• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A bio-based epoxy resin derived from p-hydroxycinnamic acid with high mechanical properties and flame retardancy

    2022-12-07 08:27:00XinSongZePengDengChunBoLiFeiSongXiuLiWangLiChenDeMingGuoYuZhongWang
    Chinese Chemical Letters 2022年11期

    Xin Song, Ze-Peng Deng, Chun-Bo Li, Fei Song, Xiu-Li Wang, Li Chen, De-Ming Guo,Yu-Zhong Wang

    The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China

    Keywords:Epoxy resin Bio-based p-Hydroxycinnamic acid Mechanical performance Intrinsic flame retardancy

    ABSTRACT Recent advances in epoxy resins have been forward to achieving high mechanical performance, thermal stability, and flame retardancy.However, seeking sustainable bio-based epoxy precursors and avoiding introduction of additional flame-retardant agents are still of increasing demand.Here we report the synthesis of p-hydroxycinnamic acid-derived epoxy monomer (HCA-EP) via a simple one-step reaction, and the HCA-EP can be cured with 4,4′-diaminodiphenylmethane (DDM) to prepare epoxy resins.Compared with the typical petroleum-based epoxy resin, bisphenol A epoxy resin, the HCA-EP-DDM shows a relatively high glass transition temperature (192.9°C) and impressive mechanical properties (tensile strength of 98.3 MPa and flexural strength of 158.9 MPa).Furthermore, the HCA-EP-DDM passes the V-1 flammability rating in UL-94 test and presents the limiting oxygen index of 32.6%.Notably, its char yield is as high as 31.6% under N2, and the peak heat rate release is 60% lower than that of bisphenol A epoxy resin.Such findings provide a simple way of using p-hydroxycinnamic acid instead of bisphenol A to construct high-performance bio-based thermosets.

    Epoxy resins are one of the most important thermosets that have been widely used for coatings, adhesives, and electronic packaging due to outstanding mechanical properties, dimensional stability, chemical resistance, adhesion, and electrical insulation.Nowadays, most commercialized epoxy resins are still developed from diglycidyl ether of bisphenol A (DGEBA) [1].DGEBA can be synthesized by using epichlorohydrin (ECH) and bisphenol A (BPA).ECH has been produced from bio-based glycerol [2], however, BPA can be merely synthesized from non-renewable chemicals.More seriously, BPA has been acknowledged as an endocrine disruptor and reprotoxic substance [3–5]; this makes restriction of the application of DGEBA in food contact materials [6].Hence, recent interests have been particularly gained for seeking sustainable and safe alternatives to replace DGEBA.

    During the past decade, some biomass feedstocks have been explored to prepare bio-based epoxy resin with high glass transition temperature (Tg) and mechanical properties [7–14].For example, Wanet al.[7] reported a bio-based epoxy resin prepared from eugenol and 4,4′-diaminodiphenyl sulfone.The cured epoxy resin showed a highTgof 207°C.Liuet al.[9] synthesized a bio-based epoxy monomer based on vanillin and guaiacol.The obtained epoxy resin exhibited a higherTgof 187°C and higher tensile strength, as compared to that of DGEBA-based epoxy resin.Xuet al.[11] used vanillin to prepare a bio-based epoxy monomer, which was cured with 4,4′-diaminodiphenylmethane (DDM) to prepare an epoxy resin with a highTgof 206°C and high tensile strength of 122 MPa.Facheet al.[12] prepared a new vanillin-derived diepoxy monomer and the cured epoxy resin showed a comparableTgand higher storage modulus than that of DGEBA-based epoxy resin.

    Despite the remarkable progress in bio-based epoxy resins, the shortages of high flammability, similar to petroleum-based ones,are still difficult to overcome.This greatly limits their applications with strong requirement of fire safety [15].Recently, regarding the concerns on environmental and human health, halogenfree flame-retardants generally containing phosphorus [16], silicon[17], or other halogen-free flame-retardant elements [18,19] have attracted much attention.Although exhibiting satisfactory flame retardant effects, the poor compatibility of these flame retardants with substrates is still the main obstacle that inevitably deteriorates mechanical performances of resulting epoxy resins [20].Developing epoxy resins with intrinsic flame retardancy has therefore become a trend to resolve the contradictions.Many researchers have prepared bio-based epoxy resins with good intrinsic flame retardancy by using different curing agents [21–23].Particularly,DDM is considered as one of the most common curing agents because of low price and good overall performance.Up to now, many researchers have prepared bio-based epoxy resins cured by DDM with good flame retardancy [24–30].Qiet al.[26] designed a biobased monomer with aromaticN-heterocycle.After curing with DDM, the resulting epoxy resin showed aTgof 187°C and peak of heat rate release (PHRR) of 184.5 W/g.Similarly, Liuet al.[30] synthesized a bio-based epoxy monomer containing 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide unit from vanillin and guaiacol, with which the prepared epoxy resin exhibited aTg(176.4°C)and preferable flame retardancy with a PHRR around 300 W/g.However, the tensile and flexural strengths of the epoxy resins are relatively low compared with that of DGEBA-based epoxy resin.Daiet al.[27] used renewable genistein to synthesize an epoxy monomer and found that the obtained epoxy resins had high mechanical properties.Nevertheless, a limited reduction in the PHRR,as compared with DGEBA-DDM, was realized.Hence, it remains necessary but challenging to develop bio-based epoxy resins with balanced high intrinsic flame retardancy and mechanical properties.

    Here, considering the positive contribution of rigid conjugate structure to char forming capacity, we propose to synthesize a new bio-based epoxy monomer (Scheme 1), for the first time, from phydroxycinnamic acid (HCA) that widely exists in various vegetables and fruits, such as carrot, tomato, strawberry, and pineapple.The curing of epoxy monomer with DDM is conducted, as compared with the DGEBA epoxy counterpart.After curing, the thermomechanical and mechanical properties, thermal stability and flame retardancy of the resulting epoxy resin are investigated, and corresponding flame retardant mechanism is disclosed.

    HCA-EP is synthesized by using ECH to react with the hydroxy and carboxyl groups of HCA (Scheme 1).Chemical structures of HCA, ECH and HCA-EP are characterized by1H NMR,13C NMR and FTIR measurements (Fig.1).The characteristic proton peaks at 11.96 and 9.99 ppm attributing to the hydroxyl and carboxyl groups of HCA are not observed in the1H NMR spectrum of HCA-EP; the characteristic proton peaks (2.68, 2.75, 2.88, 3.27 and 3.35 ppm) of1H NMR and carbon peaks (49.96, 49.53, 44.73 and 44.62 ppm) of13C NMR spectra belonging to the epoxy group of HCA-EP are detected.Furthermore, the HCA-EP presents no characteristic peaks of ECH in the1H NMR and13C NMR spectra.The chemical shifts of H and C atoms in the spectra are in accordance with the theoretical values of the HCA-EP structure.Besides, from the FTIR spectra,a characteristic absorption peak attributing to epoxy group [31] is observed at 911 cm?1, while the peak around 1630 cm?1, corresponding to CH=CH [32] is detected.The results suggest the successful introduction of epoxy group as well as the maintenance of vinyl group for HCA.It should be noted that, moreover, HCA-EP has a much lower viscosity than that of E51 (one of the most important representative commercialized epoxy resins [29]) at a shear rate of 0.1–100 s?1, indicating a good processibility for further preparation of epoxy resin

    Fig.1 .(a) 1H NMR and (b) 13C NMR spectra of HCA, ECH and HCA-EP.(c) FTIR spectra of HCA and HCA-EP.(d) Viscosity of HCA-EP and E51 determined from 0.1 s?1 to 500 s?1 at 25°C.

    Scheme 1 .Synthesis route of HCA-EP.

    The curing behaviors of HCA-EP-DDM and E51-DDM are further investigated in terms of non-isothermal curing kinetics at different heating rates (Fig.2).With the increase of heating rate, the curing exothermic peak temperature (Tp) shifts to the high-temperature direction, mainly due to a greater thermal effect but less time for tracking the curing behavior.Additionally, the HCA-EP-DDM system presents a lowerTpcompared with E51-DDM, which is possibly attributed to a higher epoxy value of HCA-EP.To compare the curing activities of two curing systems, Kissinger’s method [33] is used for calculating the activation energy (Ea).whereβis the heating rate,Tpis the exothermic peak temperature,Eais the activation energy of the curing reaction,Ris the gas constant (8.314 J mol?1K?1), and A is the pre-exponential factor.The detailed data, includingTpandEaof the two systems,are shown in Table S1 (Supporting information).TheEaof HCAEP-DDM is comparable to that of E51-DDM, suggesting their similar curing behaviors.Furthermore, the curing of the HCA-EP-DDM system is determined by recording the FTIR spectra.As shown in Fig.S1 (Supporting information), characteristic absorption of epoxy group at 911 cm?1disappears while the characteristic band at 1630 cm?1corresponding to CH=CH still exists after the treatment; the results indicate the curing reaction occurs on the oxirane ring rather than the double carbon bond.

    Fig.2 .Non-isothermal curves obtained from DSC (a) HCA-EP-DDM and (b) E51-DDM via heating rates of 5, 10, 15 and 20°C/min.Linear fitting curves of ln (β/Tp2)versus 1/Tp according to Kissinger’s equation for (c) HCA-EP-DDM and (d) E51-DDM curing systems.

    Table 1 E’at 30°C, Tg, Er and ve obtained by DMA.

    Fig.3 shows storage modulus (G’) and loss factor (tanδ) of HCAEP-DDM and E51-DDM as a function of temperature.The correspondingG’at 30°C (E’at 30°C),Tg,G’in the rubbery plateau region (Er) and crosslinking density (νe) are demonstrated in Table 1.TheE’at 30°C and Tgof HCA-EP-DDM are 3.21×103MPa and 192.9°C, which are higher than those of E51-DDM (2.22×103MPa and 178.8°C).According to previous reports [24],G’andTgare relevant to segmental mobility andve.The conjugate structure (π-πstructure of phenylethylene) of HCA-EP-DDM tends to preferably restrict the segmental mobility, as compared with the bisphenol A structure of E51-DDM (Figs.3c and d) [34].Besides,vecan be calculated from the plateau of the elastic modus in the rubbery state according to Eq.S1 (Supporting information) [24].Theveof cured HCA-EP-DDM and E51-DDM is calculated to be 3.23×103mol/m3and 2.59×103mol/m3, respectively; this can be explained by that a higher epoxy value may form a higher-crosslinking network(a higherve) [28].Mechanical properties of cured epoxy resins are studied using the tensile and flexural measurements (Fig.3 and Table S2 in Supporting information).The tensile and flexural strengths of HCA-EP-DDM are 98.3 and 158.9 MPa, which are higher than those of E51-DDM (70.3 and 138.8 MPa).Moreover,HCA-EP-DDM exhibits 32% and 41% higher Young’s and flexural modulus (2.00×103MPa and 3.22×103MPa) than those of E51-DDM (1.51×103and 2.29×103MPa).As reported before [25], mechanical strength and modulus depends closely on the molecular rigidity and crosslinking density.Internal rotation is difficult to occur for conjugate structure of benzene ring and double bond,thus HCA-EP-DDM with the conjugatedπ-πstructure and highvepresents stronger mechanical performances over E51-DDM.

    Fig.3 .The curves of (a) storage modulus (G’) and (b) tanδ versus temperature for HCA-EP-DDM and E51-DDM obtained by DMA.The structure of crosslinking networks for (c) HCA-EP-DDM and (d) E51-DDM.(e) Tensile strength and Young’s modulus from tensile test and (f) flexural strength and modulus from flexural test of HCA-EP-DDM and E51-DDM.

    Table 2 LOI and UL-94 rating of HCA-EP-DDM and E51-DDM.

    The TGA and differential thermogravimetry (DTG) curves of HCA-EP-DDM and E51-DDM under N2atmosphere are shown in Fig.4.The corresponding data, including the temperature where 5 wt% weight is lost (T5%), maximum weight loss temperature (Tmax)and the residual weight at 700°C (Cy700), are marked.Under N2atmosphere, E51-DDM shows a single-step degradation process, presenting theT5%of 385.4°C andTmaxof 399.3°C.A high maximum degradation rate of 2.07 wt%/°C is detected within 380 to 550°C.Similarly, HCA-EP-DDM also presents a one-step degradation process under N2atmosphere.HCA-EP-DDM exhibits theT5%of 319.0°C andTmaxof 392.1°C.The lowerT5%of HCA-EP-DDM can be explained by the easy fracture of the unsaturated C=C double bond as well as the C–C single bond between benzene ring and double bond [25].However, its thermostability still meets the requirement for electrical epoxy resins according to the standard IPCTM-650.In addition, it should be noted that, the maximum degradation rate of HCA-EP-DDM is 0.38 wt%/°C, which is 82% lower than that of E51-DDM, indicating that HCA-EP-DDM has gentle thermal degradation performance.Besides, HCA-EP-DDM exhibits a much higher char residue amount of 31.6% than that of E51-DDM (16.6%); this can be due to the high cross-linking density and the presence of conjugate structure (π-πstructure of phenylethylene) that provide stronger carbonization [21,35].Thermal stability of cured epoxy resins under air atmosphere is shown in Fig.S2 (Supporting information).Different from the results under N2atmosphere, both HCA-EP-DDM and E51-DDM present two-stage degradation.For the first degradation process, HCA-EP-DDM shows a lowerT5%andTmax1than those of E51-DDM, due to the presence of C=C double bond and C–C single bond between benzene ring and double bond which accounts for the similar behaviors under N2atmosphere [25].However, the maximum degradation rate ofHCA-EP-DDM is only 0.27 wt%/°C, which is 90% lower than that of E51-DDM (2.75 wt%/°C).In the second step, HCA-EP-DDM shows aTmax2of 601.9°C, which is close to that of E51-DDM (606.0°C).Besides, the char residue amount of HCA-EP-DDM is higher than that of E51-DDM above 403.7°C, indicating HCA-EP-DDM possesses stronger carbonization performance.A possible decomposition process of HCA-EP-DDM under air atmosphere is summarized: (1)Sluggish degradation from 300 to 520°C corresponding to the first degradation process with formation of some char layers; (2) The oxidized decomposition of unstable char layer.

    Fig.4 .(a) TGA and (b) DTG curves of HCA-EP-DDM and E51-DDM under N2 atmosphere.

    The flame retardance of cured epoxy resins is investigated with limiting oxygen index (LOI), vertical burning (UL-94) and cone calorimeter measurements.As shown in Fig.S3 (Supporting information) and Table 2, E51-DDM presents a UL-94 rating of NR and LOI of 26.5%.In contrast, HCA-EP-DDM shows stronger flame resistance with a UL-94 rating of V1 and LOI of 32.6%.Fig.5 exhibits the curves of heat release rate (HRR), total heat release(THR), smoke production release (SPR) and total smoke production (TSP) of cured epoxy resins.The corresponding data, including time to ignition (TTI), THR, the peak of heat release rate (PHRR),calculated fire growth rate (FIGRA), TSP and char residue yield are shown in Table S3 (Supporting information).The TTI of HCAEP-DDM is lower than that of E51-DDM, which is in accordance with the TGA result.HCA-EP-DDM exhibits a PHRR of 437 kW/m2,with an obvious reduction of 60% compared with that of E51-DDM(1088 kW/m2).Similarly, the THR and TSP of HCA-EP-DDM is reduced by 34% and 30%, respectively, compared with those of E51-DDM.Besides, based on the HRR curves, FIGRA of HCA-EP-DDM is relatively low, indicating HCA-EP-DDM has higher fire safety.The char residue amount of HCA-EP-DDM after combustion is 29.7 wt%,which is much higher than that of E51-DDM (7.3 wt%).Therefore,it can be concluded that HCA-EP-DDM exhibits a high flame retardance with a UL-94 rating of V1, LOI of 32.6%, and PHHR as low as 437 kW/m2.

    Fig.5 .(a) HRR, (b) THR, (c) SPR and (d) TSP curves of HCA-EP-DDM and E51-DDM tested by cone calorimeter test.

    To understand the flame retardant mechanism of HCA-EP-DDM,SEM, Raman, XPS and TG-FTIR measurements are conducted.As shown in Fig.6, E51-DDM cannot retain its original structure but shows fragile and discrete char residue; in contrast, HCA-EPDDM maintains the shape with consecutive and intumescent char residues.From the Raman results shown in Fig.7, two characteristic peaks at 1350 cm?1(corresponding to D bond) and 1590 cm?1(corresponding to G bond) are detected for cured epoxy resins after burning.The ratio of D and G bonds (ID/IG) represents the degree of graphitization.A lowerID/IGmeans a more regular structure.TheID/IGof HCA-EP-DDM (2.65) is lower than that of E51-DDM, indicating that HCA-EP-DDM forms more regular char layer during combustion.From the XPS survey for the char residues after cone calorimeter test (Fig.8 and Fig.S4 in Supporting information), both HCA-EP-DDM and E51-DDM have three characteristic peaks of C 1s and N 1s.For the C 1s spectrum, peaks at 284.6,285.2 and 288.9 eV are associated with C–C, C–N and C=C/C=N bonds [36]; for the N 1s spectrum, peaks at 398.5, 400.3 and 403.2 eV are attributed to pyridine, pyrrole and pyridine-N-oxide[37].As reported before [38], the pyridine structure is more stable than the pyrrole structure, benefitting for forming stable char layer.The above results indicate that HCA-EP-DDM possesses more stable char residues after burning due to formation of more pyridine(Table S4 in Supporting information).From the 3D TG-FTIR results shown in Figs.9a and b, the gas phase products are determined for HCA-EP-DDM and E51-DDM during the total thermal-degradation process.HCA-EP-DDM shows lower absorbance than that of E51-DDM, indicating less gaseous products formed from HCA-EP-DDM.Figs.9c and d exhibits the FTIR spectra of the gaseous products at the maximum decomposition rate, from which CO2(2358 cm?1and 2309 cm?1) and NH3(3800–3700 cm?1) [25] are detected for the HCA-EP-DDM system while aromatic alcohols (3651 cm?1),hydrocarbons (3140–2650 cm?1), aromatic compounds (1611 cm?1and 1511 cm?1) [25,35,39] are observed for the E51-DDM system.The results indicate the breakage of backbone of E51-DDM during thermal-degradation process, generating flammable aromatic compounds, thus causing poor charring ability and promoted combustion.In comparison, the gaseous products of HCA-EP-DDM contain much less flammable gasses as well as more nonflammable CO2and NH3.Besides, aromatic compounds and aromatic alcohols are hardly detected in the gaseous products of HCA-EP-DDM, indicating the well preservation of aromatic compounds in the condensed phase that contributes to forming stable char residues.Thus, based on the SEM, Raman, XPS and TG-FTIR results, HCA-EP-DDM follows both synergic condensed-phase and gaseous-phase flame retardant mechanism.For the condensed phase, the presence of conjugate structure and high crosslinking density enhances the formation of char residues as a protective layer to block oxygen and heat.For the gaseous phase, mainly nonflammable gasses (CO2and NH3) are released, which could take away the heat and dilute the flammable gaseous products.

    Fig.6 .Digital photos and SEM morphologies of char residues after cone calorimeter test for (a1–a3) HCA-EP-DDM and (b1–b3) E51-DDM.

    Fig.7 .Raman spectra of char residues for (a) full survey; peak splitting for (b) HCA-EP-DDM and (c) E51-DDM after cone calorimeter test.

    Fig.8 .The high-resolution XPS spectra for (a, c) C 1s and (b, d) N 1s for char residues of HCA-EP-DDM and E51-DDM after cone calorimeter test.

    Fig.9 .The 3D TG-IR spectra of the gas phase products during the total thermal degradation process for (a) HCA-EP-DDM and (b) E51-DDM.The FTIR spectra of the gaseous products at temperature of the maximum decomposition rate of (c) HCAEP-DDM and (d) E51-DDM.

    As we know, high mechanical properties,Tgand flame retardance should be particularly noted for epoxy resins.Thus, tensile strength, flexural strength,Tgand PHRR (%) (decrease percentage of PHRR compared with E51-DDM) of recently reported biobased epoxy resins cured with DDM are summarized in Fig.10[24–30].Our work exhibits relatively high comprehensive performances among bio-based epoxy resins.Specifically, HCA-EP-DDM exhibits a relatively high PHRR (%) in this work, indicating high flame retardancy among relevant works.Furthermore, the mechanical properties (tensile and flexural strengths) andTgof HCA-EPDDM are comparable to or even higher than the bio-based epoxy resin counterparts.

    Fig.10 .Performance comparison of mechanical properties, Tg and PHRR (%) data for different bio-based epoxy resins cured by DDM.

    In conclusion, we synthesized a bio-based epoxy monomer(HCA-EP) derived fromp-hydroxycinnamic acid.The obtained biomass-carbon-containing aromatic compound can be used to prepare high-performance epoxy resin with DDM as a curing agent.The HCA-EP-DDM system has higher curing reactivity and processability, because of the much low viscosity of HCA-EP as low as 0.75 Pa s (25°C), as compared to that of a widely used precursor (E51, 12.85 Pa s).After curing, HCA-EP-DDM presents a higherTg(192.9°C) than that of E51-DDM.Additionally, the cured HCA-EP-DDM displays high mechanical properties with the tensile strength of 98.3 MPa and flexural strength of 158.9 MPa.Particularly, the HCA-EP-DDM system exhibits a high char yield of 31.6%(in N2), a peak heat rate release (PHRR) as low as 437 kW/m2, a high limiting oxygen index (LOI) of 32.6% as well as passes the flammability rating of V-1.These results offer the bio-based epoxy monomer great potential for developing sustainable epoxy resins with high mechanical and flame retardant performance to replace toxic petroleum-derived DGEBA counterparts.

    Declaration of competing interest

    The authors declare no competing financial interest.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China (Nos.52073189 and 51822304), Science and Technology Fund for Distinguish Young Scholars of Sichuan Province(No.2019JDJQ0025), State Key Laboratory of Polymer Materials Engineering (No.sklpme2020-3-09), and the Fundamental Research Funds for the Central Universities.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.12.067.

    18禁裸乳无遮挡免费网站照片 | 一区二区日韩欧美中文字幕| 又紧又爽又黄一区二区| 精品一区二区三区四区五区乱码| 色精品久久人妻99蜜桃| 精品一品国产午夜福利视频| 精品人妻1区二区| 国产亚洲精品一区二区www| 老司机亚洲免费影院| 欧美日韩国产mv在线观看视频| 夫妻午夜视频| 一进一出抽搐动态| 久久久国产成人免费| 精品久久久久久成人av| 最新在线观看一区二区三区| 多毛熟女@视频| 脱女人内裤的视频| 黄色毛片三级朝国网站| 精品国产乱子伦一区二区三区| 国产日韩一区二区三区精品不卡| 淫妇啪啪啪对白视频| 亚洲精品av麻豆狂野| 美女国产高潮福利片在线看| 老司机靠b影院| 亚洲成人国产一区在线观看| 男人操女人黄网站| av天堂久久9| 欧美精品亚洲一区二区| 国产91精品成人一区二区三区| 亚洲精华国产精华精| av网站在线播放免费| 欧美 亚洲 国产 日韩一| 麻豆久久精品国产亚洲av | 欧美激情高清一区二区三区| 色婷婷久久久亚洲欧美| 一本综合久久免费| 97人妻天天添夜夜摸| 亚洲精品成人av观看孕妇| www日本在线高清视频| 又黄又爽又免费观看的视频| 亚洲专区国产一区二区| 国产精品影院久久| 黄频高清免费视频| 日韩欧美在线二视频| 日韩精品中文字幕看吧| 男女做爰动态图高潮gif福利片 | 久久天躁狠狠躁夜夜2o2o| 熟女少妇亚洲综合色aaa.| 热99国产精品久久久久久7| 欧美av亚洲av综合av国产av| 亚洲国产欧美一区二区综合| 久久人妻av系列| 午夜两性在线视频| 国产精品久久久av美女十八| 日韩欧美一区视频在线观看| 久久久国产精品麻豆| 亚洲五月婷婷丁香| 亚洲精品av麻豆狂野| 日韩免费av在线播放| 啦啦啦 在线观看视频| av福利片在线| 搡老熟女国产l中国老女人| 国产三级在线视频| 香蕉丝袜av| 成年人黄色毛片网站| 亚洲中文字幕日韩| 亚洲午夜理论影院| 国产精品一区二区在线不卡| 麻豆一二三区av精品| 一本综合久久免费| 又黄又粗又硬又大视频| 久热爱精品视频在线9| 天天躁夜夜躁狠狠躁躁| 亚洲九九香蕉| 欧洲精品卡2卡3卡4卡5卡区| 黑人巨大精品欧美一区二区mp4| 18禁国产床啪视频网站| 国产精品美女特级片免费视频播放器 | а√天堂www在线а√下载| 亚洲一卡2卡3卡4卡5卡精品中文| 热99re8久久精品国产| 91精品三级在线观看| av超薄肉色丝袜交足视频| 亚洲一区高清亚洲精品| 成人精品一区二区免费| 激情视频va一区二区三区| 丁香欧美五月| 国产一区二区激情短视频| 视频在线观看一区二区三区| 美女 人体艺术 gogo| 国产高清videossex| 国产高清国产精品国产三级| 啦啦啦在线免费观看视频4| 欧美日韩国产mv在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 午夜视频精品福利| 老汉色av国产亚洲站长工具| 国产成人欧美在线观看| 欧美性长视频在线观看| 人人妻人人爽人人添夜夜欢视频| 很黄的视频免费| 日韩免费高清中文字幕av| 精品久久久久久,| 性色av乱码一区二区三区2| 熟女少妇亚洲综合色aaa.| 又紧又爽又黄一区二区| 日本黄色日本黄色录像| 亚洲第一欧美日韩一区二区三区| 国产无遮挡羞羞视频在线观看| 19禁男女啪啪无遮挡网站| 美女 人体艺术 gogo| 又黄又粗又硬又大视频| 人人妻人人爽人人添夜夜欢视频| 国产精品秋霞免费鲁丝片| 国产伦一二天堂av在线观看| 久久精品国产清高在天天线| 国产国语露脸激情在线看| 精品国产国语对白av| 亚洲国产毛片av蜜桃av| 一级片免费观看大全| 久久人妻av系列| 日韩免费av在线播放| 国产有黄有色有爽视频| 中文欧美无线码| 亚洲avbb在线观看| 视频区图区小说| 亚洲狠狠婷婷综合久久图片| a在线观看视频网站| 真人一进一出gif抽搐免费| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品国产综合久久久| 亚洲欧美激情在线| 免费少妇av软件| 国产精品二区激情视频| 欧美在线一区亚洲| 老司机福利观看| 国产99久久九九免费精品| 久久国产精品影院| 亚洲精品在线美女| 国产成人系列免费观看| 99精品欧美一区二区三区四区| 男女之事视频高清在线观看| 国产极品粉嫩免费观看在线| 正在播放国产对白刺激| 激情视频va一区二区三区| 久久精品人人爽人人爽视色| 婷婷丁香在线五月| 国产高清视频在线播放一区| 极品教师在线免费播放| 久久性视频一级片| 欧美激情高清一区二区三区| 国产真人三级小视频在线观看| 黄色视频不卡| 亚洲精品中文字幕一二三四区| 亚洲一卡2卡3卡4卡5卡精品中文| 美女福利国产在线| av天堂在线播放| 中文字幕人妻丝袜一区二区| 母亲3免费完整高清在线观看| 亚洲精品国产一区二区精华液| 老司机深夜福利视频在线观看| 亚洲成人久久性| 国产真人三级小视频在线观看| 黑丝袜美女国产一区| av福利片在线| 正在播放国产对白刺激| 亚洲一区二区三区不卡视频| 久久香蕉精品热| 日韩三级视频一区二区三区| 亚洲成国产人片在线观看| 一级黄色大片毛片| 淫秽高清视频在线观看| 国产激情久久老熟女| 久久婷婷成人综合色麻豆| 国产一区二区三区在线臀色熟女 | 亚洲aⅴ乱码一区二区在线播放 | 国产成人精品久久二区二区91| 久久国产精品人妻蜜桃| 99re在线观看精品视频| 日本一区二区免费在线视频| 国产精品98久久久久久宅男小说| 99国产综合亚洲精品| 丰满人妻熟妇乱又伦精品不卡| 一进一出抽搐gif免费好疼 | 日韩免费av在线播放| 日日干狠狠操夜夜爽| 成人18禁高潮啪啪吃奶动态图| 日韩精品青青久久久久久| 夜夜爽天天搞| 咕卡用的链子| 天堂动漫精品| 久久伊人香网站| 成人特级黄色片久久久久久久| 淫秽高清视频在线观看| 黄色丝袜av网址大全| 一进一出抽搐gif免费好疼 | 亚洲伊人色综图| 亚洲国产欧美一区二区综合| 看黄色毛片网站| 亚洲精品久久成人aⅴ小说| 如日韩欧美国产精品一区二区三区| 国产熟女xx| 久久天堂一区二区三区四区| www国产在线视频色| 妹子高潮喷水视频| 免费观看人在逋| 国产成人av激情在线播放| 国产三级在线视频| 欧美日韩一级在线毛片| 黑人巨大精品欧美一区二区mp4| 精品久久久久久久毛片微露脸| 法律面前人人平等表现在哪些方面| 成人av一区二区三区在线看| 日韩大码丰满熟妇| 又黄又粗又硬又大视频| 国产免费现黄频在线看| 精品一区二区三区av网在线观看| 国产主播在线观看一区二区| 亚洲免费av在线视频| 亚洲 欧美 日韩 在线 免费| 精品国产乱码久久久久久男人| 国产高清国产精品国产三级| 男女下面进入的视频免费午夜 | 精品久久久久久久毛片微露脸| 黄色丝袜av网址大全| 人人妻,人人澡人人爽秒播| 丝袜人妻中文字幕| 老熟妇乱子伦视频在线观看| 99国产综合亚洲精品| 久久久久久久久免费视频了| 少妇被粗大的猛进出69影院| 99久久精品国产亚洲精品| 亚洲欧美日韩另类电影网站| 久久99一区二区三区| 欧美最黄视频在线播放免费 | 99久久精品国产亚洲精品| 欧美成人午夜精品| 国产精品久久久久久人妻精品电影| 成人精品一区二区免费| 长腿黑丝高跟| 最新美女视频免费是黄的| 色在线成人网| 极品人妻少妇av视频| 亚洲成人免费电影在线观看| 国产精品 国内视频| 色播在线永久视频| 精品乱码久久久久久99久播| 丰满人妻熟妇乱又伦精品不卡| 新久久久久国产一级毛片| 超色免费av| 欧美乱码精品一区二区三区| 久久香蕉国产精品| 午夜成年电影在线免费观看| 欧美在线黄色| 国产亚洲欧美98| 每晚都被弄得嗷嗷叫到高潮| 青草久久国产| 亚洲精品成人av观看孕妇| 日本免费a在线| 亚洲 欧美一区二区三区| 午夜a级毛片| 日本wwww免费看| 在线观看www视频免费| 国产成人精品久久二区二区91| 一区二区三区国产精品乱码| 国产一卡二卡三卡精品| www.熟女人妻精品国产| 国产又爽黄色视频| 欧美丝袜亚洲另类 | 19禁男女啪啪无遮挡网站| www.熟女人妻精品国产| av欧美777| 老司机午夜十八禁免费视频| 自线自在国产av| 国产成人影院久久av| 久久精品亚洲熟妇少妇任你| 香蕉丝袜av| 久久 成人 亚洲| 日韩欧美三级三区| 级片在线观看| av在线播放免费不卡| 色婷婷av一区二区三区视频| 天天躁夜夜躁狠狠躁躁| 中文字幕人妻熟女乱码| 999久久久精品免费观看国产| 人成视频在线观看免费观看| 91九色精品人成在线观看| 十八禁网站免费在线| 国产精品永久免费网站| 日本 av在线| 在线观看日韩欧美| 在线观看免费高清a一片| 国产乱人伦免费视频| 美女午夜性视频免费| 国产成人精品无人区| svipshipincom国产片| 不卡一级毛片| 嫩草影院精品99| 精品久久蜜臀av无| 亚洲av五月六月丁香网| 少妇被粗大的猛进出69影院| 大香蕉久久成人网| 久久 成人 亚洲| 日本欧美视频一区| 麻豆av在线久日| 黄色毛片三级朝国网站| 亚洲美女黄片视频| 日韩人妻精品一区2区三区| 国产成人av激情在线播放| 日韩欧美国产一区二区入口| 久久99一区二区三区| 国产日韩一区二区三区精品不卡| 免费看a级黄色片| 一边摸一边抽搐一进一小说| 99久久99久久久精品蜜桃| 一区福利在线观看| 国产精品偷伦视频观看了| 一进一出抽搐动态| 日韩欧美在线二视频| 亚洲人成网站在线播放欧美日韩| 99国产精品免费福利视频| 国产亚洲欧美98| 欧美精品亚洲一区二区| 宅男免费午夜| 如日韩欧美国产精品一区二区三区| 真人做人爱边吃奶动态| 欧美在线黄色| 亚洲欧美日韩另类电影网站| 亚洲成人国产一区在线观看| 国产成人一区二区三区免费视频网站| 无限看片的www在线观看| 午夜精品国产一区二区电影| 国产一区二区三区综合在线观看| 日本wwww免费看| 亚洲欧美日韩高清在线视频| 神马国产精品三级电影在线观看 | 午夜福利在线观看吧| a级毛片黄视频| 18禁美女被吸乳视频| 91在线观看av| 欧美日韩乱码在线| 国产免费男女视频| 最近最新中文字幕大全免费视频| www日本在线高清视频| 午夜亚洲福利在线播放| 欧美性长视频在线观看| 亚洲aⅴ乱码一区二区在线播放 | 日韩三级视频一区二区三区| 97碰自拍视频| 国产主播在线观看一区二区| 1024视频免费在线观看| 亚洲在线自拍视频| 午夜视频精品福利| 亚洲精品中文字幕一二三四区| 精品国产乱子伦一区二区三区| 少妇被粗大的猛进出69影院| 国产aⅴ精品一区二区三区波| 另类亚洲欧美激情| 级片在线观看| 人人妻人人爽人人添夜夜欢视频| 一级毛片女人18水好多| 国产一区二区激情短视频| 啦啦啦在线免费观看视频4| 亚洲精品美女久久av网站| 50天的宝宝边吃奶边哭怎么回事| 欧美日本中文国产一区发布| 91精品国产国语对白视频| 亚洲精品粉嫩美女一区| 麻豆一二三区av精品| 国产精品日韩av在线免费观看 | 国产精品一区二区精品视频观看| 丝袜人妻中文字幕| 亚洲精品国产区一区二| 操出白浆在线播放| 午夜免费成人在线视频| 亚洲一区高清亚洲精品| 久久狼人影院| 国产精品 欧美亚洲| 国产高清激情床上av| 久久伊人香网站| 丰满的人妻完整版| 国产成人av激情在线播放| 亚洲精品美女久久久久99蜜臀| 精品国产乱子伦一区二区三区| 老汉色av国产亚洲站长工具| 热re99久久国产66热| 免费高清在线观看日韩| 不卡av一区二区三区| а√天堂www在线а√下载| 岛国在线观看网站| 国产精品 国内视频| 麻豆成人av在线观看| 日韩高清综合在线| 国产成人欧美| 国产成人一区二区三区免费视频网站| 亚洲成人免费av在线播放| 国产单亲对白刺激| 男人舔女人下体高潮全视频| 黄色丝袜av网址大全| 日韩欧美三级三区| 国产1区2区3区精品| 露出奶头的视频| 91在线观看av| 欧美成人性av电影在线观看| 麻豆成人av在线观看| 国产精品成人在线| 18禁观看日本| 久久久国产成人精品二区 | 两个人看的免费小视频| 啦啦啦 在线观看视频| 亚洲中文日韩欧美视频| 精品免费久久久久久久清纯| 午夜激情av网站| 一级片免费观看大全| 欧美成人午夜精品| 一级作爱视频免费观看| 国产av在哪里看| 成人国语在线视频| 久久精品国产亚洲av香蕉五月| 国产高清国产精品国产三级| 国产午夜精品久久久久久| 在线观看免费高清a一片| 久久中文字幕人妻熟女| 亚洲午夜精品一区,二区,三区| 中国美女看黄片| 在线观看www视频免费| 99精品久久久久人妻精品| 国产精品影院久久| 一级片'在线观看视频| 另类亚洲欧美激情| 99精品在免费线老司机午夜| 久久中文字幕一级| 精品福利观看| 欧美成狂野欧美在线观看| 日韩免费av在线播放| 桃色一区二区三区在线观看| 日韩精品免费视频一区二区三区| 黑人巨大精品欧美一区二区mp4| 成人特级黄色片久久久久久久| 露出奶头的视频| 中文字幕最新亚洲高清| 无遮挡黄片免费观看| 欧美日韩一级在线毛片| 午夜两性在线视频| 母亲3免费完整高清在线观看| netflix在线观看网站| 亚洲熟妇熟女久久| 国产成人av激情在线播放| 亚洲视频免费观看视频| av网站在线播放免费| 亚洲国产精品999在线| 日本vs欧美在线观看视频| 天天躁夜夜躁狠狠躁躁| 午夜精品在线福利| 侵犯人妻中文字幕一二三四区| 欧美成人性av电影在线观看| 精品久久久精品久久久| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲自拍偷在线| 99久久精品国产亚洲精品| 欧美一区二区精品小视频在线| 久久久久国内视频| 欧美日韩亚洲高清精品| 最新在线观看一区二区三区| 国产精品国产av在线观看| 亚洲色图综合在线观看| 黄频高清免费视频| 亚洲成人免费电影在线观看| 精品久久久久久电影网| 精品一品国产午夜福利视频| 一级毛片女人18水好多| 免费女性裸体啪啪无遮挡网站| 变态另类成人亚洲欧美熟女 | 人妻丰满熟妇av一区二区三区| 精品国产美女av久久久久小说| 极品人妻少妇av视频| 法律面前人人平等表现在哪些方面| 黑人巨大精品欧美一区二区蜜桃| 国产黄色免费在线视频| 成人永久免费在线观看视频| 国产精品一区二区三区四区久久 | 搡老熟女国产l中国老女人| 亚洲人成77777在线视频| 亚洲va日本ⅴa欧美va伊人久久| 欧美在线一区亚洲| www日本在线高清视频| 91av网站免费观看| 中文字幕最新亚洲高清| 亚洲第一av免费看| av天堂在线播放| 欧美色视频一区免费| 丰满饥渴人妻一区二区三| 国产精品久久视频播放| 看黄色毛片网站| 大陆偷拍与自拍| 国产熟女xx| 淫秽高清视频在线观看| 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩一区二区三| 亚洲欧美精品综合久久99| 91成人精品电影| 国产区一区二久久| 女人高潮潮喷娇喘18禁视频| 色婷婷av一区二区三区视频| 亚洲精品在线观看二区| 免费不卡黄色视频| 99久久人妻综合| x7x7x7水蜜桃| av中文乱码字幕在线| 亚洲人成伊人成综合网2020| 黑人巨大精品欧美一区二区蜜桃| 国产成人一区二区三区免费视频网站| 好男人电影高清在线观看| 免费在线观看黄色视频的| 18禁观看日本| 午夜老司机福利片| 神马国产精品三级电影在线观看 | 99国产精品99久久久久| cao死你这个sao货| 久久久久久人人人人人| 欧美另类亚洲清纯唯美| 亚洲中文av在线| 9热在线视频观看99| 欧美日韩一级在线毛片| 亚洲片人在线观看| 精品国内亚洲2022精品成人| 男女下面插进去视频免费观看| 亚洲国产欧美日韩在线播放| 成人亚洲精品av一区二区 | 无限看片的www在线观看| 一区二区三区精品91| 村上凉子中文字幕在线| 亚洲情色 制服丝袜| 少妇裸体淫交视频免费看高清 | 久久精品91无色码中文字幕| 伊人久久大香线蕉亚洲五| 久久伊人香网站| 成人亚洲精品一区在线观看| 欧美精品亚洲一区二区| 精品无人区乱码1区二区| 国产精品国产av在线观看| 99精品在免费线老司机午夜| 成人亚洲精品一区在线观看| 欧美中文日本在线观看视频| 怎么达到女性高潮| 亚洲精品美女久久av网站| 淫妇啪啪啪对白视频| 一二三四社区在线视频社区8| 国产99久久九九免费精品| 黄色视频不卡| 91精品国产国语对白视频| 嫩草影院精品99| av电影中文网址| 国产亚洲精品久久久久5区| 不卡av一区二区三区| 亚洲av熟女| 欧美激情久久久久久爽电影 | 亚洲一区二区三区欧美精品| 亚洲精品一区av在线观看| 两个人看的免费小视频| 日本a在线网址| 99久久久亚洲精品蜜臀av| 国产精品久久电影中文字幕| 亚洲人成77777在线视频| 国产亚洲精品久久久久久毛片| 视频区图区小说| 亚洲视频免费观看视频| 高清欧美精品videossex| 欧美人与性动交α欧美精品济南到| av欧美777| 99久久99久久久精品蜜桃| 桃红色精品国产亚洲av| 国产又爽黄色视频| 看片在线看免费视频| 亚洲一区二区三区欧美精品| 亚洲自拍偷在线| 欧美最黄视频在线播放免费 | 免费在线观看视频国产中文字幕亚洲| 亚洲色图 男人天堂 中文字幕| 男女下面进入的视频免费午夜 | 两人在一起打扑克的视频| 人人妻人人爽人人添夜夜欢视频| 又黄又爽又免费观看的视频| 美女 人体艺术 gogo| 免费在线观看完整版高清| 国产精品乱码一区二三区的特点 | 国产亚洲精品综合一区在线观看 | 精品久久久久久,| 国产99久久九九免费精品| 亚洲精华国产精华精| 91成人精品电影| 精品国内亚洲2022精品成人| 亚洲精华国产精华精| 亚洲自拍偷在线| 啦啦啦在线免费观看视频4| 视频在线观看一区二区三区| 欧美av亚洲av综合av国产av| 国产成人免费无遮挡视频| 又大又爽又粗| 欧美av亚洲av综合av国产av| 久久国产亚洲av麻豆专区| 99riav亚洲国产免费| 巨乳人妻的诱惑在线观看| 看片在线看免费视频| 亚洲五月婷婷丁香| 国产精品香港三级国产av潘金莲| 9191精品国产免费久久| 国产色视频综合| 欧美黑人精品巨大| 欧美日韩国产mv在线观看视频| 成人黄色视频免费在线看| 亚洲国产毛片av蜜桃av| 国产高清videossex| 国产一区二区在线av高清观看| 午夜免费鲁丝|