• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Palladium-catalyzed base- and solvent-controlled chemoselective allylation of amino acids with allylic carbonates

    2022-12-07 08:26:46YngZhouHngChenPnpnLeiChunmingGuiHifengWngQiongjioYnWeiWngFenerChen
    Chinese Chemical Letters 2022年11期

    Yng Zhou, Hng Chen, Pnpn Lei, Chunming Gui, Hifeng Wng, Qiongjio Yn,Wei Wng,?, Fener Chen,c,d,?

    a Pharmaceutical Research Institute, Wuhan Institute of Technology, Wuhan 430205, China

    b Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637009, China

    c Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China

    d Shanghai Engineering Center of Industrial Catalysis for Chiral Drugs, Shanghai 200433, China

    Keywords:Allylation Amino acid Carbonates Chemoselectivity Palladium

    ABSTRACT The utilization of readily available amino acids, which is not only an oxygen nucleophile but also a nitrogen nucleophile, in palladium-catalyzed allylic substitution is realized under mild conditions.The chemoselectivity and multiple allylation are controlled by adjusting the reaction conditions.This represents the first example of this convenient access to valuable N,O-diallylated amino acids.Under the title conditions, a range of amino acids (α-, β-, γ-) and dipeptides can be readily converted in to the corresponding allylic products with excellent yields (67 examples, up to 99% yield) as well as good functional group tolerance.

    Amino acids represent a ubiquitous motif found in natural products and pharmaceuticals [1,2].They have been involved in a variety of chemical transformations, especially for the synthesis of artificial amino acids, short peptides and polypeptides with specific biological activities, semi-synthetic antibiotics, new herbicide, and insecticide [3–9].In most cases, these bifunctional substrates have to be protected, either at the amino or at the carboxylic end to ensure selective transformations.For example,amino acid esters have been already widely used inα-alkylation due to theO-protection of the carboxylic group as an easily removable protecting group.In recent years, transition-metal-catalyzed enantioselectiveα-allylation of amino acid ester derivatives has received increasing attention because of the exceptional importance ofα,α-disubstitutedα-amino acids in biological processes; this has been demonstrated by the development of novel nucleophiles (Nunprotected andN,N-disubstituted amino acid esters, aldimine esters, ketimine esters,etc.) [10–15], electrophiles (allylic substrates,vinyl-cyclopropanes, 1,3-dienes,etc.) [16–19], and even highly effi-cient catalytic systems (Scheme 1a) [20–22].However, despite the notable impressive progress achieved in this area ofα-allylation,we were surprised to learn that only few examples have been reported for the asymmetricN-allylation of amino acid esters [23–29].As shown in Scheme 1b, Schmalz and co-works disclosed the stereocontrolled palladium-catalyzedN-allylation of amino acid esters, giving the correspongdingN-allylation products with excellent enantio– and diastereoselectivity [28,29].Although the solubility and selectivity increaseviatheO-protection of the carboxylic group on amino acid, protection may also cause some problems,e.g., increasing the number of synthetic steps and difficulty in deprotecting unstable compounds.Therefore, the development of the direct functionalization of amino acids is greatly required in organic synthesis.

    As a matter of fact, compared to amino acid ester as a nucleophile, amino acid contains either N or O reactive sites, which is not only an oxygen nucleophile but also a nitrogen nucleophile(Scheme 1c).Thus, transition-metal-catalyzedN,O-selective allylic substitution of amino acids remains a challenge [30–33].The major challenge inN,O-selective allylation is to control the competition between a nitrogen nucleophile and an oxygen nucleophile on amino acid.What is more, there is still only a very limited number of reports documented in the literature that a carboxy group serves as the nucleophile to afford allyl esters [34–45], probably because of the high reactivity of the resulting allylic esters with metal catalysts.Therefore, we were challenged to develop an effi-cient methodology for such reactions.

    Scheme 1 .Development of allylic substitution of amino acid esters and amino acids.

    Herein we report the first palladium-catalyzed chemoselective allylic substitution with amino acids asN- andO-nucleophiles(Scheme 1c).In this context, chemoselectivity for the allylation can be exclusively driven by adjusting the bases and solvents.This new strategy would provide a general and efficient approach to valuable allylated amino acid derivatives.

    Scheme 2 .Scope of the allylic methyl carbonate coupling partner with racemic tert–butylglycine.For reaction conditions of O-allylation see entries 19 and 15 in Table 1;N,O-diallylation see entry 12 in Table 1.

    Scheme 3 .Scope of the racemic amino acid coupling partner with cinnamyl methyl carbonate.For reaction conditions of O-allylation see Table S5, entry 11 and N,Odiallylation see Table S5, entry 13.

    Our investigation into Pd-catalyzed selective allylic esterifications and aminations began with the evaluation of ligands for coupling racemicN-tosyl–tert-butylglycine 1a and (E)-cinnamyl methyl carbonate 2a.Initially, this reaction was conducted in the presence of 2.5 mol% of Pd(PPh3)2Cl2and 6 mol% of ligand L1 (BINAP).TheN,O-diallylated product 4aa was generated in 35% yield (Table 1,entry 1).To our delight, replacing BINAP with ligand L2 (Xantphos)gave a substantially improved reaction efficiency (Table 1, entry 2,86%).Encouraged by this result, a series of phosphine ligands with different bite angles and electronic natures were screened to identify ligands that would improve the reaction activity and selectivity(Table 1, entries 3 and 4, and Table S1 in Supporting information).As a result, Xantphos still turned out to be far superior.These couplings were all screened using Xantphos as the ligand of choice on palladium, which revealed that only Pd(PPh3)Cl2was suitable(Table 1, entries 5–7 and Table S1).Further screening of the reaction conditions revealed that CH3CN served as the best solvent compared with DCM, 1,4-dioxane, DMF, toluene, EtOAc, THF, DMSO,NMP or CH3OH (Table 1, entries 8–11 and Table S2 in Supporting information).Increasing the amount of catalyst loading and carbonate reagent led to a higher (94%) yield of 4aa (Table 1, entry 12).

    Table 1 Optimization of reaction conditions for racemic N-tosyl–tert-butylglycine and cinnamyl methyl carbonate 2a as substrates.a

    Interestingly, this reaction performed in EtOAc gave the allylic esterification product 3aa, though with only a 13% yield,which suggested that the selective allylation ofN-nucleophile orO-nucleophile ontert–butylglycine was possible by controlling the reaction conditions (Table 1, entry 11).Indeed, conducting the reaction under an atmosphere of air or oxygen led to a remarkable increase in yield of the desiredO-allylated product 3aa (Table 1,entries 13 and 14, 78% and 55%).Gratifyingly, using CH3CN as the reaction medium, conversion ofN-Tstert–butylglycine 1a with carbonate 2a under an O2atmosphere resulted in an outstanding yield (entry 15, O2, 3aa, 99%vs.entry 12, Ar, 4aa, 94%).As a Pdcatalyzed allylic C–H acetoxylation [46–48], the beneficial effect of molecular oxygen on theO-allylation reflects its ability to enhance the rate by trapping the putative Pd(0)-alkene species and promote C–O reductive elimination fromπ-allyl-Pd(II) complexes.More importantly, a peroxo-PdIIintermediate could be detected by ESI-HRMS under an atmosphere of ambient O2(Fig.S2 in Supporting information for details), which indicated that molecular oxygen may just kill the catalyst in time to prevent theN-allylation.Finally, a variety of organic and inorganic bases were screened and NaOMe proved to be the best one for theO-allylation product 3aa(Table 1, entries 16–19 and Table S3 in Supporting information).These findings clearly showcase that (a) the allylic substitution favors theO-nucleophile more than theN-nucleophile on amino acids [49] and (b)N-allylic alkylation of amino acids could be suppressed when NaOMe and EtOAc were used as the base and solvent or under an O2atmosphere.When the Ts group was changed to Ac or H, poor results were delivered and only trace amounts of 3aa were obtained.

    With the optimal conditions established, we first reacted a representative set of allylic carbonates 2 withN-tosyl–tertbutylglycine 1a to explore the generality of this reaction.It is noteworthy thatO-allylic alkylation oftert–butylglycine was executed under the reaction conditions presented in entry 15 (Conditions B) or 19 (Conditions A) of Table 1.As summarized in Scheme 2,this transformation demonstrated a broad scope with respect to the allylic carbonate reaction partner under both reaction conditions and the correspondingO-allylated products 3aa-3at were obtained with excellent chemoselectivity of up to 94%.The molecular structure of 3aa was unambiguously confirmed by X-ray crystallographic analysis (CCDC: 2095785).An array of cinnamyl carbonates 2b-2k bearing either an electron-donating (e.g., MeO, Me,OCF3) or an electron-withdrawing (e.g., Cl, Br, CF3) group at the phenyl ring were all suitable for the reaction, and afforded the desired allylic esters 3ab-3ak in 58%?93% yields.Notably, themnitro-substituted carbonate was also tolerated and furnished the corresponding product 3al in 75% yield.The presence ofpara(3ab,3af, 3ag, and 3ak),meta(3ac, 3ae, 3ah, 3aj, and 3al), orortho(3ad and 3ai) substitutions on the aryl group proved to be feasible.Furthermore, the substrates 2m-2o with 3,4-di-MeO groups or a bulky fused aryl ring on the phenyl also worked well in this reaction and gave the desired allylic esters 3am-3ao in 65%?74% yields.Importantly, the reactions of 2-thienyl-, 2-furyl-substituted substrates 2p and 2q all proceeded smoothly to provide the products 3ap-3aq in 66% and 75% yields, respectively.Meanwhile, we were pleased to find that our method can also be applied to alkyl carbonates (3ar and 3as, 68% and 55%).Remarkably, 1,3-disubstituted allyl carbonate 2t reacted smoothly toward the correspondingO-allylic product 3at in 58% yield.It is interesting to note that in most cases these two conditions could be complemented each other toward theO-allylic substitution oftert–butylglycine.Subsequently, we focused on the simultaneous construction of C–O and C–N bonds under optimal conditions ofN,O-diallylic substitutions (Table 1, entry 12, Conditions C).The allylation reactions of the carbonates with alkoxy, halogen, trifluoromethyl, and 1,3-benzodioxole groups were successful, producing densely functionalizedN,O-diallylated products 4aa-4ao in 61%–90% yields.What is more, heterocyclic aromatic substrates could also react smoothly withtert–butylglycine 1a to give the expected products 4ap and 4aq in 64% and 47%yields, respectively.In addition, the reaction using 3-alkyl-allyl carbonate provided 4as in moderate yield.

    Encouraged by these results, we turned our attention to the investigation of the amino acids scope (Table S5 in Supporting information).Frustratingly, it was found that the optimized protocol of theO-allylation (Table 1, entry 19, Conditions A) proved to be ineffective for theN-Ts valine and a poor yield of the desired allylic ester 3ba was obtained (Table S5, entry 1, 28%).To enhance the activity and selectivity of this reaction, some key factors affecting the performance of this transformation are explored.The best reaction conditions were found with a simple pyridyl-derived phosphine L12 as a ligand when reducing the amount of the base(Table S5, entries 11 and 13).To probe the applicability of the developed protocol, the cinnamyl methyl carbonate 2a was reacted with a set of racemicN-Ts-protectedα-amino acids 1.The results summarized in Scheme 3 show that outstanding chemoselectivities and isolated yields were observed in most cases, independent of the amino acid sidechain.A series of valuableO-allylated andN,O-diallylated amino acid derivatives were finally gained in moderate to good yields (3ba-3ma, 32%?88%; 4ba, 4ea-4ga, 4ia, 4ja,4ma, 41%?92%).The molecular structure ofN,O-diallylated product 4ia was established by X-ray crystallographic analysis.Notably,this transformation was found to be compatible with a series ofβandγ-amino acids with excellent selectivity forO-allylation andN,O-diallylation (3na-3qa, 47%?60%; 4na-4qa, 69%?82%).Besides,dipeptide also gave the corresponding products 3ra and 4ra.

    To further demonstrate the potential applications of this protocol, methyl carbonate 2a was reacted with non-racemic amino acids such asN-Ts-D–tert-butylglycine andN-Ts-L-valine, upon which the desired non-racemic allylic amino acid esters (R)?3aa,(R)?4aa, and (S)?3ba were isolated in high yields and without any detectable loss of absolute stereochemical information (Scheme 4a).Furthermore, theN,O-selective allylic reactions could be easily performed on 1 mmol scale (Schemes 4b and c, 72% and 70%).The application of these allylic amino acids generated by this method is demonstrated in Scheme 4.For example, further transformation of 3aa was realized by treatment with I2and NaHCO3in CH3CN, providing the synthetically valuable morpholin-2-one 5 in 54% yield with 1:1 dr (Scheme 4b).Interestingly, productE,E-4aa could undergo an isomerization [50], using our previously reported method of a photocatalyticEtoZisomerization [51] to deliver theZ,Z-isomer in high yield (Scheme 4c,Z,Z-4aa, 95%).More importantly, product 4aa could also be conveniently transformed intoNallylated amino acid 6 with a good yield upon acidic hydrolysis(Scheme 4c, 78%).So far, threeN,O-selective allylation products (Oallylated,N-allylated, andN,O-diallylated) were obtained through the base and solvent-controlledN,O-selective allylation of amino acids.This method provides a new way for the selective modification of amino acids.

    Scheme 4 .Scale-up synthesis and synthetic applications.

    To gain insight into the reaction pathway, we examined the reaction processes ofO-allylic andN,O-diallylic substitutions by1H NMR spectroscopy of the crude reaction mixtures (Fig.1 and Fig.S1 in Supporting information).As illustrated in Fig.1, the1HNMR spectra of reaction time clearly show the formation of the desired products 3aa and 4aa under the optimized reaction conditions.The reaction of 1a with 2a gave theO-allylated amino acid 3aa under the conditions A after 5 h, and the1H NMR spectrum showed two doublets atδ6.53,J=15.8 Hz andδ5.18,J=10.8 Hz, and doublet of triplet atδ6.02,J=15.9, 6.7 Hz (Fig.1, I-c).The product 4aa was not observed even extending the allylation time to 48 h.It is important to note that a mixture of 1a and 2a followed by Pdcatalyzed allylation under the conditions C after 1 h afforded 3aa in a good yield, along with a trace amount of 4aa (Fig.1, II-a).As the reaction progress,N,O-diallylated amino acid 4aa content increased, whileO-allylated product 3aa content in the reaction mixture decreased gradually (Fig.1, II-b-d).These results indicates that the transformation of 3aa into 4aa could be crucial for theN,Odiallylic substitution.In addition, as the effect of molecular oxygen,the conversion of 3aa into 4aa was suppressed in the presence of water (Table S4 in Supporting information).

    Fig.1 .1H NMR Spectra (CDCl3, 400 MHz); I: performed from 1a (0.1 mmol), 2a (0.15 mmol), Pd(PPh3)2Cl2 (4 mol%), L2 (10 mol%), and NaOMe (0.05 mmol) in EtOAc (1 mL)at room temperature; II: 1a (0.1 mmol), 2a (0.22 mmol), Pd(PPh3)2Cl2 (4 mol%), XantPhos (10 mol%), and Cs2CO3 (0.05 mmol) in CH3CN (1 mL) at room temperature.

    On the basis of these results, a plausible mechanism for the Pd-catalyzed chemoselective allylation of amino acids is shown in Scheme 5.Similar to other allylic substitutions, oxidative addition of an allylic carbonate (1a) to Pd(0) gives a Pd-π-allyl species 7.Subsequently, the intermediate 7 underwent esterification with amino acid 1a to form the desired product 3aa and Pd(0).TheO-allylation generated product 3aa which underwentN-allylationviatheN-nucleophilic attack to the intermediate 7, thus forming a new C–N bond and the finalN,O-diallylated product 4aa.When NaOMe and EtOAc are used as the base and solvent, or conducting the reaction under an O2atmosphere or with extra water, the catalytic cycle ofN-allylation is interrupted and the intermediate 9 is not formed during this catalysis.

    In conclusion, we have developed the first example of Pdcatalyzed chemoselective allylic alkylation of amino acids with allylic carbonates.The protocol provides a general and efficient approach to various importantO-allylated,N-allylated, andN,Odiallylated amino acid derivatives.The simplicity and availability of the amino acid nucleophile, the mild reaction conditions, and the broad scope of the allylic carbonates are the attributes of the present system.We anticipate additional applications of this strategy for catalytic asymmetric carbon-oxygen and carbon-nitrogen bond formations.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    We acknowledge financial support from the National Natural Science Foundation of China (No.21602144), the Science and Technology Program of Sichuan Province (No.2018JY0485), and Scientific Research Project of Education Department of Hubei Province(Nos.Q20211503, B2020057).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2022.02.029.

    亚洲av成人精品一二三区| 免费黄网站久久成人精品| 真实男女啪啪啪动态图| 久久久久国产网址| 日韩精品青青久久久久久| 99热网站在线观看| 成人无遮挡网站| 免费看av在线观看网站| 国产欧美日韩精品一区二区| 国产一级毛片七仙女欲春2| 国产精品av视频在线免费观看| 成人特级av手机在线观看| 男插女下体视频免费在线播放| 亚洲av电影不卡..在线观看| 国产精品.久久久| 2021天堂中文幕一二区在线观| 国产精品三级大全| 日韩亚洲欧美综合| 别揉我奶头 嗯啊视频| 日韩在线高清观看一区二区三区| 午夜日本视频在线| 亚洲欧洲日产国产| 秋霞在线观看毛片| av在线亚洲专区| 男女啪啪激烈高潮av片| 亚洲欧洲日产国产| 天堂俺去俺来也www色官网 | 国产免费一级a男人的天堂| 日韩精品有码人妻一区| 嫩草影院精品99| 乱系列少妇在线播放| 亚洲人成网站高清观看| 午夜福利网站1000一区二区三区| 中文精品一卡2卡3卡4更新| 插阴视频在线观看视频| 精品人妻一区二区三区麻豆| 熟女电影av网| 亚洲av免费在线观看| 一夜夜www| 亚洲人与动物交配视频| 大又大粗又爽又黄少妇毛片口| av.在线天堂| 国产成人91sexporn| 午夜福利视频精品| 精品久久久久久久久久久久久| 国产毛片a区久久久久| 久久国产乱子免费精品| 色播亚洲综合网| 特大巨黑吊av在线直播| 看免费成人av毛片| 男女下面进入的视频免费午夜| 听说在线观看完整版免费高清| 亚洲欧美一区二区三区国产| 午夜精品一区二区三区免费看| 日本免费在线观看一区| 777米奇影视久久| 久久国内精品自在自线图片| 美女被艹到高潮喷水动态| 身体一侧抽搐| 国国产精品蜜臀av免费| 能在线免费观看的黄片| 小蜜桃在线观看免费完整版高清| 日韩av不卡免费在线播放| 一边亲一边摸免费视频| 51国产日韩欧美| 日韩欧美一区视频在线观看 | 亚洲人与动物交配视频| 欧美人与善性xxx| 亚洲精品亚洲一区二区| 欧美日韩视频高清一区二区三区二| 久久人人爽人人片av| 久久久精品免费免费高清| 成人毛片a级毛片在线播放| 欧美精品国产亚洲| 国产美女午夜福利| kizo精华| 精品久久久久久久久亚洲| 免费观看性生交大片5| 99久国产av精品| 成人高潮视频无遮挡免费网站| 美女大奶头视频| 一个人免费在线观看电影| 免费看av在线观看网站| 最近中文字幕2019免费版| 少妇的逼水好多| 22中文网久久字幕| 欧美一区二区亚洲| 亚洲av电影不卡..在线观看| 免费观看av网站的网址| 国产黄a三级三级三级人| 免费观看的影片在线观看| 亚洲天堂国产精品一区在线| 人妻夜夜爽99麻豆av| 黑人高潮一二区| 日韩亚洲欧美综合| 特级一级黄色大片| 欧美日韩在线观看h| 偷拍熟女少妇极品色| 成人鲁丝片一二三区免费| 欧美+日韩+精品| 哪个播放器可以免费观看大片| 91在线精品国自产拍蜜月| 午夜福利成人在线免费观看| 高清午夜精品一区二区三区| 夫妻午夜视频| 国产一级毛片在线| 美女脱内裤让男人舔精品视频| 亚洲av男天堂| 亚洲成人久久爱视频| 午夜免费男女啪啪视频观看| 婷婷色综合大香蕉| 春色校园在线视频观看| 欧美日本视频| 在线观看一区二区三区| 亚洲国产最新在线播放| 免费人成在线观看视频色| 国内少妇人妻偷人精品xxx网站| 色综合站精品国产| 久久久久久久大尺度免费视频| 白带黄色成豆腐渣| 国产亚洲91精品色在线| 麻豆乱淫一区二区| h日本视频在线播放| 七月丁香在线播放| 最近2019中文字幕mv第一页| 亚洲欧美日韩东京热| 又大又黄又爽视频免费| 久久久久网色| 熟妇人妻久久中文字幕3abv| 亚洲av.av天堂| 久久久色成人| 亚洲,欧美,日韩| 日韩伦理黄色片| 亚洲va在线va天堂va国产| 欧美97在线视频| 汤姆久久久久久久影院中文字幕 | 国产淫语在线视频| 午夜日本视频在线| 国产免费视频播放在线视频 | 亚洲av电影在线观看一区二区三区 | 欧美极品一区二区三区四区| 国产成人精品久久久久久| 国产一区二区亚洲精品在线观看| 女的被弄到高潮叫床怎么办| 国产永久视频网站| 国产免费视频播放在线视频 | 美女xxoo啪啪120秒动态图| 欧美成人精品欧美一级黄| 黄色日韩在线| 丰满乱子伦码专区| 丝瓜视频免费看黄片| 人妻夜夜爽99麻豆av| 深爱激情五月婷婷| 中文在线观看免费www的网站| 一级毛片黄色毛片免费观看视频| 99九九线精品视频在线观看视频| 国产成人精品一,二区| 中文字幕av成人在线电影| 免费大片18禁| 日本一本二区三区精品| 精华霜和精华液先用哪个| av国产久精品久网站免费入址| 精品久久久噜噜| 午夜福利在线在线| 性色avwww在线观看| 可以在线观看毛片的网站| 日韩av在线免费看完整版不卡| 一个人免费在线观看电影| 精品人妻一区二区三区麻豆| 久久99蜜桃精品久久| 97热精品久久久久久| 成年女人在线观看亚洲视频 | 搡老妇女老女人老熟妇| 国产亚洲av片在线观看秒播厂 | av国产久精品久网站免费入址| 成人欧美大片| 日韩不卡一区二区三区视频在线| 最近的中文字幕免费完整| 日韩,欧美,国产一区二区三区| 国产精品久久久久久精品电影| 在线免费十八禁| 伦精品一区二区三区| 九九久久精品国产亚洲av麻豆| 精品久久久精品久久久| 久久精品熟女亚洲av麻豆精品 | 免费在线观看成人毛片| 插逼视频在线观看| 乱人视频在线观看| 国产成人a区在线观看| freevideosex欧美| 精品久久久精品久久久| 天天一区二区日本电影三级| 久久人人爽人人爽人人片va| 成年av动漫网址| 国内精品美女久久久久久| 99九九线精品视频在线观看视频| av在线老鸭窝| 黄片wwwwww| 一本一本综合久久| av福利片在线观看| 搡老妇女老女人老熟妇| 中文字幕av在线有码专区| 久久精品久久久久久噜噜老黄| 在线 av 中文字幕| 岛国毛片在线播放| 男女边吃奶边做爰视频| 国产在视频线在精品| 亚洲精品乱码久久久久久按摩| 国产av国产精品国产| 精品久久久噜噜| 免费观看a级毛片全部| 在线 av 中文字幕| 国产av码专区亚洲av| 99九九线精品视频在线观看视频| 免费人成在线观看视频色| 久久精品国产自在天天线| 人妻少妇偷人精品九色| 国产成人精品福利久久| 久久久久久国产a免费观看| 中文字幕免费在线视频6| 麻豆久久精品国产亚洲av| 日本av手机在线免费观看| 十八禁国产超污无遮挡网站| 26uuu在线亚洲综合色| 在线免费十八禁| 国产白丝娇喘喷水9色精品| 色哟哟·www| 亚洲av不卡在线观看| 成人毛片a级毛片在线播放| 一个人观看的视频www高清免费观看| 免费观看精品视频网站| 狂野欧美白嫩少妇大欣赏| 日韩成人伦理影院| 色吧在线观看| 欧美成人精品欧美一级黄| 国内少妇人妻偷人精品xxx网站| av卡一久久| 亚洲av中文字字幕乱码综合| 777米奇影视久久| 欧美极品一区二区三区四区| 国产精品无大码| 午夜精品在线福利| 夫妻性生交免费视频一级片| 日本av手机在线免费观看| 久久精品熟女亚洲av麻豆精品 | 蜜桃亚洲精品一区二区三区| 亚洲精品亚洲一区二区| 成人av在线播放网站| 亚洲,欧美,日韩| 天堂√8在线中文| 久久久久久久国产电影| 亚洲国产精品sss在线观看| 精品欧美国产一区二区三| 亚洲色图av天堂| 91久久精品国产一区二区三区| 日日啪夜夜爽| av在线观看视频网站免费| 毛片女人毛片| 国产男女超爽视频在线观看| 免费观看性生交大片5| 天堂av国产一区二区熟女人妻| 国内揄拍国产精品人妻在线| 国产精品蜜桃在线观看| 亚洲精品,欧美精品| 国产片特级美女逼逼视频| 白带黄色成豆腐渣| 成人午夜高清在线视频| 国产成人一区二区在线| 久久久精品94久久精品| 亚洲天堂国产精品一区在线| 久久99热这里只有精品18| 国产视频内射| 91午夜精品亚洲一区二区三区| 美女cb高潮喷水在线观看| 国产一区二区三区综合在线观看 | 黑人高潮一二区| 国产91av在线免费观看| 亚洲熟女精品中文字幕| 美女高潮的动态| 1000部很黄的大片| 日本一二三区视频观看| av福利片在线观看| 六月丁香七月| 大香蕉久久网| 最近中文字幕高清免费大全6| 久久这里有精品视频免费| 亚洲综合色惰| 亚洲美女搞黄在线观看| 最新中文字幕久久久久| 亚洲一区高清亚洲精品| 神马国产精品三级电影在线观看| 简卡轻食公司| 国产爱豆传媒在线观看| 久久久久网色| 永久免费av网站大全| 欧美xxxx黑人xx丫x性爽| 久久久久久久久久成人| 青青草视频在线视频观看| 精品国内亚洲2022精品成人| 午夜激情久久久久久久| 男女那种视频在线观看| 七月丁香在线播放| 老师上课跳d突然被开到最大视频| 国产不卡一卡二| 麻豆精品久久久久久蜜桃| 成人毛片a级毛片在线播放| 美女cb高潮喷水在线观看| 黄色日韩在线| 啦啦啦中文免费视频观看日本| 美女被艹到高潮喷水动态| 在线免费观看的www视频| 狠狠精品人妻久久久久久综合| 国产极品天堂在线| 少妇人妻精品综合一区二区| 一区二区三区高清视频在线| 亚洲精品日本国产第一区| 波野结衣二区三区在线| 男女视频在线观看网站免费| 亚洲成色77777| 国产高清有码在线观看视频| 免费大片黄手机在线观看| 青青草视频在线视频观看| 18+在线观看网站| 国产av不卡久久| 男女那种视频在线观看| av免费在线看不卡| 天堂影院成人在线观看| 国产成人91sexporn| 免费黄网站久久成人精品| 五月伊人婷婷丁香| 中文字幕免费在线视频6| 日本色播在线视频| 嘟嘟电影网在线观看| 亚洲欧美精品专区久久| 成年免费大片在线观看| 亚洲精品,欧美精品| 亚洲精品成人av观看孕妇| 国产高潮美女av| 日本一二三区视频观看| 国产一级毛片七仙女欲春2| 亚洲精品国产av成人精品| 成人亚洲欧美一区二区av| 一二三四中文在线观看免费高清| 成年版毛片免费区| 男女视频在线观看网站免费| 国产高清不卡午夜福利| 亚洲精品国产av成人精品| 亚洲成人av在线免费| 国产免费视频播放在线视频 | 男人爽女人下面视频在线观看| 国产一级毛片七仙女欲春2| 高清欧美精品videossex| 国产av码专区亚洲av| 一区二区三区乱码不卡18| 看十八女毛片水多多多| 国产成人a∨麻豆精品| 伦理电影大哥的女人| 最近中文字幕高清免费大全6| 精品少妇黑人巨大在线播放| 日日摸夜夜添夜夜爱| 国产毛片a区久久久久| 免费观看无遮挡的男女| av福利片在线观看| 高清欧美精品videossex| 免费观看av网站的网址| 麻豆成人午夜福利视频| ponron亚洲| 熟女人妻精品中文字幕| 汤姆久久久久久久影院中文字幕 | 午夜福利网站1000一区二区三区| 国产成人aa在线观看| 天天躁夜夜躁狠狠久久av| 国产片特级美女逼逼视频| 一区二区三区高清视频在线| 国产中年淑女户外野战色| 男的添女的下面高潮视频| 亚洲国产色片| 中文字幕av成人在线电影| 少妇人妻精品综合一区二区| 国产精品福利在线免费观看| 亚洲av不卡在线观看| 男女下面进入的视频免费午夜| 99热这里只有精品一区| 国产精品一及| 免费人成在线观看视频色| 国产一区二区亚洲精品在线观看| 中国美白少妇内射xxxbb| 我要看日韩黄色一级片| 欧美人与善性xxx| 啦啦啦中文免费视频观看日本| 免费大片黄手机在线观看| 少妇猛男粗大的猛烈进出视频 | 色吧在线观看| 联通29元200g的流量卡| 中国国产av一级| 欧美+日韩+精品| 久久97久久精品| 岛国毛片在线播放| 一区二区三区乱码不卡18| 欧美三级亚洲精品| 最近2019中文字幕mv第一页| 日本与韩国留学比较| 久久精品久久久久久久性| 黄片无遮挡物在线观看| 久久久久久久大尺度免费视频| 精品国产三级普通话版| 国产高清三级在线| 国产精品日韩av在线免费观看| 80岁老熟妇乱子伦牲交| 欧美性猛交╳xxx乱大交人| 91狼人影院| 日韩成人av中文字幕在线观看| 国产探花极品一区二区| 午夜福利视频精品| 免费观看在线日韩| 久99久视频精品免费| 精品一区二区三区人妻视频| 99热6这里只有精品| 蜜臀久久99精品久久宅男| 成人二区视频| www.色视频.com| 在线观看人妻少妇| 国产一区二区亚洲精品在线观看| 麻豆成人av视频| 日韩av在线大香蕉| 免费观看在线日韩| 99热6这里只有精品| av播播在线观看一区| 亚洲av不卡在线观看| 色综合亚洲欧美另类图片| 国产成人a区在线观看| 久久久久久国产a免费观看| 久久亚洲国产成人精品v| 免费观看性生交大片5| .国产精品久久| 亚洲精品国产av成人精品| 中文天堂在线官网| 国产单亲对白刺激| 免费av毛片视频| 亚洲精品乱码久久久v下载方式| 精品久久久久久久久亚洲| 国产在线一区二区三区精| 国产精品人妻久久久影院| 成人午夜精彩视频在线观看| 国产黄片视频在线免费观看| 国产有黄有色有爽视频| 欧美xxxx性猛交bbbb| 国产真实伦视频高清在线观看| 女的被弄到高潮叫床怎么办| 亚洲av成人精品一二三区| 国产在视频线在精品| 国产av不卡久久| 日韩成人伦理影院| 性插视频无遮挡在线免费观看| 精品不卡国产一区二区三区| 久99久视频精品免费| 中文欧美无线码| 午夜精品国产一区二区电影 | 亚洲最大成人av| 内射极品少妇av片p| 好男人视频免费观看在线| 我的老师免费观看完整版| 三级国产精品片| 久久久久精品久久久久真实原创| 亚洲在线观看片| 亚洲欧洲日产国产| 看免费成人av毛片| 日本欧美国产在线视频| 午夜福利在线在线| 别揉我奶头 嗯啊视频| 中文精品一卡2卡3卡4更新| 少妇的逼水好多| 国精品久久久久久国模美| 你懂的网址亚洲精品在线观看| 久久久久精品性色| 亚洲精品成人久久久久久| av黄色大香蕉| 国产黄a三级三级三级人| 特级一级黄色大片| 春色校园在线视频观看| 汤姆久久久久久久影院中文字幕 | 国产午夜精品久久久久久一区二区三区| 欧美成人午夜免费资源| 麻豆国产97在线/欧美| av在线亚洲专区| 亚洲婷婷狠狠爱综合网| 国产乱人视频| 18禁动态无遮挡网站| 黑人高潮一二区| 久久亚洲国产成人精品v| 嫩草影院入口| 久久精品人妻少妇| 亚洲国产成人一精品久久久| 亚洲av免费在线观看| 久久亚洲国产成人精品v| 嫩草影院入口| 亚洲激情五月婷婷啪啪| 一级av片app| 日韩欧美三级三区| 免费av观看视频| 六月丁香七月| 男女啪啪激烈高潮av片| 高清毛片免费看| 国产精品三级大全| 免费无遮挡裸体视频| 男人和女人高潮做爰伦理| 蜜臀久久99精品久久宅男| 99久久人妻综合| 九色成人免费人妻av| 日本熟妇午夜| 成年人午夜在线观看视频 | 非洲黑人性xxxx精品又粗又长| 五月伊人婷婷丁香| 大又大粗又爽又黄少妇毛片口| 校园人妻丝袜中文字幕| 亚洲欧美一区二区三区黑人 | 亚洲一级一片aⅴ在线观看| 国产在线男女| 一个人观看的视频www高清免费观看| 纵有疾风起免费观看全集完整版 | 国产亚洲5aaaaa淫片| 九九爱精品视频在线观看| 色哟哟·www| 看十八女毛片水多多多| 日韩 亚洲 欧美在线| 婷婷色综合大香蕉| 啦啦啦韩国在线观看视频| 国产高清有码在线观看视频| 国产女主播在线喷水免费视频网站 | 三级国产精品欧美在线观看| 99久国产av精品| 天堂√8在线中文| 国内精品一区二区在线观看| 成人av在线播放网站| 久久精品久久久久久噜噜老黄| 成人一区二区视频在线观看| av在线播放精品| 国产高清不卡午夜福利| 精品欧美国产一区二区三| 国内少妇人妻偷人精品xxx网站| 午夜激情欧美在线| 亚洲熟女精品中文字幕| 别揉我奶头 嗯啊视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 97热精品久久久久久| 夜夜看夜夜爽夜夜摸| 97热精品久久久久久| 成年女人看的毛片在线观看| 国产精品一区www在线观看| 亚洲激情五月婷婷啪啪| 欧美丝袜亚洲另类| 国产黄频视频在线观看| 日本黄色片子视频| 亚洲成人中文字幕在线播放| 九九爱精品视频在线观看| 亚洲av成人av| 欧美+日韩+精品| 成人无遮挡网站| av天堂中文字幕网| 日本一二三区视频观看| 高清午夜精品一区二区三区| 色播亚洲综合网| 国产精品.久久久| 久久综合国产亚洲精品| 精品久久久久久久人妻蜜臀av| 一级二级三级毛片免费看| 啦啦啦韩国在线观看视频| 久久久成人免费电影| 中文字幕免费在线视频6| 国产成人免费观看mmmm| 欧美一级a爱片免费观看看| 久久精品综合一区二区三区| 日韩在线高清观看一区二区三区| 最近中文字幕高清免费大全6| 免费av不卡在线播放| 在线 av 中文字幕| 蜜臀久久99精品久久宅男| 中文字幕制服av| 美女黄网站色视频| 成人午夜精彩视频在线观看| 青青草视频在线视频观看| 亚洲色图av天堂| 国产精品熟女久久久久浪| 男女边摸边吃奶| 啦啦啦啦在线视频资源| 日韩精品有码人妻一区| 又黄又爽又刺激的免费视频.| 国产av不卡久久| 高清视频免费观看一区二区 | 少妇熟女aⅴ在线视频| 美女内射精品一级片tv| 国产成人精品久久久久久| 久久精品夜色国产| 亚洲精品成人久久久久久| a级一级毛片免费在线观看| 一区二区三区免费毛片| 少妇人妻一区二区三区视频| 亚洲三级黄色毛片| 一区二区三区免费毛片| 精品人妻视频免费看| 天堂av国产一区二区熟女人妻| 插阴视频在线观看视频| 亚洲精品成人久久久久久| 人人妻人人看人人澡| 99久国产av精品国产电影| 少妇被粗大猛烈的视频| 亚洲精华国产精华液的使用体验| 日本欧美国产在线视频| 日本wwww免费看| 特级一级黄色大片| 亚洲人与动物交配视频| 亚洲av免费在线观看| 国产黄片美女视频| 99热这里只有是精品在线观看| 高清av免费在线|