• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Simultaneous enhancement of phosphorescence and chirality by host–guest recognition of molecular tweezers

    2022-12-07 08:26:58DiankunJiaHuaZhongSixunJiangRishengYaoFengWang
    Chinese Chemical Letters 2022年11期

    Diankun Jia, Hua Zhong, Sixun Jiang, Risheng Yao,?, Feng Wang,?

    a School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China

    b School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China

    c CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China

    Keywords:Host–guest chemistry Molecular tweezer Room-temperature phosphorescence Chirality Stimuli-responsiveness

    ABSTRACT A novel type of host–guest recognition systems have been developed on the basis of a Au(III) molecular tweezer receptor and chiral Pt(II) guests.The complementary host–guest motifs display high non-covalent binding affinity (Ka: ~104 L/mol) due to the participation of two-fold intermolecular π–π stacking interactions.Both phosphorescence and chirality signals of the Pt(II) guests strengthen in the resulting host–guest complexes, because of the cooperative rigidifying and shielding effects rendered by the tweezer receptor.Their intensities can be reversibly switched toward pH changes, by taking advantage of the electronic repulsion effect between the protonated form of tweezer receptor and the positive-charged guests in acidic environments.Overall, the current study demonstrates the feasibility to enhance and modulate phosphorescence and chirality signals simultaneously via molecular tweezer-based host–guest recognition.

    Host–guest chemistry field has experienced a rapid growth due to the development of various synthetic receptors since the discovery of crown ethers half a centray ago [1–3].These receptors can encapsulate guest molecules with high non-covalent binding affinity and selectivity, endowing diverse functions to the resulting supramolecular host–guest complexes [4–10].Thereinto, promotion of luminescent efficiencyviahost–guest complexation has received considerable attention [11–17].Liu’s and Ma’s groups have encapsulated phosphorescent emitters into the rigid macrocycles such as cyclodextrins and cucurbiturils [15,16].It reduces susceptibility of triplet excitons toward environmental changes, leading to high room-temperature phosphorescent (RTP) emission intensities.Another important functionality of host–guest complexation is to create symmetry breaking and thereby amplify supramolecular chirality.The so-called supramolecular chirogenesis [18–21] occurs between achiral synthetic receptors and chiral guests (orvice versa), showing prospects for absolute configuration determination and asymmetric catalysis applications.Although emission or chirality enhancement of host–guest complexes has been successfully achieved, it remains unexplored to strengthen these two signals in a simultaneous manner, which would be promising for circularly polarized luminescence, multi-channel sensory, and nonlinear optical applications [22–26].

    Molecular tweezers represent an important type of synthetic receptors apart from macrocycles and cages.The two flat and aromatic pincers insynconformation are separated by a rigid or semi-flexible spacer, rendering an open cavity for guest encapsulation by virtue of pre-organization effect [27–29].In recent years,molecular tweezers with metal coordination centers (termed as“metallotweezers”) have attacted tremendous attention becasue of their ease of synthesis and fruitful photophysics [30–32].In this repect, our research group has synthesized a novel metallotweezer 1 (Scheme 1), with two cofacially pincer gold(III) units tethered by a rigid diphenylpyridine spacer [24].It is capable of sandwiching square planar platinum(II) complex 2 (Scheme 1) as the complementary guests.The heterometallic host–guest recognition not only renders rigidification effect for the triplet platinum(II) emitter,but shields it from external quenchers such as oxygen and solvent molecules, giving rise to intense yellow-colored phosphorescence for 2 in both solid and solution states.

    Scheme 1 .Schematic representation for the enhancement and modulation of both phosphorescence and chirality signals upon host–guest recognition between Au(III)molecular tweezer 1 and the complementary Pt(II) guests 3 and 4.The chemical structures of Au(III) tweezer receptor 1 and Pt(II) guests 2–4 are shown in the frame.The counteranions are tetrafluoroborate (BF4?) in compounds 2–4.

    On this basis, herein we sought to prove the generality of tweezer approach to enhance phosphorescence.Meanwhile,supramolecular chirality is induced for the metallotweezer-based host–guest complexes, by incorporating chiral elements into the Pt(II) triplet emitters.Specifically, compounds 3 and 4 (Scheme 1)have been designed and synthesized (Schemes S1, S2 and Figs.S1–S6 in Supporting information), with the presence of two and one(1R)-pinene units [33] on the main ligands, respectively.It is expected to enhance emission and chirality signals simultaneously for the resulting complexes 3?1 and 4?1.Moreover, the metallotweezer receptor 1 features pH-responsive pyridine unit on its rigid spacer [34].In acidic environments, severe electronic repulsion exists between the protonated form of 1 and the positivelycharged guests 3–4.It triggers guest release from the cavity of metallotweezer receptor (Scheme 1), accompanied by the decline of phosphorescent emission and supramolecular chirality intensities.Overall, the current study provides an efficient way to enhance and modulate phosphorescence and chirality signalsviamolecular tweezer-based host–guest complexation.

    Non-covalent host–guest complexation between Au(III) metallotweezer 1 and Pt(II) compound 3 was firstly studiedviaisothermal titration calorimetry (ITC).A negative ITC signal emerged upon progressive addition of 3 into the acetonitrile solution of 1 (Fig.1a and Fig.S7 in Supporting information), illustrating enthalpy-driven host–guest complexation.The abrupt change in the titration curve revealed 1:1 binding stoichiometry between 1 and 3.Fitting the exothermic isotherm data with a one-site model provided the association constant (Ka) value of (3.39 ± 0.21)×104L/mol.

    Fig.1 .(a) ITC data for titrating 3 (2.00 mmol/L in acetonitrile) into an acetonitrile solution of 1 (0.10 mmol/L).(b) UV–vis spectra of 1, 3 and a 1:1 mixture of 1 and 3 in DMSO (c=0.10 mmol/L for each compound).(c) Intensity changes of absorbance at 470 nm, 480 nm, and 490 nm upon addition of 1 (2.00 mmol/L in DMSO) into 3 (0.10 mmol/L in DMSO) at 298 K.The solid lines are obtained via a Matlab-based global analysis program.(d) CD spectra of 3 (blue line) and a 1:1 mixture of 1 and 3 (red line) in acetonitrile.

    Density functional theory (DFT) calculation was employed to clarify the non-covalent complexation mode.In the optimized geometry of complex 3?1 (Fig.2), 3 is encapsulated into the inner cavity of metallotweezer 1 to form a 1:1 sandwiched structure.The centroid-to-plane distances between 3 and the two Au(III) pincers on 1 are determined to be 3.42 ?A and 3.46 ?A, respectively.Hence,two-fold intermolecularπ–πstacking interactions exist between the two [Au(III)(C^N^C)] pincers on 1 and 3.The conclusion was supported by1H NMR measurements (Fig.S8 in Supporting information).Upon adding equivalent amount of Pt(II) compound 3 into Au(III) tweezer 1, the [Au(III)(C^N^C)] pincer protons underwent downfield shifts (Δδ=0.08, and 0.09 ppm for protons H1, and H2,respectively), while protons Ha–don 3 merged into the baseline due to the non-solvation effect.

    Fig.2 .Optimized geometry of complex 3?1 via DFT calculation (left), together with the energy-level diagram of 3 and 3?1 via TD-DFT computation (right).The black lines and blue lines mark the energy levels of HOMOs and LUMOs, respectively.

    Non-covalent complexation between 1 and 3 gave rise to UV–vis spectroscopic changes.For Au(III)-based metallotweezer 1, a vibronic structured UV–vis absorbance was present between 350 and 420 nm (Fig.1b).With reference to the previous literatures[35,36], this band is typical for metal–perturbedπ→π?intraligand (IL) transition of the [Au(III)(C^N^C)(C≡C–R)] units.In the meantime, Pt(II) compound 3 displayed a visible-light absorbance in the range of 385–500 nm (Fig.1b), assigning to the admixture of dπ(Pt)→π?(tpy) metal?to?ligand charge transfer (MLCT) andπ(C≡CR)→π?(tpy) ligand?to?ligand charge transfer (LLCT) transitions (Fig.2) [37–39].Upon mixing equimolar amounts of 1 and 3 together in DMSO, a shoulder absorption band appeared at the low-energy region (ranging between 455 nm and 530 nm, Fig.1b).Depending on TD-DFT calculations (Fig.2), both HOMO and LUMO of complex 3?1 are essentially identical to those of compound 3,in which the HOMO is the mixture of phenylacetyleneπorbital and Pt(II) dπorbital, while the LUMO isπ?orbital of the terpyridine ligand.The results denote the negligible contribution of metallotweezer 1 to the frontier orbitals of 3?1.The bathochromic absorption of 3?1 could be probably ascribed to the physical perturbance effectvianon-covalent host?guest complexation.

    On this basis, the non-covalent binding affinity of 3?1 was probedviaUV–vis titration experiments.TheKavalue was determined to be 1.13×104(± 9.9%) L/mol, by fitting the collected UV–vis absorbances at 470, 480, and 490 nm with the global analysis method (Fig.1c and Fig.S9a in Supporting information).TheKavalues acquired by UV–vis and ITC measurements are within the same order of magnitude, validating strong non-covalent complexation strength of 3?1.In view of the presence of optically active(1R)-pinene unit on the Pt(II) guest, CD spectroscopy was further performed for both compound 3 and complex 3?1.As shown in Fig.1d, very weak Cotton effect was detected for 3 itself.Upon adding an equimolar amount of 1 into 3, the CD signal exhibited drastic enhancement for both low-energy MLCT/LLCT and highenergy IL transitions (positive maxima at 340 nm and 442 nm,together with negative maximum at 322 nm,Δε=9.99, 1.75 and–4.64 cm?1L mol?1, respectively).The effective chirality transfer from the aliphatic (1R)-pinene to the aromatic Pt(II) pincer is attributed to the restriction of carbon–carbon and carbon–platinum bond rotations in the individual guest 3.Accordingly, the amplified CD signal of 3?1 reflects the emergence of supramolecular chirality upon metallotweezer–guest complexation.

    Intriguingly, the resulting host–guest complex 3?1 displayed emission enhancement behaviours.As shown in Fig.3a, the metallotweezer receptor 1 was non-emissive in fluid solution [emission quantum yield (Фem)<0.001], ascribed to the presence of thermally-accessibled-dor LLCT (ligand-to-ligand charge transfer)states for the Au(III) pincers [40].Meanwhile, the Pt(II) guest 3 exhibited moderate emission in deaerated acetonitrile (λmax=583 nm,Фem=0.07, the average lifetimeτ=0.27 μs, Figs.3a and b).Upon mixing equimolar amounts of 1 and 3 together, an intense orange-coloured emission appeared for the mixture solution(λmax=602 nm, Fig.3a).TheФemvalue of 3?1 was determined to be 0.61 in degassed acetonitrile, significantly higher than those of the individual compounds under the same conditions.Lifetime measurement of 3?1 (τ= 2.01 μs, Fig.3b) proved the phosphorescent emission character.Notably, in aerated acetonitrile the phosphorescence quantum yield was 0.35, demonstrating the efficiency to resist oxygen upon host–guest complexation (Fig.S12 in Supporting information).

    Fig.3 .(a) Emission spectra (λex=450 nm) of 1, 3 and 3?1 in degassed acetonitrile(0.04 mmol/L for each compound).(b) Time-dependent emission lifetime decay of 3?1 and 3 under deaerated condition.The excited-state decay profile was fitted by a biexponential function to provide the average lifetime.Excitation wavelength was 355 nm picosecond laser.(c) CD and d) emission spectral changes of 3?1 (0.04 mmol/L in acetonitrile) upon the successive addition of the acetonitrile solutions of TFA and TEA (0.50 mol/L for each solution, 2 μL for each injection).Inset of c: CD intensity changes at 340 nm.Inset of d: emission intensity changes at 625 nm."G","H-G", "Acid", and "Base" refer to 3, complex 3?1, TFA and TEA, respectively.

    We further acquired radiative (kr) and non-radiation (knr) decay rates of 3?1 to clarify the mechanism for metallotweezerenhanced phosphorescence.In particular, thekrandknrvalues of 3?1 were determined to be 3.03×105s?1and 1.94×105s?1, respectively.Thekrvalue was comparable to that of the individual guest 3 (kr: 2.59×105s?1).It denotes that the Pt(II) phosphor contributes predominately to the emitting T1state of 3?1.Meanwhile,theknrvalue of 3?1 was 18-fold lower than that of 3 (3.44×106s?1).We rationalized that vibrational and rotational stretching of Pt(II) phosphor is restricted to reduce non-radiative relaxations.Meanwhile, the Pt(II) triplet emitter is shielded from the polar solvents.Accordingly, it facilitates phosphorescent emission enhancement upon non-covalent host–guest complexation between 1 and 3.

    Non-covalent recognition was also examined between metallotweezer receptor 1 and Pt(II) guest 4.Similar to that of 3?1, 4 is sandwiched into the cavity of 1 with two-foldπ-stacking interactions (the centroid-to-plane distances between 4 and the two Au(III) pincers on 1: 3.43 ?A and 3.52 ?A, Fig.S10 in Supporting information).TheKavalue of complex 4?1 was determined to be 1.37×104(± 8.4%) L/mol on the basis of UV–vis titration measurements (Fig.S9b in Supporting information).The comparableKavalues between 4?1 and 3?1 illustrate that non-covalent host–guest binding strength is hardly influenced by the number of (1R)-pinene units on the Pt(II) guest structure.Complex 4?1 also exhibited the simultaneous enhancement of chirality and phosphorescence signals (λmax=628 nm in acetonitrile,Фem: 0.05 for 4versus0.43 for 4?1 in deaerated conditions, Figs.S11b and Fig.S14b in Supporting information).

    It should be mentioned both complexes 3?1 and 4?1 exhibited red-shifted emission as compared to the individual Pt(II) guests.The phenomena were different from the blue-shifted emission of 2?1 (λmax: from 589 nm of 2 to 572 nm of 2?1) [24].Generally, emission enhancement of host–guest complexes is ascribed to the synergistic shielding and rigidifying effects endowed by metallotweezer receptor 1.In the case of complex 2?1, the Pt(II) guest 2 renders large steric hindrance effect, which potentially leads to the predominance of the rigidifying effects.In comparison, the Pt(II)guests 3 and 4 possess relatively lower steric hindrance, resulting in the predominant contribution of non-covalent shielding effect.Despite the wavelength difference, the results prove the generality to enhance emission intensity of Pt(II) triplet emittersviametallotweezer host–guest complexation.

    Next, we turned to study stimuli-responsiveness of the resulting host–guest complexes.When 2 equiv.of trifluoroacetic acid (TFA)was added, the amplified CD signals of complexes 3?1 in acetonitrile disappeared (Fig.3c).Meanwhile, the visible light absorbance signal in acidic environment resembled the MLCT/LLCT absorbance of the individual compound 3 (Fig.S17 in Supporting information),suggesting pH-triggered release of the Pt(II) guest.Because of the absence of shielding and rigidifying effects rendered by the metallotweezer receptor, the intense emission at 602 nm of 3?1 declined significantly (Fig.3d).The successive addition of trimethylamine (TEA) led to the re-encapsulation of Pt(II) phosphor.As a consequence, the absorption, CD, and emission bands of complex 3?1 recovered (Figs.3c and d, Figs.S17a and b).The on-off switching processes were reproducible for four repeating cycles (Fig.3d,inset).The reversible modulation of chirality and phosphorescent signals also took place for complex 4?1 (Figs.S17c and d).

    The pH-responsive mechanism of complexes 3?1 and 4?1 was further elucidated.As can be seen, neither UV–Vis nor emission spectroscopic changes occurred for the individual compounds 3 and 4 upon adding TFA (Fig.S16 in Supporting information).Hence,the acids not function directly on the triplet emitters.We rationalized that TFA protonated metallotweezer 1, exerting an indirect effect to modulate the optical signals of Pt(II) guests.To prove this assertion,1H NMR measurements were performed for the control compound 5 (Fig.S15 in Supporting information).As can be seen, upon adding 2 equiv.TFA, the resonances of protons H7’and H8’underwent upfield shifts (Δδ=–0.04 and –0.06 ppm for H7’and H8’, respectively), while protons H11’exhibited downfield shifts(0.08 ppm).The result demonstrates protonation of diphenylpyridine unit on metallotweezer 1, thus imparting large electronic repulsion to the positively-charged Pt(II) compounds in acidic environments.

    In summary, two host–guest complexes have been successfully constructed on the basis of Au(III) tweezer 1 and chiral Pt(II) compounds 3–4 with high binding affinity (Ka: ~104L/mol).The resulting complexes 3?1 and 4?1 exhibit orange-colored phosphorescence, with the enhancement of the emission intensities compared to the corresponding Pt(II) guests.Supramolecular chirality signals simultaneously emerged due to the restriction of free bond rotations.Both phosphorescent emission and chirality signals can be modulated toward pH changes, by taking advantage of the electronic repulsion effect between the protonated form of 1 and the positively-charged guests 3 and 4 in acidic environments.Overall, metallotweezer-based host–guest complexation provides an efficient method to enhance and modulate phosphorescence and chirality signals in a concurrent manner, which benefits the fabrication of circularly polarized phosphorescence and multi-channel sensory materials.

    Declaration of competing interest

    The authors declared that they have no conflicts of interest to this work.

    Acknowledgments

    This work was financially supported by the National Natural Science Foundation of China (Nos.21922110 and 21871245),the Fundamental Research Funds for the Central Universities (No.WK3450000005), and the Starry Night Science Fund at Shanghai Institute for Advanced Study, Zhejiang University (No.SNZJU-SIAS-006).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2022.02.081.

    国产一区二区三区综合在线观看 | 亚洲av在线观看美女高潮| 成人一区二区视频在线观看| 夫妻性生交免费视频一级片| 看非洲黑人一级黄片| 一级二级三级毛片免费看| 国产人妻一区二区三区在| 狠狠精品人妻久久久久久综合| 午夜免费观看性视频| 国产在线视频一区二区| 国产一区二区三区av在线| a级毛片免费高清观看在线播放| 在现免费观看毛片| 一级爰片在线观看| 肉色欧美久久久久久久蜜桃| 久久久成人免费电影| 在线观看美女被高潮喷水网站| av女优亚洲男人天堂| 蜜桃亚洲精品一区二区三区| 丝袜喷水一区| 永久网站在线| 一级片'在线观看视频| 插阴视频在线观看视频| 国产高清三级在线| 午夜福利在线观看免费完整高清在| 国产精品秋霞免费鲁丝片| 国产亚洲最大av| 在线 av 中文字幕| av专区在线播放| 日本-黄色视频高清免费观看| 精品久久久久久电影网| 最近手机中文字幕大全| 国产一区有黄有色的免费视频| 网址你懂的国产日韩在线| 婷婷色综合大香蕉| 欧美成人a在线观看| 91精品国产九色| 亚洲精品一二三| 欧美xxⅹ黑人| 国产男女内射视频| 国产成人aa在线观看| 国产色婷婷99| 插逼视频在线观看| 人妻夜夜爽99麻豆av| 国产免费一级a男人的天堂| 亚洲av国产av综合av卡| 黄片wwwwww| 九九久久精品国产亚洲av麻豆| 亚州av有码| 欧美另类一区| 亚洲av电影在线观看一区二区三区| 人人妻人人添人人爽欧美一区卜 | 久久99热6这里只有精品| 国产一级毛片在线| 亚洲精品一区蜜桃| 国产淫语在线视频| 伊人久久精品亚洲午夜| 国产av码专区亚洲av| 欧美日韩一区二区视频在线观看视频在线| 国产高潮美女av| 午夜日本视频在线| 26uuu在线亚洲综合色| 国产国拍精品亚洲av在线观看| 日韩欧美一区视频在线观看 | 亚洲精品456在线播放app| 麻豆精品久久久久久蜜桃| 国产一级毛片在线| 一级av片app| 亚洲不卡免费看| 免费少妇av软件| 日韩在线高清观看一区二区三区| 成人亚洲精品一区在线观看 | 大片电影免费在线观看免费| 国产高清国产精品国产三级 | 美女cb高潮喷水在线观看| 国模一区二区三区四区视频| 下体分泌物呈黄色| 亚洲国产成人一精品久久久| 99久久人妻综合| 亚洲av中文字字幕乱码综合| 成人午夜精彩视频在线观看| 岛国毛片在线播放| 国产精品久久久久久久电影| 久久99精品国语久久久| 99热网站在线观看| 国产男人的电影天堂91| 久久人人爽av亚洲精品天堂 | 黄色日韩在线| 国产免费一级a男人的天堂| 最黄视频免费看| 国产亚洲欧美精品永久| 狂野欧美激情性xxxx在线观看| 丰满迷人的少妇在线观看| 视频中文字幕在线观看| 一区二区三区乱码不卡18| 99热6这里只有精品| 国产日韩欧美亚洲二区| 国产免费又黄又爽又色| 亚洲国产日韩一区二区| 插逼视频在线观看| 国产精品偷伦视频观看了| 日韩伦理黄色片| 色哟哟·www| 一区二区三区四区激情视频| 国内精品宾馆在线| 婷婷色av中文字幕| 国产欧美日韩精品一区二区| 国产免费福利视频在线观看| 国产精品女同一区二区软件| 亚洲精品乱码久久久v下载方式| 亚洲成色77777| 成人国产av品久久久| 51国产日韩欧美| 久热这里只有精品99| 男女边摸边吃奶| 激情五月婷婷亚洲| 成年av动漫网址| 黄色日韩在线| 国产精品欧美亚洲77777| 一级黄片播放器| 高清视频免费观看一区二区| 少妇人妻久久综合中文| 黄色视频在线播放观看不卡| 尾随美女入室| 婷婷色综合大香蕉| 亚洲精品日本国产第一区| 一级毛片aaaaaa免费看小| 这个男人来自地球电影免费观看 | 3wmmmm亚洲av在线观看| a级毛片免费高清观看在线播放| 夫妻午夜视频| 亚洲精品久久午夜乱码| 亚洲精品日本国产第一区| 人妻系列 视频| 国产高清三级在线| 麻豆成人av视频| 夫妻性生交免费视频一级片| 91久久精品电影网| 国产午夜精品久久久久久一区二区三区| 在线观看一区二区三区| 一边亲一边摸免费视频| 18禁在线无遮挡免费观看视频| 少妇 在线观看| 涩涩av久久男人的天堂| 国产成人freesex在线| 91久久精品电影网| 久久99热这里只有精品18| 我要看日韩黄色一级片| 婷婷色综合www| 国产精品一二三区在线看| 免费少妇av软件| 亚洲成色77777| 街头女战士在线观看网站| 色哟哟·www| 国产69精品久久久久777片| 欧美激情极品国产一区二区三区 | 亚洲成人中文字幕在线播放| 青春草亚洲视频在线观看| av女优亚洲男人天堂| 亚洲不卡免费看| 色5月婷婷丁香| .国产精品久久| 汤姆久久久久久久影院中文字幕| 中国三级夫妇交换| 嫩草影院新地址| 99热全是精品| 成人午夜精彩视频在线观看| 在线观看av片永久免费下载| 又大又黄又爽视频免费| 91在线精品国自产拍蜜月| 干丝袜人妻中文字幕| 亚洲最大成人中文| av天堂中文字幕网| 欧美亚洲 丝袜 人妻 在线| 国产一区亚洲一区在线观看| 亚洲欧美日韩卡通动漫| 天堂俺去俺来也www色官网| 一个人免费看片子| 少妇高潮的动态图| 亚洲精品,欧美精品| 有码 亚洲区| 天美传媒精品一区二区| 久久久久精品性色| av线在线观看网站| 国产欧美亚洲国产| 汤姆久久久久久久影院中文字幕| 精品午夜福利在线看| 久久6这里有精品| 亚洲欧美一区二区三区国产| 伊人久久国产一区二区| 免费看不卡的av| 欧美日韩一区二区视频在线观看视频在线| 国产真实伦视频高清在线观看| 亚洲国产欧美人成| 夜夜骑夜夜射夜夜干| 中文字幕亚洲精品专区| 日韩成人伦理影院| 国产爱豆传媒在线观看| 国产成人免费观看mmmm| av在线播放精品| 久久人人爽人人片av| 午夜视频国产福利| 日韩精品有码人妻一区| 秋霞在线观看毛片| 亚洲av二区三区四区| 亚洲国产精品专区欧美| 一二三四中文在线观看免费高清| 国产v大片淫在线免费观看| 欧美一级a爱片免费观看看| 99视频精品全部免费 在线| 日本色播在线视频| av一本久久久久| 国产美女午夜福利| 久久这里有精品视频免费| 在线看a的网站| 精品午夜福利在线看| 亚洲综合精品二区| 精品99又大又爽又粗少妇毛片| 午夜免费观看性视频| 国产免费福利视频在线观看| 亚洲av.av天堂| 午夜福利视频精品| 精品99又大又爽又粗少妇毛片| 伦理电影大哥的女人| 日韩精品有码人妻一区| 2018国产大陆天天弄谢| 久久综合国产亚洲精品| av卡一久久| 国产亚洲一区二区精品| 欧美一级a爱片免费观看看| 成人亚洲欧美一区二区av| 精品国产乱码久久久久久小说| 天美传媒精品一区二区| 国产亚洲一区二区精品| 久久久久久久久久成人| 多毛熟女@视频| 熟妇人妻不卡中文字幕| 一区二区三区精品91| 最后的刺客免费高清国语| 91狼人影院| 黑人高潮一二区| 国产精品久久久久久久久免| 国产黄色免费在线视频| 亚洲精品日本国产第一区| 黄色配什么色好看| 国产精品女同一区二区软件| 精品一品国产午夜福利视频| 久久久久久久久大av| 人妻系列 视频| 肉色欧美久久久久久久蜜桃| av在线播放精品| 中文在线观看免费www的网站| 99精国产麻豆久久婷婷| 精华霜和精华液先用哪个| 亚洲aⅴ乱码一区二区在线播放| 国产精品蜜桃在线观看| 国产成人freesex在线| 免费高清在线观看视频在线观看| 久久综合国产亚洲精品| 国产日韩欧美亚洲二区| 国产女主播在线喷水免费视频网站| 国产精品国产三级国产av玫瑰| 亚洲国产最新在线播放| 内地一区二区视频在线| 黄色配什么色好看| 精品国产乱码久久久久久小说| 国产高清有码在线观看视频| 99热这里只有精品一区| 亚洲色图av天堂| 菩萨蛮人人尽说江南好唐韦庄| 我要看黄色一级片免费的| 亚洲欧美成人精品一区二区| 免费不卡的大黄色大毛片视频在线观看| 成人二区视频| 自拍偷自拍亚洲精品老妇| 99久久精品国产国产毛片| 精品少妇黑人巨大在线播放| 伦理电影免费视频| 国产伦精品一区二区三区四那| 亚洲美女视频黄频| 如何舔出高潮| 久久国产乱子免费精品| 欧美丝袜亚洲另类| 久久精品人妻少妇| 成年人午夜在线观看视频| 久久国产精品大桥未久av | 婷婷色综合www| 免费大片黄手机在线观看| 国产视频首页在线观看| 成年女人在线观看亚洲视频| 五月玫瑰六月丁香| 丝袜喷水一区| 最近最新中文字幕免费大全7| 国产精品伦人一区二区| 中文欧美无线码| av女优亚洲男人天堂| 精品国产一区二区三区久久久樱花 | 久久99热这里只频精品6学生| 九九爱精品视频在线观看| 久久99精品国语久久久| 日韩一区二区三区影片| 亚洲av国产av综合av卡| 少妇 在线观看| 亚洲欧美精品自产自拍| 久久国内精品自在自线图片| 黑丝袜美女国产一区| 深爱激情五月婷婷| 欧美高清成人免费视频www| 国产伦精品一区二区三区视频9| 最近2019中文字幕mv第一页| 我的老师免费观看完整版| 成人无遮挡网站| 久久久久国产网址| 91在线精品国自产拍蜜月| 亚洲精品一二三| 日本猛色少妇xxxxx猛交久久| 免费黄频网站在线观看国产| 高清日韩中文字幕在线| 又爽又黄a免费视频| 黄片wwwwww| 欧美3d第一页| 亚洲欧美日韩无卡精品| 国产亚洲一区二区精品| 边亲边吃奶的免费视频| 亚洲,一卡二卡三卡| 久久久久久久亚洲中文字幕| 婷婷色综合大香蕉| 国产精品国产三级国产专区5o| 国产成人一区二区在线| 亚洲欧美一区二区三区黑人 | 51国产日韩欧美| 日韩在线高清观看一区二区三区| 日本与韩国留学比较| 国产精品久久久久久av不卡| 免费黄频网站在线观看国产| 久久久午夜欧美精品| 亚洲高清免费不卡视频| 久久精品国产鲁丝片午夜精品| 午夜免费鲁丝| 在线观看一区二区三区激情| 亚洲最大成人中文| av在线观看视频网站免费| 91aial.com中文字幕在线观看| 亚洲aⅴ乱码一区二区在线播放| 亚洲丝袜综合中文字幕| 一区二区三区精品91| 国产免费一区二区三区四区乱码| 亚洲av成人精品一区久久| 国产一区二区三区av在线| av国产久精品久网站免费入址| 午夜免费观看性视频| 男女啪啪激烈高潮av片| 精品久久久久久久末码| 欧美变态另类bdsm刘玥| 日本色播在线视频| 老司机影院成人| 欧美日本视频| 国产伦精品一区二区三区视频9| 精品人妻熟女av久视频| 亚洲色图av天堂| 日韩强制内射视频| 极品少妇高潮喷水抽搐| 国产精品国产三级专区第一集| 在线观看免费高清a一片| 成人美女网站在线观看视频| 国产黄色免费在线视频| 91精品伊人久久大香线蕉| 日韩电影二区| 久久国产乱子免费精品| 国产精品嫩草影院av在线观看| 亚洲中文av在线| 久久97久久精品| 国产在线视频一区二区| 一二三四中文在线观看免费高清| 三级经典国产精品| 丰满少妇做爰视频| 亚洲第一区二区三区不卡| 亚洲va在线va天堂va国产| 亚洲成人av在线免费| 欧美成人a在线观看| 一个人看的www免费观看视频| 久久国产亚洲av麻豆专区| 日韩,欧美,国产一区二区三区| 国产黄片视频在线免费观看| 国产在线免费精品| 好男人视频免费观看在线| 亚洲成色77777| 99久久综合免费| 女性生殖器流出的白浆| 欧美日韩国产mv在线观看视频 | 偷拍熟女少妇极品色| 久久av网站| 久久人人爽av亚洲精品天堂 | 精品久久久精品久久久| av.在线天堂| 99久国产av精品国产电影| 成年美女黄网站色视频大全免费 | 久久97久久精品| 岛国毛片在线播放| 国模一区二区三区四区视频| 成年美女黄网站色视频大全免费 | 日韩不卡一区二区三区视频在线| 在线免费观看不下载黄p国产| 国产欧美亚洲国产| 又粗又硬又长又爽又黄的视频| 国产无遮挡羞羞视频在线观看| 高清午夜精品一区二区三区| av一本久久久久| videos熟女内射| 久久久亚洲精品成人影院| 国产精品久久久久久av不卡| tube8黄色片| 日韩中字成人| 简卡轻食公司| 大陆偷拍与自拍| 亚洲精品国产成人久久av| 亚洲不卡免费看| 只有这里有精品99| 一级av片app| 少妇被粗大猛烈的视频| 亚洲精品一区蜜桃| 亚洲av福利一区| 大又大粗又爽又黄少妇毛片口| 国产精品人妻久久久影院| 欧美一级a爱片免费观看看| 免费久久久久久久精品成人欧美视频 | 少妇高潮的动态图| 国语对白做爰xxxⅹ性视频网站| 欧美三级亚洲精品| 国产黄色视频一区二区在线观看| 亚洲欧美精品专区久久| 女的被弄到高潮叫床怎么办| 九九久久精品国产亚洲av麻豆| 老女人水多毛片| 国产亚洲91精品色在线| 国产午夜精品一二区理论片| 免费久久久久久久精品成人欧美视频 | 国产片特级美女逼逼视频| 在线观看免费视频网站a站| 国产成人91sexporn| 超碰97精品在线观看| 久久久久久九九精品二区国产| 欧美成人a在线观看| 欧美高清成人免费视频www| 久久久精品94久久精品| 人妻 亚洲 视频| 最近最新中文字幕免费大全7| 男人狂女人下面高潮的视频| 一区二区三区精品91| 在线免费观看不下载黄p国产| 国产av码专区亚洲av| 性色avwww在线观看| 国产探花极品一区二区| 偷拍熟女少妇极品色| 欧美人与善性xxx| 国产精品女同一区二区软件| 久久国产精品男人的天堂亚洲 | 国内少妇人妻偷人精品xxx网站| 日韩免费高清中文字幕av| 精品少妇黑人巨大在线播放| 免费大片18禁| 亚洲欧美成人精品一区二区| 少妇的逼好多水| 国产色婷婷99| 亚洲一级一片aⅴ在线观看| 最近最新中文字幕大全电影3| 99久久中文字幕三级久久日本| 极品少妇高潮喷水抽搐| 七月丁香在线播放| 又爽又黄a免费视频| 七月丁香在线播放| 精品亚洲成a人片在线观看 | 国产无遮挡羞羞视频在线观看| 欧美精品人与动牲交sv欧美| 欧美成人a在线观看| 久久久久久久久久成人| 一本—道久久a久久精品蜜桃钙片| 欧美 日韩 精品 国产| 日韩人妻高清精品专区| 午夜福利视频精品| 日韩在线高清观看一区二区三区| 激情 狠狠 欧美| 国产伦在线观看视频一区| 校园人妻丝袜中文字幕| 黄色配什么色好看| 国产黄片视频在线免费观看| 国产毛片在线视频| 美女xxoo啪啪120秒动态图| 欧美老熟妇乱子伦牲交| 七月丁香在线播放| 晚上一个人看的免费电影| 亚洲真实伦在线观看| 国产片特级美女逼逼视频| 熟女电影av网| 国模一区二区三区四区视频| 亚洲色图av天堂| 国产成人免费无遮挡视频| 成人高潮视频无遮挡免费网站| 久久久久久久精品精品| 麻豆成人av视频| 精品久久久久久久末码| 久久久亚洲精品成人影院| 特大巨黑吊av在线直播| 自拍欧美九色日韩亚洲蝌蚪91 | 中文字幕av成人在线电影| 极品教师在线视频| 亚洲自偷自拍三级| 欧美+日韩+精品| 一区二区三区乱码不卡18| 亚洲激情五月婷婷啪啪| 丝瓜视频免费看黄片| 国产国拍精品亚洲av在线观看| 国产精品99久久久久久久久| 欧美日韩国产mv在线观看视频 | 欧美极品一区二区三区四区| 欧美精品国产亚洲| 日韩国内少妇激情av| 18禁裸乳无遮挡免费网站照片| 午夜日本视频在线| 亚洲国产精品国产精品| 91久久精品国产一区二区三区| 五月开心婷婷网| 久久久久网色| 黄片wwwwww| 亚洲三级黄色毛片| 国精品久久久久久国模美| 身体一侧抽搐| 香蕉精品网在线| 亚洲av福利一区| 国产探花极品一区二区| 久久久色成人| 少妇人妻一区二区三区视频| 国产日韩欧美在线精品| 精品少妇久久久久久888优播| 欧美三级亚洲精品| 婷婷色av中文字幕| 中文精品一卡2卡3卡4更新| 内射极品少妇av片p| av不卡在线播放| 亚洲熟女精品中文字幕| 国产色婷婷99| 久久6这里有精品| 交换朋友夫妻互换小说| 国产91av在线免费观看| 多毛熟女@视频| 久久女婷五月综合色啪小说| 在线免费观看不下载黄p国产| 日本wwww免费看| 国产伦精品一区二区三区四那| 国产免费视频播放在线视频| 中文天堂在线官网| 亚洲精品乱码久久久v下载方式| 欧美另类一区| 色网站视频免费| 99热这里只有是精品在线观看| 一级毛片 在线播放| 亚洲性久久影院| 我要看黄色一级片免费的| 国产一区二区三区av在线| 国产日韩欧美在线精品| 一区二区三区四区激情视频| 国内少妇人妻偷人精品xxx网站| 欧美高清性xxxxhd video| 激情五月婷婷亚洲| 人体艺术视频欧美日本| 成年免费大片在线观看| 亚洲精品色激情综合| 日韩,欧美,国产一区二区三区| 毛片女人毛片| 中文字幕av成人在线电影| 天堂俺去俺来也www色官网| 亚洲熟女精品中文字幕| 国产精品蜜桃在线观看| 亚洲怡红院男人天堂| 涩涩av久久男人的天堂| 看非洲黑人一级黄片| 九九爱精品视频在线观看| 高清日韩中文字幕在线| 丝袜喷水一区| 亚洲内射少妇av| 久久久欧美国产精品| 少妇裸体淫交视频免费看高清| 亚洲中文av在线| 日韩欧美精品免费久久| 国产免费福利视频在线观看| 欧美xxxx性猛交bbbb| 亚洲精品久久久久久婷婷小说| 嘟嘟电影网在线观看| 一本色道久久久久久精品综合| 99re6热这里在线精品视频| 在线免费十八禁| 视频区图区小说| 91精品一卡2卡3卡4卡| 国产精品久久久久成人av| 3wmmmm亚洲av在线观看| 小蜜桃在线观看免费完整版高清| 一级毛片我不卡| 亚洲精品,欧美精品| 在线观看人妻少妇| av在线播放精品| 亚洲av国产av综合av卡| 老女人水多毛片| 亚洲欧美日韩卡通动漫| 婷婷色麻豆天堂久久| 一个人免费看片子| 高清不卡的av网站| 午夜福利在线在线| 欧美一级a爱片免费观看看| 久久韩国三级中文字幕| 亚洲精品,欧美精品| 国产免费又黄又爽又色| 六月丁香七月| 国产精品偷伦视频观看了| 成人综合一区亚洲| videossex国产|