/s).Under this circumstance, fishing vessels are required to take a detour or return to harbor (CMA 2007).

    In actual situations, the impacted area of TCs on fishing vessel activities should be greater than the scale eight wind radius range for two main reasons: (1) errors might existin the prediction of TC tracks; and (2) fishermen outside the forecasted scale eight wind radius will also take proactive measures for the purpose of risk prevention.In previous studies, an empirical method to delineate the boundary of the area impacted by TCs was to use the 500 km buffer zone (Elsberry 1987; Ren et al.2007).Considering the two problems mentioned above, the radius of the TC-impacted area was determined to be 500 km.

    3.2.2 Impact Indices of Tropical Cyclones (TCs) on Fishing Vessel Activities

    The first step is to specify TC’s impact start and end dates.The TC’s impact start date is the first day that the TC center reaches the 48 hour forecast area regulated by CMA.The boundary of the 48 hour forecast area is the line linked by (34°N, 132°E)—(22°N, 132°E)—(15°N, 125°E)—(15°N, 110°E) (China Weather 2010).The TC’s impact end date is the day that a TC goes beyond 500 km from the China land boundary after its landfall.

    The second step is to define the baseline vessel hoursb vand fishing hoursb fduring a TC.With reference to the definition used by the World Bank (Jovel and Mudahar 2010),b fandb vrepresent the assumedt fandt vunder nondisaster conditions.In this study, the averaget fandt vwithin 10 days before a TC’s impact starts and 10 days after TC’s impact ends are calculated asb fandb v, respectively.The formulas are as follows:

    wheret f(d) (Fig.3 b) andt v(d) represent the daily fishing hours and daily vessel hours on the dated;d 0represents the TC’s impact start date; andd 1represents the TC’s impact end date.

    The second step is to define the absolute impact indicesΔt vandΔt f, which refer to the total reduction in vessel hours and fishing hours, respectively, during a TC in each grid of the impacted area (Fig.3 c), as compared to the baseline hours.For each TC,Δt vandΔt fare calculated as follows:

    whereb vandb f(Fig.3 a) are the baseline vessel hours and baseline fishing hours during the TC, respectively; and D is the total number of TC impact days.

    We then calculate the maximum reduction rate of the total fishing hours and total vessel hours, respectively, across the impacted area during the TC.For each TC, the variations inT vandT fwith time (Fig.4) are first constructed, whereT vandT fare the sum oft vandt fvalues of all grids in the impacted area for each day, respectively; then, the baseline valuesB fandB v(Fig.4) are calculated using a similar method as mentioned before; next, the minimum values ofT fandT vduring the TC are identified, and their relative reduction rate toB fandB vis calculated.The results are relative impact index on fishing hours (IR f) and relative impact index on vessel hours (IR v), as shown in Eqs.8 and 9, respectively.

    whereT f(d)andT v(d)areT fandT von the dated, respectively;d 0andd 1are the dates of TC impact start and impact end, respectively (grey dashed lines in Fig.4);Dis the total number of TC impact days.

    When calculating the baseline, if part of the subject days is within the fishing moratorium period, theB fandB vare separately calculated for the moratorium status and nonmoratorium status.For example, theB ffor the moratorium status is the averageT fin all moratorium days within 10 days before TC’s impact start and 10 days after TC’s impact end.Then theIR fandIR vshould be separately calculated depending on whether the dates on whichT vandT freach the minimum are in moratorium status or not.That means if the minimumT fis in fishing moratorium status, theIR fshould be the relative reduction rate toB fto account for the moratorium status.

    3.3 Quantification of the Tropical Cyclone (TC) Wind Hazard Intensity

    Existing indices for measuring the TC wind hazard usually include the Accumulated Cyclone Energy (ACE), the Power Dissipation Index (PDI) (Emanuel 2005), the Chicago Mercantile Exchange Hurricane Index (CHI) (CME Group 2009), and the Willis Hurricane Index (WHI) (Owens and Holland 2010).Among these indices, the ACE and PDI consider the maximum wind speed (MWS) and duration of TCs.The CHI adds the maximum wind speed radius based on the ACE and PDI.The WHI further considers the moving speed of TC centers.Based on these indices, Li and Fang ( 2012) developed the Rapid Loss Index (RLI) to rapidly assess losses.

    For all the indices mentioned above, the MWS is used to reflect the instantaneous maximum wind speed in a TC.However, the MWS is not able to reflect the spatial distribution of the instantaneous wind speed field, which should be considered to assess TC wind hazards more accurately.Parametric wind field models can improve the hazard indices by quickly simulating the instantaneous spatial distribution of the TC wind speed field in any specified resolution (Tan and Fang 2018).

    Following the parametric wind field model combination for the NWP in Tan and Fang ( 2018), an advanced accumulated spatiotemporal cyclone wind hazard index (CWI) is proposed.First, a 1 km instantaneous wind field is simulated for each point of a TC track with a time interval of 6 hours.The Georgiou gradient model (Georgiou et al.1983) was used to simulate the asymmetry of the TC gradient wind field and the Yan Meng boundary model (Meng et al.1997) was used to convert gradient winds to surface winds at a height of 10 m by considering the effects of surface roughness.The input parameters include TC locations (longitudes and latitudes), the minimum central pressure (Pc), TC heading speed (C), TC heading direction (Vd), the maximum wind radius (RMW), the Holland shape parameter (B), and surface roughness (Z0), which assumes that the surface roughness is uniform and equal to a sea surface roughness of 0.0003 m).All the parameters can be found in the CMA best track dataset except for the RMW and B.We used the statistic model by Lin and Fang ( 2013) to calculate RMW and the Vickery model (Vickery and Wadhera 2008) to calculate B.Then, the simulated surface wind speed field for each point is spatially integrated to reflect the TC’s instantaneous intensity.Finally, theCWIis obtained by integrating the instantaneous intensities of all 6 hour TC points.TheCWItakes into account the duration, moving speed, spatial distribution of the wind speed, and area impacted by TCs.The formula is as follows:

    whereTrepresents the duration from TC’s impact start date to the impact end date (in 6 h intervals);Arepresents the distribution area of the instantaneous wind speed field for each TC point;Vrepresents the simulated wind speed at each grid in the instantaneous wind field (wind speed greater than scale six or 10.8 m/s is selected);Crepresents the moving speed of TC centers;V 0represents the reference value of the wind speed, which is set as 33.44 m/s (Owens and Holland 2010); andC 0represents the reference value of the TC moving speed, which is set as 18 km/h (Lin and Fang 2013).

    3.4 Relationship between Impact Indices and Hazard Index

    First, the correlation coefficients between the TC relative impact indices (IR fandIR v) and the TC hazard indexCWIwere analyzed.The Pearson correlation coefficient and Spearman rank correlation coefficient were used.

    Second, there are two main steps to quantify the relationship between the TC impact indices and the hazard index.One is to select a proper function for fitting curves.Another is to quantify the uncertainty by using the upper and lower bounds of the standard deviation intervals (Mo and Fang 2016).

    There are two main principles for selecting the fitting function: one is that the value domain should be [0, 1] and the function should be monotonically increasing.Another is an acceptable goodness of fit.According to the distribution characteristics of the data of the research results, the cumulative distribution function (CDF) of the log-normal distribution is selected as the fitting function (Porter 2021).The formula is as follows:

    where?is the CDF of the standard normal distribution, andμandσare the parameters.

    4 Results

    Based on the materials and methods, the temporal and spatial changes or patterns are first analyzed.Then the absolute and relative impact indices of 52 historical TCs are calculated and analyzed.Meanwhile, the TC hazard index for each TC is also modeled, after which the relationship between the TC impact indices and the TC hazard index is fitted using the log-normal CDF.Key details of all the results above are presented in this section.

    4.1 Spatiotemporal Patterns of Fishing Vessel Activities

    In this section, the yearly and monthly total fishing hours and vessel hours per vessel across the study area have been analyzed first.Then the gridded hours summed by year and by month are plotted.

    4.1.1 Temporal Patterns

    The yearly total fishing hours and vessel hours per vessel in the study area (that is, yearlymt fandmt v, respectively) during 2013?2018 are shown in Fig.5 a.The annualmt fvalues increased initially, and then decreased after 2015.One possible reason is that China has adjusted its policies on fuel subsidies for fisheries since 2015 for the sake of reducing marine fishing intensity and conserving fishery resources (MOF 2015).The fishing ratio (fishing hours versus total vessel use hours per vessel per day or month or season) fluctuates slightly around approximately 25%.

    The monthly total fishing hours and vessel hours per vessel in the study area (that is, monthlymt fandmt v, respectively) during 2013?2018 are shown in Fig.5 b.Both indicators reach the maximum in September, and the minimummt fis in June, while the minimummt vis in February.The results suggest strong seasonality in both fishing hours and vessel hours.For fishing hours, the results follow the order of autumn > spring > winter > summer.For vessel hours, the results follow the order of autumn > spring > summer > winter.The main reason for the low fishing hours in summer is China’s fishing moratorium policies (Table 1).The fishing ratio shows an upward trend from January to May and reaches a maximum of approximately 40% in May.Then, it drops from May to July, with a minimum of approximately 23%.From August to December, it recovers to a relatively stable level of approximately 34%.

    The yearly and monthly total fishing hours per vessel in the four seas of China are shown in Fig.6.The highest yearly fishing hours per vessel are in the South China Sea.Compared to 2013, the total fishing hours per vessel in 2018 dropped by 19.4%, 4.0%, 7.5%, and 18.6% in the Bohai Sea, Yellow Sea, East China Sea, and South China Sea, respectively.The monthly total fishing hours per vessel across the four seas are substantially different in May, August, and December.In other months, monthly total fishing hours per vessel across the four seas are close.

    4.1.2 Spatial Patterns

    The spatial patterns of the yearly total fishing hours are shown in Fig.7 a.In the Bohai Sea, the fishing hotspot areas are scattered and have partially expanded since 2016, mainly near the southern coastline of Hebei Province.In the Yellow Sea, the fishing hotspot areas are mainly distributed near the Shandong Peninsula and have expanded significantly since 2016.In the East China Sea, the most widely distributed fishing hotspot area of the entire study area has suffered a sharp contraction since 2017.In the South China Sea, fishing hotspots are mainly distributed quite close to the coastline and have slightly expanded since 2016.

    The spatial patterns of the yearly total vessel hours are shown in Fig.7 b, and the results resemble the patterns of fishing hours.During 2013?2015, the East China Sea area near the coastlines of Jiangsu Province, Zhejiang Province, and Shanghai was basically the most widely distributed hotspot area.After 2016, the vessel hour hotspot areas in the Bohai Sea, Yellow Sea, and South China Sea expanded slightly, while those in the East China Sea contracted significantly.

    The spatial patterns of the monthly total fishing hours (aggregated by month during 2013?2018) are shown in Fig.8 a.In January and February, the fishing hotspot areas were mainly in the East China Sea, near the coastline from southern Jiangsu to northern Fujian Province.In March and April, the hotspot areas in the East China Sea and the South China Sea expanded.In May, the fishing hotspot areas in the East China Sea and the South China Sea decreased due to the fishing moratorium policy (Table 1).In June and July, fishing activities in the study area almost stopped, while a few illegal fishing activities continued.In August, fishingactivities began to recover.In September, October, and November, the extent of fishing hotspot areas in the four seas reached the highest level of the year.In December, the fishing hotspot areas in the Bohai Sea and the Yellow Sea decreased slightly.

    The spatial patterns of the monthly total vessel hours are shown in Fig.8 b, and the results are similar to the fishing hours.

    4.2 Impact of Tropical Cyclones (TCs) on Fishing Vessel Activities

    The total absolute impacts of the 52 TCs in China on the fishing hours (Δt f) and vessel hours (Δt v) from 2013 to 2018 are shown in Fig.9.Due to the impacts of the TCs, the absolute reductions in the fishing hours and vessel hours are mainly distributed in the East China Sea and the South China Sea (blue in Fig.9).

    The integrated reduction in fishing hours and vessel hours in the 52 TCs impact period during the 6 years was calculated as well and their percentage relative to the total fishing and vessel hours of the study area during the 6 years are 2.28% and 1.04%, respectively.

    The totalIR f, totalIR v, meanIR f, and meanIR vstatistics are shown in Fig.10.The highest values of the annual totalIR fandIR vwere in 2013, and the highest values of the annual meanIR fandIR vwere in 2015.The monthly totalIR fandIR vreached the maximum in July, followed by August and September.

    The TC landfall points and their correspondingIR fandIR vfrom 2013 to 2018 are shown in Fig.11.It can be seen that (1) the landfall points of the TCs were over the coastline between 13°N and 32°N during the 6 years; and (2) the totalIR fandIR vin each 1° interval showed a trend of increasing first and then decreasing as the latitude decreased from 32°N to 13°N, and the highest values of the totalIR fandIR vappeared in the range of 22°N?23°N.

    Table 2 provides information on the 10 TCs with the highestIR fvalues.The table suggests the following characteristics of TCs that caused the most disruption to fishing: (1) Six TCs landed when the fishing moratorium near the landfall site had expired; (2) The minimum and maximum latitudes of the 10 TC landfall points are 18.8°N (near Wenchang, Hainan Province) and 26°N (near Fuzhou, Fujian Province); (3) The maximumCWIand the minimumCWIfor the 10 TCs were 48.0 and 11.8, respectively, which demonstrates a medium range of variation; (4) The 10 TCs had a relative impact on the fishing hours (IR f) of over 94% and a relative impact on the vessel hours (IR v) of over 59%.

    4.3 Hazard Index of Tropical Cyclones (TCs)

    The interannual changes in the numbers and totalCWIof the TCs are shown on the left of Fig.12.2013 and 2018 had the largest number of TCs, and the totalCWIreached its maximum in 2013.The lowest number of TCs was in 2015, while in this year, the mean eventCWIwas the highest of all the years.In 2017, the yearly totalCWIand the mean eventCWIwere both the minimum out of the 6 years despite the large number of TCs.

    Table 2 Tropical cyclones (TCs) of the top 10 relative impact on fishing hours (IR f )

    The intra-annual changes in the numbers and totalCWIof the TCs are shown on the right of Fig.12.The top three months with the largest numbers and the highest totalCWIare July, August, and September, while no more than one TC event per month appeared from November to May during the 6 years.However, due to the super TC Haiyan in 2013, the monthly totalCWIin November was not the lowest.

    The spatial distribution of theCWIof the TCs from 2013 to 2018 is shown in Fig.11.It can be seen that the landfall points are distributed on the coastline between 13°N?32°N.From 32°N to 13°N, the totalCWIin each 1° interval increased first and then decreased.In 22°N?23°N, the landfall points (near Guangdong Province) within the interval correspond to the highest totalCWI, and the landfall point with the highest eventCWIalso lies in 22°N?23°N.

    4.4 Relationship Between Impact Indices and Hazard Index

    The Pearson correlation coefficient and Spearman rank correlation coefficient were used to find the correlation betweenIR f,IR v, andCWI.The results are shown in Table 3.The Pearson correlation test and the Spearman rank correlation test have both passed the 0.01 significance level (P< 0.01).This suggests that bothIR fandIR vare significantly related toCWI.

    Table 3 Correlation coefficients between IR f , IR v , and CWI using the correlation coefficient tests of Pearson and Spearman

    Log-normal CDF is used to fit the relationship betweenIR f,IR v, andCWI.The fitting results are shown with a solid red line in Fig.13.The goodness-of-fit is measured by R 2 .It can be seen that (1) whenCWI< 5, both curves are in a rapid growth stage, showing a near-vertical growth trend; (2) when 5 ≤CWI< 10, the curves are in a transition stage, and the growth rates ofIR fandIR vgradually slow down with the growth ofCWI; (3) whenCWI≥ 10, the two curves are in a slow growth stage, and the growth rates ofIR fandIR vtend to be stable and close to 0; and (4) under the sameCWI,IR f>IR v.

    The upper and lower standard deviation ranges ofIR fandIR vare calculated by sections and fitted with a log-normal CDF curve.The results are shown by the blue dotted line in Fig.13.It shows that (1) whenCWI< 5, the dispersion degrees ofIR fandIR vare the largest; (2) whenCWI≥ 5, the dispersion degrees ofIR fandIR vgradually decrease asCWIincreases, which is mainly reflected by the lower bound of the double standard deviation range gradually approaching the mean value; and (3) under the sameCWI, the dispersion degree ofIR fis less than that ofIR v.

    5 Discussion

    This study provides a quantitative relationship between the specified TC hazard index and the indices of impact on fishing vessel activities.Based on this relationship, the pre-cyclone impact assessment can be conducted to support fishing vessel management.Besides, compared to previous studies on TC impacts on fishing activities or losses in China (Ren 2009; Han et al.2016), which were based on national and provincial units in annual or multiannual periods, this study provides the assessment with higher spatial resolution based on each individual TC event.

    Although the spatiotemporal patterns of fishing activities and the impact of TC avoidance have been explored based on objective data derived from observed Automatic Identification System (AIS) data, it should be noted that the fishing activity data used in this study may have underestimated fishing intensity and vessel numbers, especially for small vessels.The reason is that according to the International Maritime Organization only international sailing ships with a weight of more than 300 gross tons and non-international ships with a weight of more than 500 gross tons are obligated to install AIS (IMO 2004).Based on official Chinese statistics, the number of small fishing and motorized fishing vessels with a length of less than 12 m accounts for more than 50% of the total fishing fleet in China (MARA 2017).At the same time, only approximately 0.4% of small fishing vessels are equipped with AIS (Kroodsma et al.2018).Therefore, underestimation of fishing activities must be considered or calibrated before further application, and the fusion of statistical data and AIS data should be explored in future studies.

    6 Conclusion

    Very few studies on the impacts of tropical cyclone (TC) avoidance to the vessel and fishing hours can be found, because quantitative fishing hour data at the regional and global scales were barely available or very challenging to extract in the past (Kroodsma et al.2018).In this study, the analysis of the spatiotemporal patterns of fishing activities by vessel and fishing hours during 2013?2018 derived from AIS data was first implemented.Then the cyclone wind hazard index (CWI) was proposed to reflect the comprehensive TC hazard intensity.Two impact indices,IR fandIR v, were defined to reflect the influence of TC avoidance on fishing activities.Based on the data of 52 historical TCs, the relationship between the impacts on vessel activities and the fishing activities due to TC avoidance and TC wind hazard index were quantified.The main findings of this study have been summarized as below:

    1.Most fishing activities took place from September to November after the fishing moratorium, and the overall fishing activity levels near China’s offshore area have experienced an overall increase first and then a subsequent decrease because of the enhanced fishing regulations in China introduced in 2015.The most active fishing area throughout the year was located in the South China Sea, where the number of fishing hours per vessel has dropped by approximately 18.6%.However, in some other areas, such as the South China Sea and the Yellow Sea, the spatial extent of fishing hotspot areas has expanded.

    2.The proposed TC hazard indexCWIconsiders the integrated effects of wind speed on the temporal and spatial dimensions based on the 1 km wind field dataset of every six hours simulated with parametric wind field models.Based on the impact indicesIR fandIR v, the highest hazard index and impact indices, excluding the fishing moratorium period, occurred in September.The area with the largest hazard index and relative impact index values is located offshore near Guangdong Province, which was hit by frequent TCs in the study period.

    3.Both impact indices have statistically significant correlations withCWIas an independent variable and were fitted with the cumulative probability function (CDF) of the log-normal distribution.

    The relationship betweenCWIand the impact on fishing vessel activity can be used in a variety of disaster management applications.For example, the quantitative findings of this study can help improve emergency response decision making.An optimal avoidance routes can be solved and disseminated to fishing vessels through satellite-based tele-communication system by the authority, according to the assessment on the costs of different vessel avoidance route scenarios.Another possible application is that it can be used in fishing insurance product design.The major risk metrics of fishing activity interruption, including the loss probability distribution, the expected annual loss, and the variation of loss, can be estimated based on the quantitative relationship betweenCWIand fishing activities, the spatiotemporal pattern of fishing activities, and other datasets such as historical TC tracks, and so on.

    AcknowledgementsThis work was mainly supported by the National Key Research and Development Program of China (Grant Nos.2018YFC1508803 and 2017YFA0604903) and jointly supported by the Key Special Project for Introduced Talents Team of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) (Grant No.GML2019ZD0601).

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material.If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

    欧美xxⅹ黑人| 中文欧美无线码| 国产深夜福利视频在线观看| 另类精品久久| 精品人妻熟女毛片av久久网站| 日韩人妻精品一区2区三区| 日韩,欧美,国产一区二区三区| 亚洲在久久综合| 国产成人精品无人区| 亚洲精品国产av蜜桃| 午夜日本视频在线| 亚洲专区中文字幕在线 | 国产精品麻豆人妻色哟哟久久| 欧美精品高潮呻吟av久久| 久久毛片免费看一区二区三区| 精品少妇黑人巨大在线播放| 久久久久久久久久久免费av| 在线观看免费视频网站a站| 欧美最新免费一区二区三区| 操美女的视频在线观看| 亚洲欧美一区二区三区久久| 免费黄频网站在线观看国产| 国产午夜精品一二区理论片| 又大又爽又粗| 观看美女的网站| 日本av手机在线免费观看| 黄网站色视频无遮挡免费观看| 国产精品久久久人人做人人爽| 中文天堂在线官网| 精品一区在线观看国产| 国精品久久久久久国模美| 亚洲成人一二三区av| 久久亚洲国产成人精品v| 久久免费观看电影| 国产日韩一区二区三区精品不卡| 97精品久久久久久久久久精品| 日本欧美国产在线视频| 精品久久久精品久久久| 日韩av在线免费看完整版不卡| 成年人免费黄色播放视频| 国产成人精品福利久久| av有码第一页| 免费黄频网站在线观看国产| 国产精品人妻久久久影院| 成年女人毛片免费观看观看9 | 亚洲国产欧美一区二区综合| 亚洲人成电影观看| 亚洲一区二区三区欧美精品| 久久久久精品久久久久真实原创| 久久精品亚洲av国产电影网| 亚洲专区中文字幕在线 | 捣出白浆h1v1| 欧美人与善性xxx| 午夜福利免费观看在线| 精品国产一区二区三区久久久樱花| 国产精品久久久久久人妻精品电影 | 黄网站色视频无遮挡免费观看| 国产乱人偷精品视频| 亚洲视频免费观看视频| 老司机影院毛片| 91国产中文字幕| 国产免费福利视频在线观看| 精品人妻熟女毛片av久久网站| 日韩精品免费视频一区二区三区| 国产精品麻豆人妻色哟哟久久| 91精品三级在线观看| 欧美日韩亚洲综合一区二区三区_| 纵有疾风起免费观看全集完整版| 一区二区三区精品91| 精品国产乱码久久久久久小说| 伊人久久大香线蕉亚洲五| 中文乱码字字幕精品一区二区三区| 免费日韩欧美在线观看| 狂野欧美激情性bbbbbb| 精品亚洲成a人片在线观看| 两个人免费观看高清视频| 亚洲久久久国产精品| 天堂中文最新版在线下载| 黄片无遮挡物在线观看| 国产97色在线日韩免费| 久久热在线av| 婷婷色综合www| 妹子高潮喷水视频| 欧美97在线视频| 国产成人精品福利久久| 老汉色∧v一级毛片| 色视频在线一区二区三区| av国产久精品久网站免费入址| av卡一久久| 国产一区二区三区av在线| 免费观看a级毛片全部| 色综合欧美亚洲国产小说| 久久精品久久精品一区二区三区| 色婷婷久久久亚洲欧美| 欧美 日韩 精品 国产| 国产成人系列免费观看| 亚洲精品美女久久久久99蜜臀 | 五月开心婷婷网| 色精品久久人妻99蜜桃| 日本wwww免费看| 久久ye,这里只有精品| 人妻人人澡人人爽人人| 丰满饥渴人妻一区二区三| 国产精品蜜桃在线观看| 国产一区有黄有色的免费视频| 国产在线视频一区二区| 天天躁夜夜躁狠狠久久av| 桃花免费在线播放| 黄色怎么调成土黄色| 最近2019中文字幕mv第一页| 精品亚洲成a人片在线观看| 欧美日本中文国产一区发布| 色精品久久人妻99蜜桃| 成年女人毛片免费观看观看9 | 国产精品国产三级专区第一集| 中国三级夫妇交换| 一区二区三区四区激情视频| 一级a爱视频在线免费观看| 国产成人系列免费观看| 免费看不卡的av| 制服丝袜香蕉在线| 日韩精品有码人妻一区| 制服人妻中文乱码| 亚洲国产最新在线播放| 丝袜在线中文字幕| 亚洲人成网站在线观看播放| 亚洲美女视频黄频| 在线观看免费午夜福利视频| 夫妻午夜视频| 又黄又粗又硬又大视频| 午夜精品国产一区二区电影| 蜜桃在线观看..| 51午夜福利影视在线观看| 日韩伦理黄色片| 青春草亚洲视频在线观看| 久久精品国产亚洲av涩爱| av.在线天堂| 日本wwww免费看| 看免费av毛片| 一区二区三区激情视频| 女人被躁到高潮嗷嗷叫费观| 免费黄网站久久成人精品| 欧美黑人欧美精品刺激| 人成视频在线观看免费观看| 亚洲国产av新网站| xxxhd国产人妻xxx| 韩国av在线不卡| 国产精品香港三级国产av潘金莲 | 亚洲精品乱久久久久久| 一区二区三区激情视频| 国产av精品麻豆| 国产亚洲欧美精品永久| 亚洲精品国产av蜜桃| 天堂中文最新版在线下载| 久久ye,这里只有精品| 狠狠精品人妻久久久久久综合| 99精国产麻豆久久婷婷| 黑人欧美特级aaaaaa片| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲天堂av无毛| 午夜91福利影院| 亚洲av在线观看美女高潮| 精品少妇黑人巨大在线播放| 国产日韩欧美视频二区| 最近的中文字幕免费完整| 涩涩av久久男人的天堂| 波野结衣二区三区在线| 日本一区二区免费在线视频| 美女扒开内裤让男人捅视频| 一级毛片我不卡| 少妇 在线观看| av线在线观看网站| 精品人妻熟女毛片av久久网站| 国产免费现黄频在线看| 中文字幕亚洲精品专区| 久久久久久久久久久久大奶| 国产成人欧美在线观看 | 一本大道久久a久久精品| 亚洲欧美精品综合一区二区三区| 欧美av亚洲av综合av国产av | 卡戴珊不雅视频在线播放| 丝袜在线中文字幕| 日本黄色日本黄色录像| 亚洲美女视频黄频| 欧美日韩精品网址| 成人亚洲欧美一区二区av| 免费久久久久久久精品成人欧美视频| 婷婷色av中文字幕| 人成视频在线观看免费观看| 亚洲成人手机| 午夜福利一区二区在线看| 欧美日韩福利视频一区二区| 一级黄片播放器| 亚洲成色77777| 欧美中文综合在线视频| 久久人人97超碰香蕉20202| 制服丝袜香蕉在线| av卡一久久| 国产av一区二区精品久久| 看非洲黑人一级黄片| 在线 av 中文字幕| 91精品三级在线观看| 精品久久蜜臀av无| 国产深夜福利视频在线观看| 香蕉国产在线看| av电影中文网址| 在线观看免费视频网站a站| 在线观看免费午夜福利视频| 亚洲国产精品成人久久小说| 国产在线视频一区二区| 成人影院久久| 精品亚洲乱码少妇综合久久| 亚洲熟女精品中文字幕| 精品少妇一区二区三区视频日本电影 | 日韩人妻精品一区2区三区| 卡戴珊不雅视频在线播放| 久久精品aⅴ一区二区三区四区| 日韩精品有码人妻一区| 欧美成人午夜精品| 国产女主播在线喷水免费视频网站| 免费观看性生交大片5| 美女中出高潮动态图| 中文字幕人妻熟女乱码| a 毛片基地| 国产免费现黄频在线看| 色视频在线一区二区三区| 巨乳人妻的诱惑在线观看| av免费观看日本| 女性被躁到高潮视频| 欧美日本中文国产一区发布| 亚洲av电影在线观看一区二区三区| 亚洲精品一区蜜桃| 哪个播放器可以免费观看大片| 亚洲四区av| 国产精品二区激情视频| 男女国产视频网站| 在线观看一区二区三区激情| 菩萨蛮人人尽说江南好唐韦庄| 日韩一区二区三区影片| 男女下面插进去视频免费观看| 啦啦啦在线免费观看视频4| 一区二区日韩欧美中文字幕| 少妇的丰满在线观看| 999精品在线视频| 国产成人精品无人区| 国产成人a∨麻豆精品| 考比视频在线观看| 各种免费的搞黄视频| 飞空精品影院首页| 亚洲一区二区三区欧美精品| 一本久久精品| 美女高潮到喷水免费观看| √禁漫天堂资源中文www| 日韩制服丝袜自拍偷拍| av免费观看日本| 久热爱精品视频在线9| 99国产综合亚洲精品| 天堂8中文在线网| 青春草视频在线免费观看| 人人妻人人澡人人看| 麻豆乱淫一区二区| 母亲3免费完整高清在线观看| 亚洲欧美一区二区三区久久| 久久久久久久久久久免费av| 免费观看性生交大片5| 欧美变态另类bdsm刘玥| 一级片'在线观看视频| 韩国精品一区二区三区| 日韩伦理黄色片| 国产亚洲av高清不卡| 免费观看av网站的网址| 亚洲精品av麻豆狂野| 国产精品国产av在线观看| 最新在线观看一区二区三区 | 国产精品久久久av美女十八| 成人国产麻豆网| 在线观看www视频免费| 男的添女的下面高潮视频| 欧美乱码精品一区二区三区| 波野结衣二区三区在线| 久久精品久久精品一区二区三区| 亚洲久久久国产精品| 欧美另类一区| 天天影视国产精品| 最新在线观看一区二区三区 | 男女无遮挡免费网站观看| 国产成人91sexporn| 悠悠久久av| 国产黄色免费在线视频| 老司机亚洲免费影院| 久久久久久久久久久免费av| 国产成人免费无遮挡视频| 另类亚洲欧美激情| 国产激情久久老熟女| 丁香六月天网| av片东京热男人的天堂| 久久久久久久大尺度免费视频| 亚洲激情五月婷婷啪啪| 成年人午夜在线观看视频| 丝袜美腿诱惑在线| 毛片一级片免费看久久久久| 日韩熟女老妇一区二区性免费视频| 精品一区二区三区av网在线观看 | 国产爽快片一区二区三区| 女性生殖器流出的白浆| 视频区图区小说| 97精品久久久久久久久久精品| 国产探花极品一区二区| 久久这里只有精品19| a级毛片黄视频| a级片在线免费高清观看视频| 婷婷色综合大香蕉| 一本久久精品| 久久毛片免费看一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 一区在线观看完整版| 一本久久精品| 热99久久久久精品小说推荐| 操出白浆在线播放| 99久国产av精品国产电影| 亚洲视频免费观看视频| 亚洲欧洲国产日韩| 男女免费视频国产| 精品一区在线观看国产| 中文字幕亚洲精品专区| 精品免费久久久久久久清纯 | 精品久久久久久电影网| 9热在线视频观看99| 精品人妻熟女毛片av久久网站| 色吧在线观看| 麻豆精品久久久久久蜜桃| 亚洲成色77777| 欧美国产精品一级二级三级| 三上悠亚av全集在线观看| 国产福利在线免费观看视频| 精品一区二区三区av网在线观看 | 国产淫语在线视频| 哪个播放器可以免费观看大片| 亚洲国产欧美网| 无遮挡黄片免费观看| 1024视频免费在线观看| 国产男女内射视频| 十八禁人妻一区二区| 国产亚洲欧美精品永久| 国产精品 欧美亚洲| 国产精品国产三级国产专区5o| 亚洲国产日韩一区二区| 男人操女人黄网站| 国产男人的电影天堂91| 日韩不卡一区二区三区视频在线| 亚洲成人手机| 亚洲视频免费观看视频| 操美女的视频在线观看| 麻豆精品久久久久久蜜桃| 久久国产精品大桥未久av| 制服人妻中文乱码| 新久久久久国产一级毛片| 一区二区三区精品91| 无限看片的www在线观看| 尾随美女入室| 亚洲一级一片aⅴ在线观看| 亚洲三区欧美一区| 美女脱内裤让男人舔精品视频| 搡老乐熟女国产| 新久久久久国产一级毛片| 十八禁人妻一区二区| 人妻人人澡人人爽人人| 亚洲国产看品久久| 中文字幕人妻熟女乱码| a 毛片基地| 亚洲人成77777在线视频| 久久久久人妻精品一区果冻| 狠狠精品人妻久久久久久综合| 人成视频在线观看免费观看| 高清不卡的av网站| 午夜福利乱码中文字幕| 少妇人妻 视频| 欧美成人午夜精品| 欧美日韩一区二区视频在线观看视频在线| 亚洲国产精品一区三区| 欧美精品高潮呻吟av久久| 波多野结衣一区麻豆| av女优亚洲男人天堂| videosex国产| 久久久久人妻精品一区果冻| 91成人精品电影| 日本av免费视频播放| 免费日韩欧美在线观看| 国产精品.久久久| 亚洲精品国产色婷婷电影| 久久精品国产a三级三级三级| 大话2 男鬼变身卡| 最近中文字幕高清免费大全6| 日韩视频在线欧美| 操出白浆在线播放| www日本在线高清视频| 看十八女毛片水多多多| 天美传媒精品一区二区| 国产不卡av网站在线观看| 一级片'在线观看视频| 亚洲av成人不卡在线观看播放网 | 国产精品一二三区在线看| 一级毛片黄色毛片免费观看视频| 看免费av毛片| 欧美变态另类bdsm刘玥| 一本—道久久a久久精品蜜桃钙片| 黄色 视频免费看| 电影成人av| 婷婷色综合www| 成人免费观看视频高清| 久久人人爽av亚洲精品天堂| 日韩欧美一区视频在线观看| 精品一区二区三区四区五区乱码 | 欧美日韩av久久| 日本黄色日本黄色录像| 中文字幕av电影在线播放| 国产免费现黄频在线看| 日本欧美国产在线视频| 国产黄色免费在线视频| 欧美日韩亚洲高清精品| 日韩一卡2卡3卡4卡2021年| 天天躁狠狠躁夜夜躁狠狠躁| 黑人猛操日本美女一级片| 亚洲精品一二三| 中国国产av一级| 日韩视频在线欧美| 亚洲伊人久久精品综合| 久久久久国产精品人妻一区二区| 岛国毛片在线播放| 国产精品 欧美亚洲| 日本91视频免费播放| 精品国产乱码久久久久久小说| 韩国高清视频一区二区三区| 纵有疾风起免费观看全集完整版| 婷婷色综合www| 色94色欧美一区二区| 免费观看性生交大片5| 亚洲精华国产精华液的使用体验| 大码成人一级视频| 亚洲国产精品国产精品| 各种免费的搞黄视频| 精品一品国产午夜福利视频| 最近手机中文字幕大全| 久久国产精品大桥未久av| 精品少妇久久久久久888优播| 人妻一区二区av| 国产1区2区3区精品| 高清视频免费观看一区二区| 欧美精品av麻豆av| 欧美黄色片欧美黄色片| 色播在线永久视频| 永久免费av网站大全| 亚洲熟女毛片儿| 国产欧美日韩综合在线一区二区| 搡老岳熟女国产| 国产亚洲最大av| 十八禁网站网址无遮挡| 好男人视频免费观看在线| 大话2 男鬼变身卡| 九草在线视频观看| 亚洲欧美清纯卡通| 国产黄色免费在线视频| 男人舔女人的私密视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人午夜福利电影在线观看| 高清不卡的av网站| 男女免费视频国产| 啦啦啦啦在线视频资源| 日日撸夜夜添| 国产精品国产av在线观看| 亚洲 欧美一区二区三区| 国产av精品麻豆| 国产 精品1| 波多野结衣一区麻豆| 97在线人人人人妻| 激情五月婷婷亚洲| 性高湖久久久久久久久免费观看| 国产精品嫩草影院av在线观看| 黄频高清免费视频| 一区二区三区激情视频| 国产成人91sexporn| 欧美黑人精品巨大| 丁香六月欧美| 满18在线观看网站| 欧美亚洲日本最大视频资源| 国产成人欧美在线观看 | 久久久久久久久久久久大奶| 晚上一个人看的免费电影| 成人国语在线视频| 亚洲第一青青草原| 天天躁日日躁夜夜躁夜夜| 美女大奶头黄色视频| 美女视频免费永久观看网站| 男人操女人黄网站| 亚洲欧美色中文字幕在线| 成人影院久久| 老司机影院毛片| 亚洲欧美中文字幕日韩二区| 男人操女人黄网站| 天天影视国产精品| 日本av手机在线免费观看| 你懂的网址亚洲精品在线观看| 精品少妇一区二区三区视频日本电影 | 9色porny在线观看| 久久国产精品大桥未久av| 国产精品一区二区精品视频观看| 最黄视频免费看| 美女午夜性视频免费| 国产成人av激情在线播放| 丝袜美腿诱惑在线| 建设人人有责人人尽责人人享有的| 亚洲美女视频黄频| 欧美变态另类bdsm刘玥| 丝袜美足系列| 亚洲精品日韩在线中文字幕| 亚洲精品一区蜜桃| 欧美精品av麻豆av| 99国产综合亚洲精品| 亚洲精品成人av观看孕妇| 久久这里只有精品19| 80岁老熟妇乱子伦牲交| 大片免费播放器 马上看| 老鸭窝网址在线观看| 晚上一个人看的免费电影| 国产男人的电影天堂91| 久久鲁丝午夜福利片| 2021少妇久久久久久久久久久| 久久性视频一级片| 欧美av亚洲av综合av国产av | 香蕉丝袜av| 麻豆精品久久久久久蜜桃| 国产成人免费观看mmmm| 亚洲视频免费观看视频| 国语对白做爰xxxⅹ性视频网站| 国产极品天堂在线| 在线观看人妻少妇| 亚洲国产精品一区三区| 中文字幕人妻丝袜制服| 性色av一级| 久久久久视频综合| 一本一本久久a久久精品综合妖精| 一级毛片我不卡| 一区二区三区精品91| 国产亚洲av片在线观看秒播厂| 搡老乐熟女国产| 叶爱在线成人免费视频播放| 精品国产超薄肉色丝袜足j| 中文字幕色久视频| 成年人免费黄色播放视频| 曰老女人黄片| 操出白浆在线播放| 赤兔流量卡办理| 丰满少妇做爰视频| 中文欧美无线码| 免费少妇av软件| 黄色怎么调成土黄色| 成人毛片60女人毛片免费| 在线亚洲精品国产二区图片欧美| 国产成人啪精品午夜网站| 亚洲中文av在线| 国产精品99久久99久久久不卡 | 日韩欧美一区视频在线观看| 中文字幕最新亚洲高清| 国产在线视频一区二区| 亚洲国产欧美网| 成人亚洲欧美一区二区av| 我要看黄色一级片免费的| 日韩人妻精品一区2区三区| 国产亚洲一区二区精品| 欧美日韩福利视频一区二区| 中文字幕制服av| 精品久久久久久电影网| 免费少妇av软件| 国产精品三级大全| a级片在线免费高清观看视频| 国产日韩一区二区三区精品不卡| 亚洲精品美女久久av网站| 国产成人免费无遮挡视频| 欧美日韩综合久久久久久| 最近手机中文字幕大全| 满18在线观看网站| 久久人人爽人人片av| 亚洲熟女精品中文字幕| 国产深夜福利视频在线观看| 可以免费在线观看a视频的电影网站 | 中文字幕另类日韩欧美亚洲嫩草| 亚洲欧美中文字幕日韩二区| 久久99精品国语久久久| 久久久久久久国产电影| e午夜精品久久久久久久| 日韩电影二区| 成人18禁高潮啪啪吃奶动态图| 大香蕉久久网| 美国免费a级毛片| a级毛片在线看网站| 蜜桃国产av成人99| 免费不卡黄色视频| 久久狼人影院| 国产成人av激情在线播放| 90打野战视频偷拍视频| 欧美国产精品va在线观看不卡| 这个男人来自地球电影免费观看 | 精品国产乱码久久久久久小说| 国产亚洲av片在线观看秒播厂| 国产精品欧美亚洲77777| 久久久久精品人妻al黑| netflix在线观看网站| 纵有疾风起免费观看全集完整版| 天堂俺去俺来也www色官网| 亚洲av成人精品一二三区| 天天影视国产精品| 国产日韩一区二区三区精品不卡| 国产免费现黄频在线看| 曰老女人黄片| 日本午夜av视频|