• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ruthenium-modified porous NiCo2O4 nanosheets boost overall water splitting in alkaline solution

    2022-12-07 08:27:04RuiYngXuezhoShiYnynWngJingJinHnwenLiuJieYinYongQingZhoPinxinXi
    Chinese Chemical Letters 2022年11期

    Rui Yng, Xuezho Shi, Ynyn Wng, Jing Jin, Hnwen Liu, Jie Yin,Yong-Qing Zho, Pinxin Xi,?

    a State Key Laboratory of Applied Organic Chemistry Frontiers Science Center for Rare Isotopes College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000, China

    b Lanzhou Jinchuan Advanced Materials Technology Co., Ltd., Jinchang 737100, China

    Keywords:Ru modification Porous nanosheets Oxygen vacancy Spinel-based oxides Water splitting

    ABSTRACT Exploring efficient oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) electrocatalysts is crucial for developing water splitting devices.The composition and structure of catalysts are of great importance for catalytic performance.In this work, a heterogeneous Ru modified strategy is engineered to improve the catalytic performance of porous NiCo2O4 nanosheets (NSs).Profiting from favorable elements composition and optimized structure property of decreased charge transfer barrier, more accessible active sites and increased oxygen vacancy concentration, the Ru-NiCo2O4 NSs exhibits excellent OER activity with a low overpotential of 230 mV to reach the current density of 10 mA/cm2 and decent durability.Furthermore, Ru-NiCo2O4 NSs show superior HER activity than the pristine NiCo2O4 NSs, as well.When assembling Ru-NiCo2O4 NSs couple as an alkaline water electrolyzer, a cell voltage of 1.60 V can deliver the current density of 10 mA/cm2.This work provides feasible guidance for improving the catalytic performance of spinel-based oxides.

    Electrocatalytic water splitting is regarded as a technology with great prospects for production of clean hydrogen energy [1–5].However, there still exist great challenges to fabricate exceedingly efficient catalysts to accelerate the oxygen evolution reaction(OER) and the hydrogen evolution reaction (HER) in alkaline media, due to their sluggish kinetics and unseemly thermodynamics[6–10].Especially for OER process, it contains complicated multistep proton-coupled electron transfer processes, responsible for a large overpotential [11].At present, the commonly recognized OER and HER catalysts with prominent performance are Ir-based and Pt-based materials, respectively [12,13].But high price and limited reserve of these noble metals restrain their widespread application.Among all kinds of alternative catalysts for expensive materials, spinel-based oxides have gained enormous attention owing to rich element composition, variable valence state and good stability during electrocatalytic process [14–17].Nevertheless, the electrocatalytic activity of spinel-based oxides without further modulating is still far from people’s satisfaction.

    Obviously, the catalytic activity of catalysts is highly associated with their elemental composition and structure traits [18,19] Introducing heteroatoms into substrate materials has been certified a useful strategy to optimize materials’surface property and improve their catalytic performance [20,21].A critical point lies in the choice of heteroelement.It has been recorded that Ru has moderate H?and OH?intermediates absorption energy, due to the similar Ru-H bond energy (~65 kcal/mol) with Pt-H bond energy(~70 kcal/mol) and reasonable oxophilic character [22–25].And the price of Ru is the cheapest among Pt-group metals [26].Therefore, Ru has great potential to be used in electrocatalytic water splitting realm.For instance, Huang and co-workers reported the synthesis of Ru-doped CoCr LDHs as efficient a OER catalyst due to synergetic charge transfer [27].Besides, Chen and co-workers designed RuCo nanoalloys catalyst, displaying impressive HER performance, with the overpotential of 28 mV being need to reach the current density of 10 mA/cm2[26].More importantly, Qi and co-workers engineered Co MOF by introducing Ru, forming hollow (Ru-Co)Oxcompound which can promote overall water splitting performance [28].In addition, the morphology of catalysts also plays a pivotal role in catalytic process.The two-dimension (2D)nanomaterial with largely exposed surface atoms and edge sites is deemed as an appealing electrocatalyst for water splitting, which is not only in favor of the absorption of reactant species due to its large parts of superficial coordination-unsaturated atoms but also helpful to abridged diffusion path of reactants and products[21,29,30].It has been reported that nanosheets array structure of various catalysts show excellent performance such as NiFe-LDH[21], CoOOH [31] and Co-NiS2[32].Inspired by these relevant reports, it may be working to construct 2D spinel-based oxides catalysts integrated with Ru to achieve efficient overall water splitting.

    Herein, we synthesized porous NiCo2O4nanosheets (NSs) arrays coupled with Ru aligned on carbon fiber cloth (CFC) (denoted as Ru-NiCo2O4NSs) through a facile impregnating method to introduce Ru.The obtained porous Ru-NiCo2O4NSs features desirable elements composition and favorable structure virtues which showcase higher oxygen vacancy concentration, decreased charge transfer impedance and more accessible active sites.Moreover,the introduction of Ru greatly reduces the activation energy of OER process.Accordingly, Ru-NiCo2O4NSs manifest superior OER performance with only an overpotential of 230 mV at the current density of 10 mA/cm2and long-term stability in alkaline media.Furthermore, Ru-NiCo2O4NSs show superior HER activity than NiCo2O4NSs counterpart.The integrated alkaline electrolyzer using Ru-NiCo2O4NSs as bifunctional electrodes materials needs 1.60 V to reach the current density of 10 mA/cm2.And the activity and durability of Ru-NiCo2O4NSs overall water splitting system are both superior to Pt/C||RuO2system.This work presents a viable guide for developing efficient spinel-based oxides electrocatalysts.

    The synthesis of NiCo2O4NSs refers to the previous report[20].Firstly, the precursor NiCo-LDH was synthesized by a facile electro-deposition method.0.1 mol/L Ni(NO3)2·6H2O (20 mL) and 0.1 mol/L Co(NO3)2·6H2O (40 mL) were mixed as electrodeposition electrolyte.A piece of carbon fabric cloth (CFC) was used as electro-deposition substrate.The process was performed at ?1 V(vs.Ag/AgCl) for 15 min.After finishing, the final product was rinsed with DI water several times, and then dried in 50 °C electrooven.The NiCo2O4NSs were obtained by calcining NiCo-LDH at 300 °C for 2 h with the heating rate (2 °C/min) in air atmosphere.Then, the Ru-NiCo2O4was synthesized by impregnating NiCo2O4NSs in RuCl3solution (10 mg/mL) for 20 min, then dried in 50 °C electro-oven and further annealed at 300 °C for 2 h in air atmosphere.

    X-ray diffraction (XRD) measurement was conducted on Rigaku MiniFlex 600 diffractometer from 10° to 90° under a constant voltage of 40 kV and constant current of 15 mA.The morphology characterization was obtained by ThermoFisher Apreo S filedemission scanning electron microscopy (FESEM) with a voltage of 30 kV.Transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM) and EDS mapping pictures of samples was collected on a Tecnai G2 F30 filed emission transmission electron microscopy.Raman spectra were measured on a Horiba LabRAM HR Evolution spectrophotometer with a laser line of 532 nm.Electron spin resonance (ESR) experiments were made on JES-FA300 electron spin resonance spectrometer.Xray photoelectron spectroscopy (XPS) was performed by a VG ESCALAB 220I-XL device.The data were corrected using C 1s line as standard.Ultraviolet photoelectron spectrometer (UPS) was conducted on Kratos Axis Supra device.The contact angle test was carried out on a Kruss DSA100 optical contact angle/surface tension meter.

    Electrochemical measurements were performed on CHI 760E electrochemical workstation (Shanghai Chenhua Instrument Corp.,China) with a standard three-electrode configuration, with Pt plate and Hg/HgO as counter electrode and reference electrode, respectively, for OER test.While for HER test, the counter electrode was changed to a carbon rod.The catalysts grown on CFC were used as working electrodes directly.1.0 mol/L KOH solution was used as electrolyte and Linear scan voltammogram (LSV) curves were carried out at a scan rate of 2 mV/s.All the electrode potential was converted to the reversible hydrogen electrode (RHE), using the equationERHE=EHg/HgO+ 0.0591 × pH + 0.098 V.

    Scheme 1 illustrates the synthesis procedure of catalysts.At first, the phases of samples obtained were analyzed by the Xray diffraction (XRD) technique.Fig.1a shows that the diffraction peaks of the pristine NiCo2O4NSs can well match with cubic NiCo2O4(JCPDS No.20–781, space group F?3).And the Ru-NiCo2O4NSs possess similar diffraction patterns with the pristine NiCo2O4NSs without related Ru oxides phase being detected,implying Ru was doped successfully in NiCo2O4NSs preliminarily.As shown in Fig.1b and Fig.S1a (Supporting information),the original NiCo2O4NSs presents interlaced nanosheets morphology grown on CFC characterized by scanning electron microscope(SEM).From the transmission electron microscope (TEM) image(Fig.1c), it can be detected that the nanosheets present porous property.It can be seen from Figs.1d and e and Fig.S1b (Supporting information), the Ru-NiCo2O4NSs exhibit similar morphology feature with the pristine NiCo2O4NSs, declaring the introducing of Ru does not ruin porous nanosheets structure of NiCo2O4NSs.It has been documented that porous structure is in favor of accelerating mass transfer process and enhancing the accessibility of active sites [33–35].Furthermore, high-resolution transmission electron microscopy (HRTEM) image of Ru-NiCo2O4NSs exhibits lattice spacing of 0.24 nm, which can be assigned to (311) plane of NiCo2O4(Fig.1f).The high-angle annular dark-field scanning TEM image (Fig.1g) and TEM energy-dispersive spectra (EDS) mapping images (Fig.1h) show the uniform distribution of Ru, Ni, Co and O in the checked region.Furthermore, Fig.1i presents the crystal structure of NiCo2O4.

    Scheme 1 .Synthetic scheme of the Ru-NiCo2O4 NSs electrocatalyst.

    Fig.1 .(a) XRD pattern of NiCo2O4 and Ru-NiCo2O4 NSs.(b, c) SEM, TEM images of NiCo2O4 NSs.(d) SEM, (e) TEM and (f) HRTEM of Ru-NiCo2O4 NSs.(g, h) HAADF-STEM image and corresponding elemental mapping images of Ru-NiCo2O4 NSs.(i) Crystal structure of NiCo2O4.

    Moreover, the X-ray photoelectron spectroscopy (XPS), Ultraviolet photoelectron spectrometer (UPS), Raman spectra and electron spin-resonance spectroscopy (ESR) were carried out to further probe the structural information of catalysts obtained.As shown in XPS survey spectrums of Ru-NiCo2O4NSs and NiCo2O4NSs (Fig.S2 in Supporting information), the Ru 3p signal lays in Ru-NiCo2O4NSs, while it does not appear in NiCo2O4NSs, confirming Ru was introduced into NiCo2O4NSs matrix successfully, which is consistent with the TEM-EDS result.The high-resolution O1s XPS spectra (Fig.2a) can be deconvoluted into three parts: lattice oxygen,oxygen vacancy, or hydroxyl group and absorbed oxygen from low binding energy to high binding energy in sequence [36,37] Compared with NiCo2O4NSs, the binding energy of O 1s XPS spectra for Ru-NiCo2O4NSs positively shifts ~0.2 eV, exhibiting a slight electron-deficiency O state.Furthermore, the binding energy of Ru 3p3/2in Ru-NiCo2O4NSs is 463.7 eV (Fig.2b), which is located between the reference samples RuCl3(Ru3+) and RuO2(Ru4+), implying that the average valence state of Ru is between +3 and +4 in Ru-NiCo2O4NSs [27,38].Besides, there is no distinct difference between NiCo2O4NSs and Ru-NiCo2O4NSs concerning Co and Ni 2p XPS spectra, affirming the preservation of NiCo2O4phase after Ru modification (Fig.S3 in Supporting information).In addition,the UPS was conducted to probe dynamics of electrons on the surface of the as-prepared catalysts [39].As shown in Fig.2c, the Ru-NiCo2O4NSs and NiCo2O4NSs exhibit different secondary electron cutoff energy with 16.34 eV for Ru-NiCo2O4NSs and 16.22 eV for NiCo2O4NSs and thus the corresponding work function are 4.88 eV and 5.00 eV for Ru-NiCo2O4NSs and NiCo2O4NSs, respectively.The smaller work function indicates that Ru modulation facilitates the electronic properties of Ru-NiCo2O4NSs, which is contributed to enhancing catalytic activity [40].Besides, Raman as a surfacesensitive spectrum technology was further applied to gain insights into NiCo2O4NSs before and after Ru modification.As shown in Fig.2d, the Ru-NiCo2O4NSs showcases similar spectra patterns with the pristine NiCo2O4NSs except for a slight blue shift, which is due to the doping of Ru.Furthermore, the Raman spectra of Ru-NiCo2O4NSs exhibit different spectra feature compared with RuO2(Fig.S4 in Supporting information), which implies the Ru may exist as a highly dispersed state in NiCo2O4NSs substrate and further indicating that Ru are doped into NiCo2O4NSs successfully.Moreover, ESR spectra were conducted to investigate the change of oxygen vacancy.From Fig.2e, it can be seen that Ru-NiCo2O4NSs owns a stronger ESR signal originating from the electron trapped at oxygen vacancies than that of NiCo2O4counterpart [41,42].Therefore, we can deduce that the Ru-NiCo2O4NSs possess more oxygen vacancies than NiCo2O4NSs, which is helpful to facilitate water dissociation [43].Furthermore, the excellent hydrophilicity feature of Ru-NiCo2O4NSs supported on CFC enables the easy accessibility of reactants and fast release of product molecules, thus accelerating catalytic process (Fig.2f, the inset shows the contact angle of bare CFC) [44].

    Fig.2 .(a) O 1s spectra of Ru-NiCo2O4 NSs and NiCo2O4 NSs.(b) Ru 3p spectra of Ru-NiCo2O4 NSs.(c) UPS spectra (d) Raman spectra and (e) ESR spectra of Ru-NiCo2O4 NSs and NiCo2O4 NSs.(f) Contact angle of water droplets on the surface of Ru-NiCo2O4 NSs and bare CFC (inset).

    The electrocatalytic performance of catalysts prepared was evaluated by a standard three-electrode configuration using 1.0 mol/L KOH as electrolyte.Linear scan voltammogram (LSV) curves of OER(Fig.3a) show that the required overpotentials for Ru-NiCo2O4NSs, NiCo2O4NSs and RuO2to reach the current density of 10 mA/cm2are 230 mV, 340 mV and 329 mV, respectively, manifesting excellent OER activity of Ru-NiCo2O4NSs.Furthermore, the Fig.3b illustrates Ru-NiCo2O4NSs possesses a small Tafel slope(79 mV/dec) lower than that of NiCo2O4NSs (95 mV/dec) and RuO2(82 mV/dec) counterparts, indicating the accelerated OER kinetic for Ru-NiCo2O4NSs.Besides, the stability is also a vital aspect for assessing the performance of catalysts.From Fig.3g (green line), it can be seen that Ru-NiCo2O4NSs show nearly no activity decay in the period of 42 h OER test.To gain the insights about the origin of activity, the electrochemical impedance spectroscopy(EIS) of Ru-NiCo2O4NSs and NiCo2O4NSs were collected to investigate charge transfer ability.As shown in Fig.3c, Ru-NiCo2O4NSs exhibits a smaller radius than that of NiCo2O4NSs counterpart,implying a lower charge transfer (Rct) impedance of Ru-NiCo2O4NSs for OER process, which is conducive to improving OER performance [45].In addition, electrochemical double-layer capacitance(Cdl) was tested to access the electrochemical surface area (ECSA)of the as-prepared catalysts (Fig.S5 in Supporting information)[46].The value of Cdlfor Ru-NiCo2O4NSs and NiCo2O4NSs are 278 mF/cm2and 200 mF/cm2(Fig.3h), respectively, suggesting the larger ECSA of Ru-NiCo2O4NSs.The larger ECSA manifests more accessible active sites on Ru-NiCo2O4NSs surface in catalytic process, thus boosting OER performance.Moreover, LSV curves at various temperature for Ru-NiCo2O4NSs and NiCo2O4NSs were analyzed to evaluate apparent kinetic barriers in OER process.Extended the obtained Arrhenius plots to the OER thermodynamic equilibrium potential, the value of apparent activation energy (Ea)can be obtained [47,48].As illustrated in Fig.S6 (Supporting information), the value ofEaof Ru-NiCo2O4NSs is 26.6 kJ/mol while theEaof NiCo2O4NSs is 45.9 kJ/mol, implying Ru modification availably decreaseEafor OER course.

    Due to the similar Ru-H bond energy to Pt-H bond energy [22],the HER performance of NiCo2O4NSs after Ru modification may also be improved.As shown in LSV curves of HER (Fig.3d), an overpotential of 313 mV is needed for NiCo2O4NSs to reach current density of 10 mA/cm2, while the value decreases to 117 mV for Ru-NiCo2O4NSs.The Tafel slopes are analyzed to be 88 mV/dec and 97 mV/dec for Ru-NiCo2O4NSs and NiCo2O4NSs, respectively(Fig.3e), declaring a more favorable HER kinetics for Ru-NiCo2O4NSs.Regarding long-time stability, the chronopotentiometry test shows no obvious activity degradation of Ru-NiCo2O4NSs after 42 h (Fig.3g, blue line).Furthermore, EIS plots were collected to assess charge transfer feature of materials between electrode and electrolyte interface.As illustrated in Fig.3f, the Ru-NiCo2O4NSs possess a smallerRctthan that of NiCo2O4NSs, manifesting that Ru modification accelerates charge transfer in HER process, thus promoting HER activity.Fig.3i displays a largerCdlfor Ru-NiCo2O4NSs (21.3 mF/cm2) than NiCo2O4NSs (2.2 mF/cm2) based on CVs test (Fig.S7 in Supporting information), thereby a larger ECSA of Ru-NiCo2O4NSs for HER catalysis, which is also favorable to promote HER performance.

    Fig.3 .Electrochemical performance for OER and HER.(a) LSV curves and (b) the corresponding Tafel plots of Ru-NiCo2O4 NSs, NiCo2O4 NSs and RuO2 for OER., (c) EIS of Ru-NiCo2O4 NSs and NiCo2O4 NSs for OER.(d) LSV curves and (e) the corresponding Tafel plots of Ru-NiCo2O4 NSs, NiCo2O4 NSs and Pt/C for HER.(f) EIS of Ru-NiCo2O4 NSs and NiCo2O4 NSs for HER.(g) Chronopotentiometry test of Ru-NiCo2O4 NSs for OER and HER at 10 mA/cm2.(h, i) Capacitive currents of Ru-NiCo2O4 NSs and NiCo2O4 NSs with different scan rates for OER and HER, respectively.

    In situRaman spectra characterization analysis was performed to reveal changes on Ru-NiCo2O4NSs electrodes during the OER and HER processes.The peak located at ~470 cm?1and ~670 cm?1are attributed toEgphonon modes andA1gphonon modes of Ru-NiCo2O4NSs, respectively (Fig.4).Potentials from open circuit voltage (OCV) to 1.6 Vvs.RHE were applied for OER in suit Raman measurements.The corresponding spectra result are shown in Fig.4a, characteristic peaks associated withEgandA1gphonon modes exhibits no differentiable variation, implying good stability of Ru-NiCo2O4NSs in OER process.For HER, we applied potential from OCV to ?0.25 Vvs.RHE.The corresponding spectra (Fig.4b)obtained also show no obvious change, manifesting good HER stability of Ru-NiCo2O4NSs.Besides, SEM characterization was conducted to probe the change of morphology of Ru-NiCo2O4NSs after OER and HER.As shown in Fig.S8 (Supporting information),the morphology of Ru-NiCo2O4NSs after OER and HER remains nanosheets structure.All evidences illustrate the good stability of Ru-NiCo2O4NSs.

    Fig.4 . In situ Raman spectra of Ru-NiCo2O4 NSs during (a) OER and (b) HER.

    Based on the enhanced OER and HER performance of Ru-NiCo2O4NSs, the overall water-splitting performance was assessed by utilizing Ru-NiCo2O4NSs as both anode and cathode catalysts in 1.0 mol/L KOH solution.Fig.5a illustrates the configuration of overall water splitting device.Fig.5b showcases the LSV curves of Ru-NiCo2O4NSs for the overall water splitting at various temperatures(25, 45 and 65 °C).A cell voltage of 1.60 V was needed to reach the current density of 10 mA/cm2at 25 °C for Ru-NiCo2O4NSs couple, which is lower than that of Pt/C||RuO2set (1.64 V) (Fig.5c).The overall water splitting performance of Ru-NiCo2O4NSs system can be further improve by increasing temperature.As exhibited in Fig.5d, cell voltages needed to obtain the current density of 10 mA/cm2at 45 °C and 65 °C are 1.54 V and 1.49 V, respectively.In addition, Ru-NiCo2O4NSs set displays good stability on a longtime testing at different current densities 10, 20, 40, 80 mA/cm2(Fig.5e), while for Pt/C||RuO2system, the cell voltages enlarge constantly over time (Fig.5f).All the results verify Ru-NiCo2O4NSs can be used as efficient overall water splitting catalysts.

    Fig.5 .(a) Schematic illustration of the configuration of alkaline overall water splitting device.(b) LSV curves for overall water splitting applying Ru-NiCo2O4 NSs as both cathode and anode at different temperatures.(c) LSV polarization curves of Ru-NiCo2O4 NSs system and Pt/C||RuO2 system for overall water splitting at 25 °C.(d) Comparison of the cell voltages to reach the current density of 10 mA/cm2 of Ru-NiCo2O4 NSs system at various temperatures., (e, f) Long-term stability test of overall water splitting at various current density of 10, 20, 40 and 80 mA/cm2 for Ru-NiCo2O4 NSs system and Pt/C||RuO2 system, respectively.

    In summary, the porous NiCo2O4NSs integrated with Ru through a facile impregnation method is devised.The obtained Ru-NiCo2O4NSs catalysts exhibit superior OER activity with a low overpotential of 230 mV at 10 mA/cm2, the enhanced HER activity and robust stability.The promotion of catalytic performance of Ru-NiCo2O4NSs can be attributed to the low charge transfer impedance, more accessible active sites and higher oxygen vacancy concentration.Experimental results demonstrate that the introduction of Ru efficiently regulates the surface structure property of NiCo2O4NSs.The optimized components and structural advantages facilitate synergistically OER and HER process.This work presents a practicable strategy for improving the catalytic performance of spine-based oxides for both OER and HER.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We acknowledge support from the National Natural Science Foundation of China (Nos.21922105 and 21931001), the National Key R&D Program of China (2021YFA1501101) as well as the Special Fund Project of Guiding Scientific and Technological Innovation Development of Gansu Province (No.2019ZX-04) and the 111 Project(No.B20027).We also acknowledge support by the Fundamental Research Funds for the Central Universities (Nos.lzujbky-2021-pd04, lzujbky-2021-sp41, lzujbky-2021-it12 and lzujbky-2021-37).J.Yin acknowledges the support of the China Postdoctoral Science Foundation (No.2021M691375) and the China National Postdoctoral Program for Innovative Talents (No.BX20200157).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2021.12.058.

    午夜av观看不卡| 久久久久久久精品精品| 欧美国产精品一级二级三级 | 美女视频免费永久观看网站| 高清毛片免费看| 少妇的逼水好多| 亚洲人成网站在线播| 夜夜爽夜夜爽视频| 边亲边吃奶的免费视频| 日韩中文字幕视频在线看片| 精品一区二区三区视频在线| 国产成人精品一,二区| 老司机影院毛片| 看非洲黑人一级黄片| 狂野欧美激情性xxxx在线观看| 亚洲国产色片| av视频免费观看在线观看| 久久人妻熟女aⅴ| 国内揄拍国产精品人妻在线| 久久国产亚洲av麻豆专区| 秋霞在线观看毛片| 亚洲无线观看免费| 亚洲天堂av无毛| 偷拍熟女少妇极品色| 免费黄色在线免费观看| 午夜免费男女啪啪视频观看| 亚洲美女黄色视频免费看| av一本久久久久| 免费观看的影片在线观看| 又爽又黄a免费视频| 亚洲经典国产精华液单| 色吧在线观看| 国内精品宾馆在线| h视频一区二区三区| 制服丝袜香蕉在线| 欧美精品国产亚洲| 曰老女人黄片| 国产又色又爽无遮挡免| 欧美精品一区二区免费开放| av在线播放精品| 亚洲精品456在线播放app| 国产成人一区二区在线| 少妇被粗大猛烈的视频| 一区二区三区免费毛片| 免费少妇av软件| 永久网站在线| 成人特级av手机在线观看| 麻豆成人午夜福利视频| 免费看不卡的av| 亚洲一区二区三区欧美精品| 一级毛片久久久久久久久女| 狠狠精品人妻久久久久久综合| 十八禁网站网址无遮挡 | 精品99又大又爽又粗少妇毛片| 亚洲久久久国产精品| 中文欧美无线码| 国产精品一区二区在线不卡| 国产精品国产三级国产专区5o| 久久久精品免费免费高清| 寂寞人妻少妇视频99o| 免费不卡的大黄色大毛片视频在线观看| 成人无遮挡网站| 国产在线一区二区三区精| 国产黄片美女视频| 免费不卡的大黄色大毛片视频在线观看| 春色校园在线视频观看| 日韩电影二区| 蜜臀久久99精品久久宅男| 我要看日韩黄色一级片| 青春草国产在线视频| 尾随美女入室| 日本午夜av视频| 久久97久久精品| 纯流量卡能插随身wifi吗| kizo精华| 国产在线视频一区二区| 久久精品国产亚洲av天美| 丰满饥渴人妻一区二区三| 国产视频内射| 2021少妇久久久久久久久久久| 视频中文字幕在线观看| 国产精品三级大全| 亚洲精品日韩在线中文字幕| 成人亚洲欧美一区二区av| 久久国产精品大桥未久av | 王馨瑶露胸无遮挡在线观看| 国产成人aa在线观看| 三上悠亚av全集在线观看 | 啦啦啦在线观看免费高清www| 人人澡人人妻人| 在线 av 中文字幕| 亚洲精品国产av蜜桃| a级一级毛片免费在线观看| 人体艺术视频欧美日本| 国产黄频视频在线观看| 久久久国产一区二区| 一本—道久久a久久精品蜜桃钙片| 亚洲精品自拍成人| 亚洲精品久久久久久婷婷小说| 日日撸夜夜添| 偷拍熟女少妇极品色| 男人和女人高潮做爰伦理| 国产日韩欧美视频二区| 成年av动漫网址| 如何舔出高潮| 免费黄网站久久成人精品| 成人午夜精彩视频在线观看| 欧美区成人在线视频| 黄片无遮挡物在线观看| 久久人人爽人人爽人人片va| 少妇猛男粗大的猛烈进出视频| 国产伦精品一区二区三区视频9| 夫妻午夜视频| 18禁在线无遮挡免费观看视频| 久久人人爽人人片av| 午夜免费观看性视频| 亚洲第一区二区三区不卡| 交换朋友夫妻互换小说| 久久精品国产自在天天线| 国产免费视频播放在线视频| 亚洲丝袜综合中文字幕| 3wmmmm亚洲av在线观看| 午夜福利影视在线免费观看| 日韩在线高清观看一区二区三区| 精品一区二区免费观看| 狂野欧美白嫩少妇大欣赏| 麻豆成人av视频| 99热国产这里只有精品6| 午夜91福利影院| 又黄又爽又刺激的免费视频.| 日韩欧美 国产精品| 亚洲av电影在线观看一区二区三区| 热re99久久精品国产66热6| 精品少妇黑人巨大在线播放| 777米奇影视久久| 少妇 在线观看| 亚洲欧美日韩东京热| 九九久久精品国产亚洲av麻豆| 亚洲精品国产av成人精品| 国产淫语在线视频| 亚洲天堂av无毛| 亚洲国产最新在线播放| 欧美老熟妇乱子伦牲交| 日韩大片免费观看网站| 狂野欧美激情性bbbbbb| .国产精品久久| 啦啦啦在线观看免费高清www| 久久人人爽人人片av| 岛国毛片在线播放| 日本猛色少妇xxxxx猛交久久| 青春草国产在线视频| 成人免费观看视频高清| 亚洲自偷自拍三级| 亚洲国产欧美日韩在线播放 | 日韩亚洲欧美综合| 亚洲欧美成人精品一区二区| 亚洲综合色惰| 亚洲欧美一区二区三区国产| 伦理电影大哥的女人| 亚洲国产欧美在线一区| 18禁动态无遮挡网站| 日本免费在线观看一区| 一级毛片久久久久久久久女| 国产免费又黄又爽又色| 婷婷色综合大香蕉| 免费观看的影片在线观看| 亚洲精品一二三| 看非洲黑人一级黄片| 免费观看的影片在线观看| 国产成人午夜福利电影在线观看| 亚洲国产av新网站| 韩国av在线不卡| 国产精品一区二区三区四区免费观看| 日本猛色少妇xxxxx猛交久久| 国产精品伦人一区二区| 熟女电影av网| 欧美日韩视频高清一区二区三区二| 三上悠亚av全集在线观看 | 国产亚洲一区二区精品| 色网站视频免费| 多毛熟女@视频| 在线亚洲精品国产二区图片欧美 | 亚洲精品乱久久久久久| 国产无遮挡羞羞视频在线观看| 国产av精品麻豆| 国产精品欧美亚洲77777| 亚洲精品456在线播放app| 日本免费在线观看一区| 高清不卡的av网站| 精品一品国产午夜福利视频| 亚洲伊人久久精品综合| 婷婷色av中文字幕| 天天躁夜夜躁狠狠久久av| 久久6这里有精品| 国产一区有黄有色的免费视频| 久久99精品国语久久久| 国内精品宾馆在线| 久久久久国产网址| 91久久精品国产一区二区三区| 狠狠精品人妻久久久久久综合| 两个人的视频大全免费| 99九九在线精品视频 | 久久97久久精品| 成人综合一区亚洲| 精品久久久久久电影网| 妹子高潮喷水视频| 国内少妇人妻偷人精品xxx网站| 91在线精品国自产拍蜜月| 欧美精品高潮呻吟av久久| 国产精品福利在线免费观看| 下体分泌物呈黄色| 色网站视频免费| av天堂久久9| videos熟女内射| 国产精品福利在线免费观看| 简卡轻食公司| 全区人妻精品视频| 亚洲,一卡二卡三卡| 日韩视频在线欧美| 日韩中字成人| 国产精品久久久久久av不卡| 国产日韩欧美视频二区| 最新中文字幕久久久久| 国产精品一区二区在线不卡| 久久99热这里只频精品6学生| 国产乱来视频区| 亚洲无线观看免费| 街头女战士在线观看网站| 亚洲欧洲精品一区二区精品久久久 | 亚洲成人手机| 免费看日本二区| 亚洲国产精品999| 这个男人来自地球电影免费观看 | 欧美日韩视频精品一区| 日韩成人av中文字幕在线观看| 妹子高潮喷水视频| 亚洲久久久国产精品| 日韩中字成人| 少妇猛男粗大的猛烈进出视频| 中文字幕免费在线视频6| 国产在线视频一区二区| 一级片'在线观看视频| 纯流量卡能插随身wifi吗| 在线观看av片永久免费下载| 国产视频首页在线观看| 亚洲精品中文字幕在线视频 | 亚洲欧美日韩卡通动漫| 久久亚洲国产成人精品v| 日韩三级伦理在线观看| 久久久久久久大尺度免费视频| 永久免费av网站大全| 久久韩国三级中文字幕| 欧美人与善性xxx| xxx大片免费视频| 成年av动漫网址| 2022亚洲国产成人精品| 国产精品久久久久久精品电影小说| 亚洲中文av在线| 搡老乐熟女国产| 丝袜喷水一区| 婷婷色综合大香蕉| 国产精品久久久久久精品古装| 亚洲av日韩在线播放| 午夜福利视频精品| 亚洲,欧美,日韩| 九色成人免费人妻av| 亚洲精品一区蜜桃| 国内揄拍国产精品人妻在线| 免费看日本二区| 久久免费观看电影| 亚洲精品日本国产第一区| 国产精品一区二区在线观看99| 丰满迷人的少妇在线观看| 男女无遮挡免费网站观看| 最新中文字幕久久久久| 欧美日韩亚洲高清精品| 国产精品成人在线| 亚洲欧美日韩另类电影网站| 亚洲精品aⅴ在线观看| 18禁在线无遮挡免费观看视频| 亚洲性久久影院| 九色成人免费人妻av| av黄色大香蕉| 成人黄色视频免费在线看| 狂野欧美激情性bbbbbb| 国内少妇人妻偷人精品xxx网站| 插阴视频在线观看视频| av天堂中文字幕网| 亚洲成人手机| h日本视频在线播放| 亚洲国产精品一区三区| 亚洲精华国产精华液的使用体验| 免费av中文字幕在线| 又黄又爽又刺激的免费视频.| 少妇人妻 视频| 另类精品久久| 欧美精品一区二区免费开放| 国产亚洲一区二区精品| 国产亚洲5aaaaa淫片| 精品一区二区三区视频在线| 久久99一区二区三区| 六月丁香七月| 久久鲁丝午夜福利片| 亚洲精品国产色婷婷电影| 欧美一级a爱片免费观看看| 搡女人真爽免费视频火全软件| 亚洲精品中文字幕在线视频 | 成年人午夜在线观看视频| 欧美区成人在线视频| 91久久精品国产一区二区成人| 欧美+日韩+精品| 国国产精品蜜臀av免费| 成人午夜精彩视频在线观看| 国国产精品蜜臀av免费| 欧美变态另类bdsm刘玥| 色哟哟·www| 亚洲av成人精品一区久久| 国产一区二区在线观看av| 久久久久久久大尺度免费视频| 久久99蜜桃精品久久| 狂野欧美白嫩少妇大欣赏| 人妻夜夜爽99麻豆av| 午夜老司机福利剧场| 伦理电影大哥的女人| 精品少妇久久久久久888优播| 国产成人午夜福利电影在线观看| 国产亚洲午夜精品一区二区久久| a级一级毛片免费在线观看| 国产亚洲91精品色在线| 日本欧美视频一区| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩强制内射视频| 免费看不卡的av| 亚洲欧洲日产国产| 国产在线男女| 我要看日韩黄色一级片| 午夜福利,免费看| 久久ye,这里只有精品| 久久婷婷青草| 国产精品欧美亚洲77777| 亚洲三级黄色毛片| 亚洲欧洲日产国产| 人人妻人人看人人澡| 国产精品欧美亚洲77777| 美女中出高潮动态图| 少妇人妻久久综合中文| 伊人久久国产一区二区| 色吧在线观看| 国产免费又黄又爽又色| 亚洲内射少妇av| 欧美97在线视频| 国产欧美另类精品又又久久亚洲欧美| 丝袜喷水一区| 一级片'在线观看视频| 黄色欧美视频在线观看| 有码 亚洲区| 久久狼人影院| 日本猛色少妇xxxxx猛交久久| 男女无遮挡免费网站观看| 中文精品一卡2卡3卡4更新| 丝袜喷水一区| 国产亚洲欧美精品永久| h视频一区二区三区| 国产精品免费大片| 久久久欧美国产精品| 黑人猛操日本美女一级片| 久久这里有精品视频免费| 精品久久国产蜜桃| 国产又色又爽无遮挡免| 久久人人爽av亚洲精品天堂| 日本黄色日本黄色录像| 啦啦啦视频在线资源免费观看| 少妇高潮的动态图| 大片免费播放器 马上看| 黄色日韩在线| 亚洲综合精品二区| 国产免费福利视频在线观看| 亚洲国产精品成人久久小说| 亚洲av中文av极速乱| 麻豆乱淫一区二区| 国产黄频视频在线观看| 国产精品久久久久久久久免| 亚洲欧洲国产日韩| 又爽又黄a免费视频| 桃花免费在线播放| 久久国产精品男人的天堂亚洲 | 日本wwww免费看| 99久久人妻综合| 久久久久久久久大av| 丁香六月天网| 中文精品一卡2卡3卡4更新| 精品一区二区三卡| 欧美另类一区| 蜜桃在线观看..| 青春草亚洲视频在线观看| 国产毛片在线视频| 91久久精品国产一区二区成人| 色94色欧美一区二区| 一区二区三区免费毛片| 寂寞人妻少妇视频99o| 曰老女人黄片| 只有这里有精品99| 特大巨黑吊av在线直播| 久久久久久伊人网av| 国产色爽女视频免费观看| xxx大片免费视频| 成年女人在线观看亚洲视频| 一级a做视频免费观看| 少妇的逼水好多| 欧美性感艳星| 国产精品.久久久| 亚洲成人手机| 国产免费福利视频在线观看| 国产精品国产三级专区第一集| 黄色视频在线播放观看不卡| 在线观看免费日韩欧美大片 | 伊人久久精品亚洲午夜| 一区二区三区免费毛片| 日本黄大片高清| 亚洲国产色片| 免费人妻精品一区二区三区视频| 一级黄片播放器| 欧美亚洲 丝袜 人妻 在线| 韩国av在线不卡| av在线观看视频网站免费| 免费看av在线观看网站| 久久久久精品久久久久真实原创| 丝袜喷水一区| 免费久久久久久久精品成人欧美视频 | 久久久久人妻精品一区果冻| 九草在线视频观看| 久久午夜福利片| 免费观看在线日韩| 最近的中文字幕免费完整| 一区二区三区精品91| 欧美日韩亚洲高清精品| 亚洲一级一片aⅴ在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲精品国产色婷婷电影| 久久久久久久久久成人| 一区二区三区免费毛片| 中文天堂在线官网| 婷婷色av中文字幕| 亚洲av男天堂| 日韩一区二区视频免费看| 中国国产av一级| 免费大片黄手机在线观看| 丰满少妇做爰视频| 亚洲av欧美aⅴ国产| 麻豆精品久久久久久蜜桃| av福利片在线| tube8黄色片| 国产国拍精品亚洲av在线观看| 少妇的逼水好多| 久久99热这里只频精品6学生| 夫妻性生交免费视频一级片| 成年人午夜在线观看视频| 2022亚洲国产成人精品| 蜜桃久久精品国产亚洲av| 日韩大片免费观看网站| 国产成人午夜福利电影在线观看| 日日摸夜夜添夜夜爱| 你懂的网址亚洲精品在线观看| 下体分泌物呈黄色| 亚洲精品日韩av片在线观看| 精品一区二区三卡| 欧美少妇被猛烈插入视频| 欧美+日韩+精品| 六月丁香七月| 亚洲av日韩在线播放| 人妻系列 视频| 精品久久久久久久久亚洲| 老女人水多毛片| 97在线视频观看| 免费看光身美女| videossex国产| 成人毛片60女人毛片免费| 99热这里只有是精品在线观看| 日韩精品有码人妻一区| 国产色婷婷99| 日韩成人av中文字幕在线观看| 成人亚洲欧美一区二区av| 黄色视频在线播放观看不卡| 婷婷色综合大香蕉| 又黄又爽又刺激的免费视频.| √禁漫天堂资源中文www| 日日摸夜夜添夜夜添av毛片| 99九九在线精品视频 | 99热这里只有是精品在线观看| 日韩不卡一区二区三区视频在线| 日韩精品免费视频一区二区三区 | 午夜av观看不卡| 涩涩av久久男人的天堂| 国产亚洲最大av| 女性生殖器流出的白浆| 国产精品久久久久久精品电影小说| 国产精品无大码| 中文字幕人妻熟人妻熟丝袜美| 国产亚洲午夜精品一区二区久久| 岛国毛片在线播放| 国产淫片久久久久久久久| 深夜a级毛片| av在线app专区| a级毛片免费高清观看在线播放| 国产成人freesex在线| 免费观看的影片在线观看| 汤姆久久久久久久影院中文字幕| 免费黄网站久久成人精品| 大片电影免费在线观看免费| 日本黄色日本黄色录像| 国产精品嫩草影院av在线观看| 只有这里有精品99| 中文字幕人妻熟人妻熟丝袜美| 国国产精品蜜臀av免费| 看免费成人av毛片| 亚洲国产精品成人久久小说| 哪个播放器可以免费观看大片| 久久久a久久爽久久v久久| 成人特级av手机在线观看| 成人免费观看视频高清| 国产美女午夜福利| 最新中文字幕久久久久| 99久久精品一区二区三区| 中文字幕av电影在线播放| 永久免费av网站大全| 欧美 日韩 精品 国产| 欧美精品国产亚洲| 久久鲁丝午夜福利片| 一本一本综合久久| 欧美日韩在线观看h| 又黄又爽又刺激的免费视频.| 偷拍熟女少妇极品色| 夜夜看夜夜爽夜夜摸| 丰满饥渴人妻一区二区三| 亚洲av.av天堂| 在线播放无遮挡| 嫩草影院入口| 日日啪夜夜撸| 97在线人人人人妻| 国产日韩一区二区三区精品不卡 | 亚洲一区二区三区欧美精品| 久久久久久久久久久丰满| 欧美少妇被猛烈插入视频| 成人亚洲精品一区在线观看| 亚洲精品第二区| 国产精品秋霞免费鲁丝片| 午夜免费男女啪啪视频观看| 丰满少妇做爰视频| 亚洲欧美精品专区久久| 免费黄频网站在线观看国产| 少妇裸体淫交视频免费看高清| 欧美最新免费一区二区三区| 韩国av在线不卡| 十分钟在线观看高清视频www | 一级毛片电影观看| 性高湖久久久久久久久免费观看| 乱系列少妇在线播放| 亚洲怡红院男人天堂| 国产在线男女| 午夜老司机福利剧场| 中文欧美无线码| 夜夜爽夜夜爽视频| 91久久精品国产一区二区成人| a级毛片在线看网站| 亚洲av在线观看美女高潮| 伦理电影免费视频| 国产av码专区亚洲av| 天堂俺去俺来也www色官网| 一本—道久久a久久精品蜜桃钙片| 亚洲国产精品999| 热99国产精品久久久久久7| 少妇被粗大猛烈的视频| 一级毛片aaaaaa免费看小| 少妇猛男粗大的猛烈进出视频| 天天操日日干夜夜撸| 青春草国产在线视频| 国产精品国产三级国产av玫瑰| 另类亚洲欧美激情| 日韩欧美精品免费久久| 国产真实伦视频高清在线观看| 中文字幕久久专区| 久久韩国三级中文字幕| 国产精品国产三级专区第一集| 少妇精品久久久久久久| 久久6这里有精品| 亚洲激情五月婷婷啪啪| 日本91视频免费播放| av国产精品久久久久影院| 国内少妇人妻偷人精品xxx网站| 日日啪夜夜爽| 日本av手机在线免费观看| 22中文网久久字幕| videos熟女内射| 啦啦啦中文免费视频观看日本| a级毛片在线看网站| videos熟女内射| 夫妻午夜视频| 一级毛片黄色毛片免费观看视频| 欧美 日韩 精品 国产| 成人特级av手机在线观看| 中文字幕人妻丝袜制服| 亚洲国产成人一精品久久久| 久久ye,这里只有精品| 制服丝袜香蕉在线| 久久精品国产亚洲av天美| 国产男女内射视频| 精品人妻熟女毛片av久久网站| 国产高清国产精品国产三级| 中文字幕精品免费在线观看视频 | 久久午夜福利片| 国产精品一区二区性色av| 青春草国产在线视频| 国产一区二区在线观看av| 免费人成在线观看视频色| 视频中文字幕在线观看|