• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    一類基于不確定理論的分位數(shù)回歸模型

    2022-12-07 14:01:48李天用胡錫健
    關(guān)鍵詞:新疆科學(xué)數(shù)學(xué)

    李天用,胡錫健

    (新疆大學(xué)數(shù)學(xué)與系統(tǒng)科學(xué)學(xué)院,新疆烏魯木齊 830017)

    0 Introduction

    Quantile regression is a method to obtain parameter estimates by minimizing the sum of the absolute values of the weighted residuals. Since 1978, when Koenker and Bassett[1]first introduced the concept of quantile regression, it has attracted the attention of many scholars and has been widely used in various fields,such as data processing,systems engineering and probability statistics. Eide and Showalter[2]used quantile regression to study the effect of education on intergenerational income,this method is less restrictive on the random disturbance term in the model and reduces the cost of the experiment.Beirlant and Goegebeur[3]modeled in data processing by Pareto index, this model can estimate extreme quantile problems and effectively analysis the tail weights on the conditional distribution of response variables. Somers and Whittaker[4]applied the quantile regression into retail credit risk assessment practices,solutions at different quartiles can reasonably explain the different distributions in the financial services industry. Nikolaou[5]analyzed the effect of different magnitude shocks on the real exchange rate based on semi-parametric and non-parametric quantile regression models,which clearly reflect the pattern of exchange rate changes at extreme quantile. Yu and Moyeed[6]introduced the idea of Bayesian quantile regression and proved the robustness of quantile regression to heteroskedasticity. Tang and Kong[7]applied the idea of quantile regression to the linear semi-parametric model of functional data. Sun[8]further introduced the idea of quantile regression into functional data and established a functional data quantile regression model. He, Yan and Xu[9]combined the support vector integral quantile regression method with fuzzy information granulation to construct a quantile regression model based on fuzzy information granulation and support vector.

    To the best of our knowledge,the quantile regression has been proposed usually in the framework of probability theory.Because the traditional quantile regression methods all assume that we have a large number of precise observations, and some observations are imprecise within a certain range, e.g. height around 1.8 m, distance from the school building about 500 m, weight of the dog between 10 and 20 kg, etc. So, the results of the regression analysis method under probability theory will have a large bias, we need to use experts’ estimated imprecise data. Based on the above research background and problems,Liu[10?11]proposed uncertainty theory to fill these gaps and widely applied into various fields such as uncertain programming[12], uncertain calculus[13], uncertain statistics[14]and uncertain differential[15]. At the same time, Liu and his students put forward the principle of uncertain least squares method,the parameters were also estimated using experimental data and the sum of squares of distances from uncertain distributions[14].They also introduced point estimates of the unknown parameters in the uncertain multiple regression model[16]. Shortly after, Lio and Liu[17]made interval predictions of the response uncertain variables to determine the range of values of the estimates. Ye and Liu[18]derived uncertain least squares estimates of the unknown parameters,in which the disturbance terms are assumed to have normal uncertainty distributions.Liu and Yang[19]applied the least absolute principle into the estimates of the unknown parameters in an uncertain multiple regression model. To further improve the uncertainty theory, this paper develops an uncertain quantile regression (UQR)model based on previous studies combining quantile regression model and uncertainty theory. From the data perspective,using uncertain data can make the estimation results more accurate. From the model perspective,UQR can not only measure the effect of regression variables at the center of the distribution,but also fit the curves corresponding to different quantiles,which can analyze the characteristics of the data more comprehensively.

    The rest of the paper is organized as follows. Section 1 reviews the basics of uncertainty theory. Section 2 defines the concepts of uncertain quantile and uncertain loss function. In Section 3, the UQR model is introduced. The uncertain parameter estimates,residual distributions and confidence intervals of the response variables are also obtained. In Section 4,numerical simulations are performed to compare the mean square errors of the original data and the uncertain data,and the robustness of the UQR model is demonstrated. The conclusions are given in Section 5.

    1 Preliminaries

    In this section,we introduce some fundamental concepts and theorems based on uncertainty theory,including uncertain measure,uncertain variable,uncertainty distribution,uncertain expected value and uncertain variance.

    Definition 1[10]Let L be a σ-algebra on a nonempty set Γ. A set function M : L → [0,1] is called an uncertain measure,if it satisfies the following axioms:

    Axiom 1(Normality Axiom)M{Γ}=1 for the universal set Γ.

    Axiom 2(Duality Axiom)M{Λ}+M{Λc}=1 for any event Λ.

    Axiom 3(Subadditivity Axiom)For every countable sequence of events Λ1,Λ2,···,we have

    Axiom 4(Product Axiom)Let(Γk,Lk,Mk)be uncertainty spaces for k=1,2,···. Then the product uncertain measure M is an uncertain measure satisfying

    where Λkare arbitrarily chosen events from Lkfor k=1,2,···,respectively.

    Definition 2[10]An uncertain variable ξ is a measurable function from an uncertainty space(Γ,L,M)to the set of real numbers,i.e.,for any Borel set B of real numbers,the set

    is an event.

    Definition 3[11]The uncertain variables ξ1,ξ2,···,ξmare said to be independent if

    for any Borel sets B1,B2,···,Bmof real number.

    Theorem 1[14]Let ξ1,ξ2,···,ξnbe independent uncertain variables with regular uncertainty distributions Φ1,Φ2,···,Φn,respectively. If the function f(x1,x2,···,xn) is strictly increasing with respect to x1,x2,···,xmand strictly decreasing with xm+1,xm+2,···,xn,then the uncertain variable

    is an uncertain variable with inverse uncertainty distribution

    Definition 4[10]Let ξ be an uncertain variable. Then the expected value of ξ is defined as

    provided that at least one of the two integrals is finite.

    For an uncertain variable ξ with regular uncertainty distribution Φ(x),its expected value can be obtained by

    Theorem 2[14]Let ξ and η be independent uncertain variables with finite expected values. Then for any real number a and b,we have

    Definition 5[10]Let ξ be an uncertain variable with finite expected value e. Then the variance of ξ is defined by

    For an uncertain variable ξ with regular uncertainty distribution Φ(x) and finite expected value e, its variance can be obtained by

    2 Uncertain Quantile

    The core of the quantile regression model is the quantile in probability theory. In order to build the UQR model, we define the concepts of uncertain quantile and uncertain loss function as follows.

    Definition 6Let ξ be an uncertain variable with regular uncertainty distribution Φ(x). Then for any real number x and 0 ≤ τ ≤ 1,the τ uncertain quantile of ξ is defined as

    Definition 7For a real number τ ∈ (0,1),we define an uncertain loss function ρτ(y)as follows,

    where the indicator function I{A}equals 1 for all elements of A and 0 otherwise.

    According to the calculation of expectation in uncertainty theory,the expectation of uncertainty loss function in Definition 7 is proved as follows.

    Theorem 3Let ξ be an uncertain variable with an uncertainty distribution Φ(x). If the uncertain loss function is ρτ(y),then for any real number ?x and τ ∈(0,1),the expected value of the uncertain loss function is defined by

    ProofAccording to formula(1)in Definition 7,

    Denote the uncertain measure as M which reflects the personal confidence degree of an uncertain event that may happen,an uncertain variable as ξ and its uncertainty distribution as Φ(x). Then it follows from the definition of expected value[10]and subadditivity of uncertain measure[10]that

    Note that ξ is uncertain variable and

    is increasing with respect to ξ. The inverse distribution of the uncertain variable ξ is Φ?1(α). According to the operation law of the uncertain variable[10],and the inverse uncertainty distribution of uncertain variable(5)is

    therefore,

    Since Equation(4)can be showed as

    for any τ ∈ (0,1).

    According to uncertainty theory,the uncertain quantile can be defined as Theorem 4.

    Theorem 4Let ξ be an uncertain variable with uncertainty distribution Φ(x). Then for any real number ?x,we have

    ProofAccording to the uncertain loss function ρτ(y),τ ∈ (0,1),Formula(2)and Theorem 3,we find the minimum value of the objective function:

    Taking the derivative of ?x in the Equation(2),we get

    which can be calculated as

    Since Φ(x)is a regular uncertainty distribution, it has a unique solution, Φ(?x)=τ. Therefore, the minimum estimated expectation of the real number ?x is the uncertain quantile.

    3 UQR Model

    In this section,UQR model is presented,parameters are estimated for different quantiles,and the residual distributions,forecast values,confidence intervals for the corresponding quantiles are given.

    3.1 Statistical Inference of UQR

    The uncertain least absolute deviation estimator was derived by Liu and Yang[19].According to the definition of uncertain quantile,the uncertain quantile is 0.5 in Reference[19],while other quartiles are not explained. However,Liu and Yang only analyzed the change pattern of the data in the center,other data are not analyzed. To make up for this deficiency,we define a unary uncertain quantile regression model as follows.

    Definition 8Given imprecisely observed data yi, xi(i=1,2,···,n) characterized as independent uncertain variables with regular uncertainty distributions Φi,Ψi(i=1,2,···,n). These data satisfy the unary linear regression model,i.e.,

    When τ is uncertain quantile,the unary linear regression model is expressed as

    where β0τ,β1τare unknown parameters,εiτare disturbance terms.

    Definition 9If the data satisfy the linear regression model(6)in which τ is uncertain quantile,then uncertain quantile regression estimators β?0τ,β?1τof β0τ,β1τrespectively are the optimal solutions of the following minimization problem:

    further,

    where i=1,2,···,n,τ ∈ (0,1).

    To analyze the parameter estimation problem, the parameter estimation of the UQR model can be turned to a simple optimization solution problem.

    Theorem 5If the data satisfy the linear regression model(6)in which τ is uncertain quantile,then uncertain quantile regression estimators β?0τ,β?1τof β0τ,β1τrespectively are the optimal solutions of the following minimization problem:

    further,

    which can be calculated as

    where

    and

    for i=1,2,···,n,τ ∈ (0,1).

    ProofAccording to Definition 9,then UQR estimators β?0τ,β?1τof β0τ,β1τrespectively are the optimal solutions of the following minimization problem:

    Noting imprecise observations yi, xi(i = 1,2,···,n) have uncertainty distributions Φi, Ψi(i = 1,2,···,n), so the inverse uncertainty distributions of yi, xi(i=1,2,···,n)are Φ?1i(α),Ψ?1i(α)(i=1,2,···,n). The uncertain variables

    increase with the increase of yi, increase with the increase of xiwhen β1τ< 0; and increase with the decrease of xiwhen β1τ≥ 0,i=1,2,···,n,τ ∈ (0,1). According to the operation law of uncertain variables[10],the inverse uncertainty distributions of uncertain variables(9)are

    where

    for i=1,2,···,n,τ ∈ (0,1). Therefore,we take Φ?i1(α)?β0τ?Ψi?1(α,β1τ)β1τ=0,for i=1,2,···,n,τ ∈ (0,1). Suppose Φi(α),Ψi(α)are linear uncertainty distributions,Φi(α)have inverse uncertainty distributions Φ?i1(α)=(1?α)a1i+αb1i,Ψi(α)have inverse uncertainty distributions Ψi?1(α)=(1?α)a2i+αb2i,when β1τ<0,

    and

    then

    so that

    for i=1,2,···,n,τ ∈ (0,1). When β1τ≥0,Ψi?1(1? α,β1τ)= Ψi?1(1?α)= αa2i+(1? α)b2i,

    then

    so that

    for i=1,2,···,n,τ ∈ (0,1). According to Theorem 3,Formula(8)can be calculated as follows

    where

    and

    for i=1,2,···,n,τ ∈ (0,1).

    3.2 Stability Testing

    Normally,the establishment of the statistic models should include stability testing. However,the data are imprecise in some cases, and it is difficult to test imprecise data in probility theory. So we give Definition 10 to introduce the specific method of UQR model testing using imprecise data.

    Definition 10If the data satisfy the linear regression model (6) in which τ is uncertain quantile, the residuals of τ uncertain quantile regression are expressed as

    β?0τ,β?1τare UQR estimators of β0τ,β1τ,respectively. Furthermore,with the assumption that E[ε?iτ]=eτ,V[ε?iτ]=σ2τ,uncertain mean square errors of εiτare mseτ,(i=1,···,n),τ ∈ (0,1). We can estimate expected values,variances,mean square errors of τ uncertain quantile regression as e?τ, σ?2τ,mseτ,respectively.

    where i=1,2,···,n,τ ∈ (0,1).

    For convenience of calculation,the following formula is given based on uncertainty theory and the concept of Definition 10.

    Theorem 6If the data satisfy the linear regression model(6)in which τ is uncertain quantile,then the expected values e?τ,variances σ?2τand uncertain mean square errors mseτof εiτcan be respectively calculated as follows

    where

    for i=1,2,···,n,τ ∈ (0,1)and β?0τ,β?1τare UQR estimators of β0τ,β1τ,respectively.

    ProofAccording to Definition 10,the residuals of τ UQR are expressed as

    for i=1,···,n, τ ∈ (0,1) and the valuation of β0τ, β1τare β?0τ, β?1τ, respectively. According to the operation law of uncertain variables[10],inverse uncertainty distributions Fi?τ1(x)of ε?iτare

    where i=1,···,n,τ ∈ (0,1). Then we have

    where

    for i=1,···,n,τ ∈ (0,1). Theorem 6 can be directly obtained from formulas(13)~(15).

    In the following paragraphs,Definition 11 and Definition 12 give the calculations of the forecast values and confidence intervals.

    Definition 11Given a new uncertain variable ?x with a regular uncertainty distribution ?Ψ in τ uncertain quantile regression model(6),the forecast values ?yτare predicted to be

    Definition 12Suppose in τ uncertain quantile regression, ?ετare normal uncertain variables,N(?eτ,?στ),τ ∈(0,1).Using the linear regression model(6),the uncertainty distributions of ?yτare Φτ,and the inverse uncertainty distributions Φ?1τ(α)of ?yτare given as follows

    where

    and

    for τ ∈ (0,1). Θ?τ1(α)are the inverse uncertainty distributions of the normal uncertain variables N(e?τ,σ?τ),τ ∈(0,1). Therefore,according to the subadditivity of uncertain measures[10],we have

    where τ ∈(0,1). Thus,the prediction intervals of ?x corresponding to yτare

    and βτare the minimum values of Formula(16):

    where τ ∈ (0,1).

    4 Numerical Simulation and Case Analysis

    In this section,two experiments based on Model(6)are performed. Furthermore,we estimate the unknown parameters,expected values,variances,mean square errors,forecast values and confidence intervals for the UQR model. We have a linear uncertain variable L(a,b)with the distribution

    where a and b are real numbers,and satisfying a

    4.1 Numerical Example

    We describe the imprecise data expressed in interval forms as linear uncertain variables(Table 1).

    Table 1 Imprecisely observed data

    By Theorem 5,if the data satisfy the linear regression model(6),the unknown parameters β?0τ,β?1τrespectively are the optimal solutions to the following minimization problem:

    where

    and

    for i=1,···,n,τ ∈ (0,1).

    Through the formulations above,we can obtain estimates of the UQR in Table 2 when τ is equal to 0.1,0.25,0.5,0.75 and 0.9,respectively.

    Table 2 Estimated coefficients of each quantile

    According to Theorem 6,the estimated expected values and variances of ετ,τ =0.1,0.25,0.5,0.75,0.9,respectively are shown in Table 3.

    Table 3 Estimated expected values and variances

    From Table 4,it can be seen that mean square errors with imprecise observations are as follows.

    Table 4 Mean square errors under imprecise observations

    The mean square error in the UQR model can reflect the fit of different quartiles,and the whole pattern of the data can be judged based on it. As shown in Table 4, by calculating the mseτvalues at different quartiles, with the exception of the quantile with τ=0.5, all other mseτare about 300, from 0.1 to 0.5, the values of the quantiles increase and mseτdecrease.From 0.5 to 0.9, mseτincrease with the increase of quantiles. In other words, the data are mostly concentrated around the τ=0.5 quantile regression line.

    Next,a new imprecise observation ?x=L(30,31)is given. From Table 5,the forecast values of the uncertain variables and the prediction intervals at the confidence level α=95%are predicted.

    From the values of the coefficients for each quantile in Table 2,the corresponding lines are drawn as follows(Fig 1).

    Table 5 Forecast values and confidence intervals

    Fig 1 UQR diagram of imprecise data at five quantiles

    4.2 The Case Analysis

    The following case is taken from Reference[19]. Suppose an industrial engineer,employed by a company responsible for bottled soft drinks,is analyzing the working performance of a vending machine. A man randomly visits 25 retail stores equipped with vending machines to observe the delivery time(in minutes)and the quantity delivered(in cases)for each store in turn.

    Due to the data recording mechanism,imprecision of the data is inevitable,so it is more reasonable to describe imprecise data as uncertain variables. In Table 6,data Yiand Xiare from the original data in Reference[19],i=1,2,···,n,respectively.The lower limit of each uncertain data yiis the corresponding Yisubtracted from itself by 20%,and the upper limit is Yiitself,i=1,2,···,n,respectively. The lower limit of each uncertain data xiis the corresponding Xiitself,and the upper limit is the corresponding Xiof itself plus 1,i=1,2,···,n,respectively.

    Table 6 Data of delivery time and delivery volumes

    We choose a unary linear regression model

    to fit the uncertain observations in Table 6. According to Theorem 5,UQR estimators β?0τ,β?1τof β0τ,β1τrespectively are the optimal solutions of the following formula minimization problem:

    where

    for i=1,···,n,τ ∈ (0,1).

    Through the formulations above, we can obtain estimates of the UQR in Table 7, when τ is equal to 0.1, 0.25, 0.5,0.75, 0.9, respectively. According to Theorem 6, the estimated expected values and variances of ετ, τ=0.3,0.4,0.5,0.6,0.7,respectively are shown in Table 8.

    Table 7 Estimated coefficients of each quantile

    Table 8 Estimated expected values and variances

    Next,a new imprecise observation ?x=L(31,32)is given. From Table 9,the forecast values of the uncertain variables and the confidence intervals with the confidence level α=95%are predicted.

    Table 9 Forecast values and confidence intervals

    By Table 7,the corresponding lines are drawn as follows(Fig 2).

    Fig 2 UQR diagram of imprecise data in different quantiles

    The mean square errors are mse2τin Reference[19],and the mean square errors of UQR are mse1τ. The results are as follows in Table 10.

    Table 10 Mean square errors

    In the UQR model, the mean square error is an important evaluation index. By comparing the mean square errors in Table 10, they show that the mean square errors of UQR are smaller than the mean square errors of the traditional quantile regression model in different quantiles. In other words,UQR estimation is more suitable.

    5 Conclusion

    This paper proposes a new uncertain quantile regression (UQR) model to compensate the uncertain least absolute deviations for uncertain multivariate regression model in Reference[19]. In terms of model applications,the UQR model can reasonably describe the variation of the response variables and predictor variables at each quantile. And potential different solutions have very useful interpretative significance in different quantiles. In terms of data,uncertain data can be applied to the UQR model. This new model combines leverages uncertainty theory and quantile regression to provide a more comprehensive explanation of the problem. So the UQR model is more reasonable and reliable.

    猜你喜歡
    新疆科學(xué)數(shù)學(xué)
    在新疆(四首)
    科學(xué)大爆炸
    科學(xué)
    我為什么怕數(shù)學(xué)
    新民周刊(2016年15期)2016-04-19 18:12:04
    數(shù)學(xué)到底有什么用?
    新民周刊(2016年15期)2016-04-19 15:47:52
    科學(xué)拔牙
    新疆多怪
    絲綢之路(2014年9期)2015-01-22 04:24:46
    新疆對(duì)外開放一類口岸
    新疆小巴郎
    校園歌聲(2009年2期)2009-03-07 03:07:38
    錯(cuò)在哪里
    免费高清视频大片| 在线观看舔阴道视频| 国产成人精品久久二区二区91| 欧美性长视频在线观看| 天堂√8在线中文| 免费在线观看成人毛片| 一级毛片高清免费大全| 午夜福利免费观看在线| 好看av亚洲va欧美ⅴa在| 午夜精品在线福利| 亚洲精品在线观看二区| a级毛片在线看网站| 久久精品人妻少妇| 欧美三级亚洲精品| 白带黄色成豆腐渣| 亚洲熟女毛片儿| 一级毛片高清免费大全| 很黄的视频免费| 午夜亚洲福利在线播放| 99国产极品粉嫩在线观看| 日日摸夜夜添夜夜添小说| 欧美成人一区二区免费高清观看 | 国产99久久九九免费精品| 久久精品国产亚洲av高清一级| 五月伊人婷婷丁香| 激情在线观看视频在线高清| 国产高清videossex| 女生性感内裤真人,穿戴方法视频| 亚洲国产精品合色在线| 中文字幕最新亚洲高清| 色播亚洲综合网| 国产精品久久久久久亚洲av鲁大| 1024手机看黄色片| 长腿黑丝高跟| 老司机在亚洲福利影院| 人妻久久中文字幕网| 亚洲中文av在线| 精品一区二区三区视频在线观看免费| 久99久视频精品免费| 国产精品一区二区三区四区久久| 看黄色毛片网站| 男插女下体视频免费在线播放| 两个人免费观看高清视频| 亚洲色图av天堂| 午夜老司机福利片| 90打野战视频偷拍视频| 男女做爰动态图高潮gif福利片| 特级一级黄色大片| 久久九九热精品免费| 麻豆av在线久日| 久久久久九九精品影院| 国产精品美女特级片免费视频播放器 | 美女黄网站色视频| 色综合站精品国产| 亚洲av熟女| 后天国语完整版免费观看| 欧美丝袜亚洲另类 | 人成视频在线观看免费观看| 成人手机av| 正在播放国产对白刺激| 国产精品久久电影中文字幕| 久久伊人香网站| 久久久久精品国产欧美久久久| 深夜精品福利| 欧美黄色片欧美黄色片| 男人舔女人下体高潮全视频| 久久欧美精品欧美久久欧美| 国产精品一区二区精品视频观看| 日韩免费av在线播放| 搡老岳熟女国产| 亚洲精品美女久久久久99蜜臀| 亚洲性夜色夜夜综合| 亚洲精华国产精华精| 在线观看日韩欧美| 国产久久久一区二区三区| 国产av麻豆久久久久久久| 又黄又爽又免费观看的视频| 久久婷婷成人综合色麻豆| 国产一区二区在线观看日韩 | 欧美成人性av电影在线观看| 美女扒开内裤让男人捅视频| 全区人妻精品视频| 国产一区二区激情短视频| 欧美日韩一级在线毛片| 99久久99久久久精品蜜桃| 亚洲av成人不卡在线观看播放网| 日日干狠狠操夜夜爽| 欧美成人免费av一区二区三区| 国产精品乱码一区二三区的特点| 无遮挡黄片免费观看| 18禁美女被吸乳视频| 亚洲av电影不卡..在线观看| 熟女电影av网| 亚洲av日韩精品久久久久久密| 国产成人av教育| 亚洲精品av麻豆狂野| 大型黄色视频在线免费观看| 欧美日韩乱码在线| 国产片内射在线| 中文亚洲av片在线观看爽| 精品乱码久久久久久99久播| 后天国语完整版免费观看| 日日摸夜夜添夜夜添小说| 日本五十路高清| 叶爱在线成人免费视频播放| 成年免费大片在线观看| 搞女人的毛片| 宅男免费午夜| 国产成人一区二区三区免费视频网站| 成人高潮视频无遮挡免费网站| 成人三级黄色视频| 国产精品久久视频播放| 50天的宝宝边吃奶边哭怎么回事| 婷婷精品国产亚洲av在线| 久久中文字幕人妻熟女| 国内久久婷婷六月综合欲色啪| av免费在线观看网站| 久久久久久久久久黄片| 日本撒尿小便嘘嘘汇集6| 特级一级黄色大片| 日本精品一区二区三区蜜桃| 免费在线观看亚洲国产| 国语自产精品视频在线第100页| 日韩欧美一区二区三区在线观看| 老鸭窝网址在线观看| 在线播放国产精品三级| 男人舔女人的私密视频| 丝袜美腿诱惑在线| 成人18禁高潮啪啪吃奶动态图| 国产一区二区三区视频了| 日韩三级视频一区二区三区| 国内精品久久久久久久电影| 精品福利观看| 黄色视频不卡| 亚洲欧美精品综合久久99| 国产黄片美女视频| 欧美性猛交黑人性爽| 国产单亲对白刺激| 在线观看www视频免费| 亚洲精品国产精品久久久不卡| 亚洲一卡2卡3卡4卡5卡精品中文| 国产伦在线观看视频一区| 国产真人三级小视频在线观看| 亚洲五月天丁香| 久久久久久久久免费视频了| 亚洲国产精品sss在线观看| 人成视频在线观看免费观看| 欧美久久黑人一区二区| 最好的美女福利视频网| 中国美女看黄片| 国产精品电影一区二区三区| 女人高潮潮喷娇喘18禁视频| 久久久久九九精品影院| 国产伦一二天堂av在线观看| 亚洲国产欧洲综合997久久,| 欧美一级毛片孕妇| 久久精品91蜜桃| 90打野战视频偷拍视频| 黄色丝袜av网址大全| 国产精品综合久久久久久久免费| 69av精品久久久久久| 国产高清videossex| 久久久久久九九精品二区国产 | 全区人妻精品视频| 男女之事视频高清在线观看| 两个人看的免费小视频| 久久国产乱子伦精品免费另类| 欧美在线一区亚洲| 国产99久久九九免费精品| 无遮挡黄片免费观看| 丝袜人妻中文字幕| 少妇被粗大的猛进出69影院| 欧美日韩福利视频一区二区| 国产精品亚洲美女久久久| 久久99热这里只有精品18| 亚洲一卡2卡3卡4卡5卡精品中文| 白带黄色成豆腐渣| 91成年电影在线观看| 成年免费大片在线观看| 老汉色∧v一级毛片| 在线观看美女被高潮喷水网站 | 日韩精品免费视频一区二区三区| 操出白浆在线播放| 国产亚洲av高清不卡| 麻豆国产97在线/欧美 | 久久国产乱子伦精品免费另类| 免费看十八禁软件| 真人做人爱边吃奶动态| 国产精品免费一区二区三区在线| 99久久精品国产亚洲精品| 欧美日韩精品网址| 成在线人永久免费视频| 午夜成年电影在线免费观看| 亚洲全国av大片| 亚洲国产精品成人综合色| 淫妇啪啪啪对白视频| av天堂在线播放| 男女视频在线观看网站免费 | 国产高清有码在线观看视频 | 18禁国产床啪视频网站| 婷婷丁香在线五月| 亚洲 国产 在线| 亚洲国产欧美一区二区综合| 亚洲专区字幕在线| 天堂√8在线中文| 99久久综合精品五月天人人| 妹子高潮喷水视频| 亚洲国产精品成人综合色| 可以在线观看毛片的网站| 丁香欧美五月| 一进一出抽搐动态| 久久久久久免费高清国产稀缺| 黄色视频,在线免费观看| 亚洲第一电影网av| 精华霜和精华液先用哪个| 久久九九热精品免费| 免费在线观看视频国产中文字幕亚洲| 国产av不卡久久| 欧美极品一区二区三区四区| av天堂在线播放| 午夜免费激情av| 搞女人的毛片| 中文字幕熟女人妻在线| 99精品在免费线老司机午夜| 免费av毛片视频| 午夜激情福利司机影院| 日本黄色视频三级网站网址| 久久久久久久精品吃奶| 一本综合久久免费| 女生性感内裤真人,穿戴方法视频| 欧洲精品卡2卡3卡4卡5卡区| 美女大奶头视频| 给我免费播放毛片高清在线观看| 老熟妇乱子伦视频在线观看| 99国产综合亚洲精品| 黑人欧美特级aaaaaa片| 日韩精品免费视频一区二区三区| 97超级碰碰碰精品色视频在线观看| 精品不卡国产一区二区三区| 亚洲黑人精品在线| 亚洲欧美日韩东京热| 老汉色av国产亚洲站长工具| 最新美女视频免费是黄的| 少妇人妻一区二区三区视频| 别揉我奶头~嗯~啊~动态视频| 欧美激情久久久久久爽电影| 少妇裸体淫交视频免费看高清 | 国产高清激情床上av| 亚洲人与动物交配视频| 久久久久久免费高清国产稀缺| 国产高清有码在线观看视频 | 天堂动漫精品| 中文在线观看免费www的网站 | 国产高清videossex| 午夜福利18| 亚洲一卡2卡3卡4卡5卡精品中文| 动漫黄色视频在线观看| 色精品久久人妻99蜜桃| 日本熟妇午夜| 欧美日韩乱码在线| 亚洲国产日韩欧美精品在线观看 | 国产av一区二区精品久久| 欧美色欧美亚洲另类二区| 亚洲一区二区三区色噜噜| 最近最新中文字幕大全免费视频| 欧美乱码精品一区二区三区| av有码第一页| 成人一区二区视频在线观看| 亚洲国产欧洲综合997久久,| 男女那种视频在线观看| av在线播放免费不卡| 热99re8久久精品国产| 亚洲熟女毛片儿| av视频在线观看入口| 午夜日韩欧美国产| 久久香蕉国产精品| 91老司机精品| 国产精品久久久人人做人人爽| 国产视频内射| 精品电影一区二区在线| a在线观看视频网站| 日韩国内少妇激情av| 午夜福利免费观看在线| 免费一级毛片在线播放高清视频| 久久中文看片网| 校园春色视频在线观看| 成人三级黄色视频| 日本a在线网址| 听说在线观看完整版免费高清| 亚洲,欧美精品.| 久久久国产成人免费| 亚洲av片天天在线观看| 久久人人精品亚洲av| 舔av片在线| 香蕉国产在线看| 精品久久久久久久人妻蜜臀av| 国产三级在线视频| 人成视频在线观看免费观看| 国产成人av激情在线播放| 久久久久亚洲av毛片大全| 国产伦人伦偷精品视频| 在线播放国产精品三级| 三级国产精品欧美在线观看 | 俄罗斯特黄特色一大片| 日韩欧美在线二视频| 色哟哟哟哟哟哟| 免费观看人在逋| 伦理电影免费视频| 97碰自拍视频| 亚洲精品中文字幕一二三四区| 亚洲av成人一区二区三| videosex国产| 日韩欧美在线乱码| videosex国产| 国产成人精品久久二区二区免费| 欧美性猛交黑人性爽| 中文字幕久久专区| 日韩三级视频一区二区三区| 一级毛片精品| 国产av不卡久久| xxx96com| 五月玫瑰六月丁香| 少妇熟女aⅴ在线视频| 琪琪午夜伦伦电影理论片6080| 午夜精品一区二区三区免费看| 18禁国产床啪视频网站| 黑人欧美特级aaaaaa片| 中文字幕人妻丝袜一区二区| 国产成人av激情在线播放| 国产精品一及| 成人18禁在线播放| 免费av毛片视频| 亚洲国产精品久久男人天堂| 丰满的人妻完整版| 免费看日本二区| 国产野战对白在线观看| 亚洲免费av在线视频| 人人妻,人人澡人人爽秒播| 在线观看日韩欧美| 黄色 视频免费看| 香蕉国产在线看| 亚洲电影在线观看av| 99riav亚洲国产免费| 亚洲精品一卡2卡三卡4卡5卡| 丝袜美腿诱惑在线| 超碰成人久久| 搡老妇女老女人老熟妇| 一本综合久久免费| 黄频高清免费视频| 国产伦在线观看视频一区| 亚洲性夜色夜夜综合| 亚洲午夜理论影院| 免费观看人在逋| 国产成+人综合+亚洲专区| a级毛片a级免费在线| 亚洲精品av麻豆狂野| 亚洲精品美女久久av网站| 亚洲在线自拍视频| 美女高潮喷水抽搐中文字幕| 精品久久久久久久久久免费视频| 亚洲男人天堂网一区| 亚洲avbb在线观看| 久久精品aⅴ一区二区三区四区| 欧美丝袜亚洲另类 | 欧美一区二区国产精品久久精品 | 亚洲激情在线av| 久久久久精品国产欧美久久久| 亚洲片人在线观看| svipshipincom国产片| 亚洲美女视频黄频| 最新美女视频免费是黄的| 国产私拍福利视频在线观看| 久久人妻av系列| 亚洲av美国av| xxx96com| 国产精品av视频在线免费观看| 欧洲精品卡2卡3卡4卡5卡区| 宅男免费午夜| 啦啦啦韩国在线观看视频| 亚洲国产欧洲综合997久久,| 麻豆一二三区av精品| 视频区欧美日本亚洲| 国产aⅴ精品一区二区三区波| 欧美黄色片欧美黄色片| 亚洲精品av麻豆狂野| 国产亚洲欧美在线一区二区| 99久久99久久久精品蜜桃| 久久久精品欧美日韩精品| 中文资源天堂在线| 黄频高清免费视频| 国产精品98久久久久久宅男小说| 免费人成视频x8x8入口观看| 欧美黑人巨大hd| 亚洲欧美日韩东京热| 90打野战视频偷拍视频| 欧美乱色亚洲激情| 母亲3免费完整高清在线观看| 亚洲色图av天堂| 1024视频免费在线观看| 777久久人妻少妇嫩草av网站| 亚洲人成77777在线视频| 久久久精品大字幕| 国产精品九九99| 久久国产精品人妻蜜桃| av欧美777| 欧洲精品卡2卡3卡4卡5卡区| 亚洲男人天堂网一区| 久久热在线av| 九色成人免费人妻av| 日日夜夜操网爽| 国产精品爽爽va在线观看网站| netflix在线观看网站| 香蕉丝袜av| 超碰成人久久| 免费看十八禁软件| 每晚都被弄得嗷嗷叫到高潮| 国产日本99.免费观看| 老汉色∧v一级毛片| 日本一区二区免费在线视频| 日韩成人在线观看一区二区三区| 亚洲国产精品久久男人天堂| 中文字幕人妻丝袜一区二区| 亚洲国产欧美网| 欧美性猛交╳xxx乱大交人| 超碰成人久久| 在线观看午夜福利视频| 少妇粗大呻吟视频| 最新在线观看一区二区三区| 美女大奶头视频| 国产成人欧美在线观看| 国产免费av片在线观看野外av| 亚洲人成网站高清观看| 91成年电影在线观看| 国产免费男女视频| 老鸭窝网址在线观看| 日韩中文字幕欧美一区二区| 一级作爱视频免费观看| 久久精品国产亚洲av高清一级| 日韩国内少妇激情av| 一级片免费观看大全| 国产亚洲av高清不卡| 最近在线观看免费完整版| 97碰自拍视频| 老司机福利观看| 亚洲激情在线av| 亚洲 欧美一区二区三区| 舔av片在线| www日本在线高清视频| 18美女黄网站色大片免费观看| 欧美日韩黄片免| 中文字幕精品亚洲无线码一区| 2021天堂中文幕一二区在线观| 中出人妻视频一区二区| 丰满的人妻完整版| 日日摸夜夜添夜夜添小说| 欧美日韩亚洲综合一区二区三区_| 超碰成人久久| 黄片大片在线免费观看| 男人舔女人的私密视频| 亚洲欧美精品综合久久99| 国产欧美日韩一区二区三| 国内精品久久久久精免费| 黄色视频不卡| 亚洲欧美日韩东京热| 这个男人来自地球电影免费观看| 妹子高潮喷水视频| 夜夜夜夜夜久久久久| 精华霜和精华液先用哪个| 蜜桃久久精品国产亚洲av| 国产精品一及| 中文字幕av在线有码专区| 国内毛片毛片毛片毛片毛片| 国产乱人伦免费视频| 久久午夜亚洲精品久久| 欧美日本亚洲视频在线播放| 午夜福利成人在线免费观看| 日韩欧美一区二区三区在线观看| 夜夜躁狠狠躁天天躁| 九九热线精品视视频播放| 亚洲成av人片在线播放无| 亚洲性夜色夜夜综合| 又黄又爽又免费观看的视频| 亚洲色图 男人天堂 中文字幕| av中文乱码字幕在线| 午夜成年电影在线免费观看| 99在线人妻在线中文字幕| 黑人操中国人逼视频| 大型av网站在线播放| 国产99白浆流出| 国产亚洲欧美98| 国产精品久久久久久精品电影| 啦啦啦观看免费观看视频高清| 中文字幕熟女人妻在线| 一二三四在线观看免费中文在| tocl精华| 国产精品久久久av美女十八| 亚洲在线自拍视频| 欧美日韩乱码在线| 动漫黄色视频在线观看| 欧美3d第一页| 在线免费观看的www视频| 精品久久久久久久人妻蜜臀av| 国产黄色小视频在线观看| 中文亚洲av片在线观看爽| 非洲黑人性xxxx精品又粗又长| avwww免费| 亚洲欧美日韩高清在线视频| 黄频高清免费视频| 国产一级毛片七仙女欲春2| 国产亚洲欧美98| 久久婷婷人人爽人人干人人爱| 日日爽夜夜爽网站| 日日干狠狠操夜夜爽| 国产一级毛片七仙女欲春2| 久久久久久亚洲精品国产蜜桃av| 亚洲成人国产一区在线观看| 国产成人精品久久二区二区免费| 亚洲精华国产精华精| 男人舔女人的私密视频| 国产久久久一区二区三区| 久久香蕉国产精品| 亚洲色图av天堂| 真人一进一出gif抽搐免费| 日韩成人在线观看一区二区三区| 亚洲天堂国产精品一区在线| av在线天堂中文字幕| 一边摸一边做爽爽视频免费| 桃色一区二区三区在线观看| 一进一出好大好爽视频| 中文字幕av在线有码专区| 母亲3免费完整高清在线观看| 久久久久久九九精品二区国产 | 啦啦啦免费观看视频1| 夜夜躁狠狠躁天天躁| 亚洲av第一区精品v没综合| 日本黄色视频三级网站网址| 国产成人欧美在线观看| 国产精品一区二区三区四区久久| 亚洲最大成人中文| 成人av在线播放网站| 色噜噜av男人的天堂激情| 国产激情欧美一区二区| 亚洲国产欧美一区二区综合| 此物有八面人人有两片| 亚洲第一电影网av| 国产精品自产拍在线观看55亚洲| 亚洲专区国产一区二区| 中文字幕精品亚洲无线码一区| 日韩欧美一区二区三区在线观看| 亚洲国产日韩欧美精品在线观看 | 99久久无色码亚洲精品果冻| 又粗又爽又猛毛片免费看| 97超级碰碰碰精品色视频在线观看| 免费电影在线观看免费观看| 国产熟女xx| 毛片女人毛片| 亚洲国产精品999在线| 啦啦啦观看免费观看视频高清| 亚洲一码二码三码区别大吗| 12—13女人毛片做爰片一| 少妇的丰满在线观看| 老汉色av国产亚洲站长工具| 精品福利观看| 在线看三级毛片| 久久久久久久久久黄片| 欧美精品啪啪一区二区三区| 亚洲成人久久爱视频| 99re在线观看精品视频| 一级毛片高清免费大全| 18禁裸乳无遮挡免费网站照片| 村上凉子中文字幕在线| 亚洲人成网站高清观看| 国产精品精品国产色婷婷| 久久久久久免费高清国产稀缺| 精品午夜福利视频在线观看一区| 国产亚洲欧美在线一区二区| 国产精品亚洲一级av第二区| 久久草成人影院| 久久精品影院6| 午夜激情av网站| 国产视频内射| 十八禁网站免费在线| 成年版毛片免费区| 操出白浆在线播放| 午夜免费观看网址| 超碰成人久久| 女警被强在线播放| 18禁国产床啪视频网站| 亚洲欧美日韩东京热| 亚洲人与动物交配视频| 国产私拍福利视频在线观看| 不卡av一区二区三区| 亚洲人与动物交配视频| 丰满人妻一区二区三区视频av | 国产激情久久老熟女| 琪琪午夜伦伦电影理论片6080| 欧美成人午夜精品| 国产精品亚洲av一区麻豆| www.999成人在线观看| 欧美精品亚洲一区二区| 国内精品久久久久久久电影| 88av欧美| 国语自产精品视频在线第100页| 亚洲成a人片在线一区二区| 长腿黑丝高跟| 三级男女做爰猛烈吃奶摸视频| 国产亚洲欧美98| 19禁男女啪啪无遮挡网站| 一边摸一边做爽爽视频免费| 亚洲欧美精品综合久久99| 淫秽高清视频在线观看| 夜夜看夜夜爽夜夜摸| 亚洲精品国产一区二区精华液| 国产精品精品国产色婷婷| 两个人的视频大全免费|