• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Iron-catalyzed hydroaminocarbonylation of alkynes:Selective and efficient synthesis of primary α,β-unsaturated amides

    2022-12-07 08:26:44ZijunHungJiTngXiongweiJingTinleXieMinminZhngDonghuiLnShofengPiZhengdeTnBingYiYuehuiLi
    Chinese Chemical Letters 2022年11期

    Zijun Hung, Ji Tng, Xiongwei Jing, Tinle Xie, Minmin Zhng, Donghui Ln,Shofeng Pi, Zhengde Tn, Bing Yi,?, Yuehui Li

    a Hunan Province Key Laboratory of Environmental Catalysis and Waste Rechemistry, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China

    b State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, China

    Keywords:Iron-catalyzed Alkynes Ammonium bicarbonate Aminocarbonylation Linear α,β-unsaturated amides

    ABSTRACT α,β-Unsaturated primary amides are important intermediates and building blocks in organic synthesis.Herein, we report a ligand-free iron-catalyzed hydroaminocarbonylation of alkynes using NH4HCO3 as the ammonia source, enabling the highly efficient and regioselective synthesis of linear α,β-unsaturated primary amides.Various aromatic and aliphatic alkynes are transformed into the desired linear α,βunsaturated primary amides in good to excellent yields.Further studies show that using NH4HCO3 as the ammonia source is key to obtain good yields and selectivity.The utility of this route is demonstrated with the synthesis of linear α,β-unsaturated amides including vanilloid receptor-1 antagonist TRPV-1.

    α,β-Unsaturated amides are important structural motifs ever present in wide range of natural products and materials science frameworks [1–8].For instance,α,β-unsaturated amides derivatives display biological activities applied in the treatment of psychological diseases and showed remarkable potential for the treatment of cancer (Fig.1) [9–11].Besides,α,β-unsaturated amides are versatile building blocks in organic synthesis [12–17].Synthetic methods forα,β-unsaturated amides preparation has attracted broad interest due to important applications in medicine and organic synthesis.The development of greener, low-cost, energyefficient and selective synthetic methods forα,β-unsaturated amides preparation has attracted broad interests.

    Fig.1 .Selective examples of bioactive linear α,β-unsaturated amides.

    Traditional synthetic methods for unsaturated amides are generally, based on nucleophilic substitution of amines with carboxylic acids derivatives and acyl chlorides or cyclization with amic acids in the presence of activating reagents (Scheme 1a) [18–23].Transition metal catalyzed hydroaminocarbonylation provides a high atom- and step-economy pathway for producing high value-added unsaturated amides [24–37].Reports on catalytic hydroaminocarbonylation of alkynes have been documented in literature by reacting primary and secondary amines for the preparation of the correspondingα,β-unsaturated amides with high chemo- and regionselectivity (Scheme 1b) [38–46].However, noble metals, costly ligands or additives were necessary to achieve reasonable yields and good regioselectivity [27,38,39,41-43].The development of more efficient carbonylation methods for the synthesis of unsaturated primary amides remains desirable.

    Solid ammonium salts are cheaper and easy-to-handle ammonia source widely applied in aminocarbonylation reactions to produce various amide compounds [47–56].Recently, we have developed the efficient iron-catalyzed aminocarbonylation of alkynes to produce succinimides with NH4HCO3[54].Huang and co-workers developed a palladium-catalyzed aminocarbonylation method for transforming alkenes with NH4Cl into the corresponding amides [55].Besides, Huanget al.reported a selective palladium-catalyzed hydroaminocarbonylation reaction between alkynes and NH4Cl to branchedα,β-unsaturated primary amides[56].Liu’s group reported a hydroaminocarbonylation reaction with alkynes and NH4HCO3to generate branchedα,β-unsaturated primary amides (Scheme 1c) [37].Nevertheless, developing non-noble metal-catalyzed hydroamin-ocarbonylation with NH4HCO3for the preparation linearα,β-unsaturated primary amides has not been achieved up to date.Herein, we report the first example of ligandfree iron-catalyzed hydroaminocarbonylation of alkynes to generate linearα,β-unsaturated primary amides using NH4HCO3as ammonia source (Scheme 1d).

    Scheme 1 .Synthetic strategy of α,β-unsaturated amides.

    Initially, phenylacetylene 1a was selected as the model substrate for this hydroaminocarbonylation reaction.A series of commercially available catalysts were examined with NH4HCO3used as ammonia source in the presence of CO.When iron salts such as FeCl3and FeCl2were used, no desiredα,β-unsaturated amide product 2a could be observed.To our delight, when Fe3(CO)12was used as catalyst the hydroaminocarbonylation reaction proceeded successfully and gave the desired cinnamamide 2a in 46% yield.The use of Fe2(CO)9instead of Fe3(CO)12as catalyst afforded the desired product in only 13% yield for 2a (Table 1, entries 1–4).In addition, other metal carbonyls were found inefficient for this transformation, with no desired product could be detected(Table S1 in Supporting information).Moreover, carrying out the reaction without Fe3(CO)12resulted in undetected product, while adding PPh3as ligand was ineffective for hydroaminocarbonylation reaction (Table 1, entries 5 and 6).We observed that reaction temperature and CO pressure played important role in this reaction.Cinnamamide 2a was prepared in 81% yield when the reaction was performed at 140°C under 30 bar CO (Table 1, entries 7–11).The yield was slightly decreased to 62% at 160°C (Table 1, entry 12).Increasing the amount of NH4HCO3to 5.0 mmol improved the yield significantly, and the desired product 2a was obtained in 91% yield(Table 1, entries 13 and 14).Further screening of other reaction parameters such as solvent and the catalyst loading did not improvethe reaction yield (Table 1, entry 15 and Table S2 in Supporting information).We also examined the effect of the ammonium salts and found (NH4)2CO3and HCOONH4proved to be effective as ammonia source.However, NH4Cl or NH4OAC were found inefficient for the hydroaminoca-rbonylation reaction (Table S3 in Supporting information).

    Table 1 Hydroaminocarbonylation of phenylacetylene.a

    With the optimized reaction conditions in hand, we explored the scope of alkyne substrates for the synthesis of linearα,βunsaturated primary amides (Scheme 2).Gratifyingly, a range of alkynes are suitable substrates to react with NH4HCO3and CO under the optimized reaction conditions.The desired linearα,βunsaturated primary amides 2a-2q were obtained in 46%?91%yields.The electronic properties of the substituents on the aromatic ring of the aromatic alkynes have weaker influence on the reactivity and selectivity.The results ofmeta- andparasubstituted aromatic alkynes showed insignificant electronic effects.And surprisingly, the reaction of sterically hindered 1-ethynyl-2-methoxybenzene (1b) provided the desired linearα,βunsaturated primary amides in good yield (2b, 88%).Moreover,aromatic alkynes bearing electron-withdrawing substituents such as fluoro- and chloro– groups have less influence on the reactivity(2c, 84%; 2d, 83%; 2g, 81%; 2k, 83%).Similarly, aromatic alkynes with strong electron withdrawing groups like trifluoromethyl and esters substitution afforded linearα,β-unsaturated primary amides in moderate yields (2l, 79%; 2m, 81%).To our delight, aliphatic alkynes were also transformed in moderate to good yields,e.g., 2n,2o and 2p.Trace amounts of succinimide was detected under the optimized reaction conditions.The method could be applied for the internal alkyne 1,2-diphenylethyne (1q) to give moderate yield(46%).

    To demonstrate the synthetic utility of this method, vanilloid receptor-1 antagonist TRPV-1 was prepared.3-(4-(tert–Butyl)phenyl)acrylamide 2j preparation proceeded smoothly at gram-scale and 1.68 g of 2j was obtained under the slightly modified reaction conditions in 83% yield (Scheme 3a).The subsequent coupling reaction of 3-(4-(tert–butyl)phenyl) acrylamide afforded vanilloid receptor-1 antagonist TRPV-1 4jr on a gram scale (Scheme 3b) [57].

    Scheme 2 .Substrate scope for hydroaminocarbonylation of alkynes using NH4HCO3.Reaction conditions: alkyne (1, 0.5 mmol), CO (30 bar), NH4HCO3(5.0 mmol), Fe3(CO)12 (0.015 mmol), THF (2.0 mL), 140°C, 18 h, isolated yield.a Yield was determined by GC using dodecane as an internal standard.

    Scheme 3 .Scale-up reaction.

    In order to better understand the mechanism of iron-catalyzed hydroaminocarbonylation of alkynes using NH4HCO3as the ammonia source, a series of experiments were performed (Scheme 3 and Fig.S5 in Supporting information).Firstly, hydroaminocarbonylation reaction in the absence of Fe3(CO)12of phenylacetylene 1a with NH4HCO3using CO was unable to provide the desired cinnamamide 2a (Scheme 4a).Furthermore, carrying out the reaction without CO resulted in undetected cinnamamide 2a (Scheme 4b).Cinnamamide 2a was detected when the reaction was performed with Fe3(CO)12serving as catalyst and CO source (Schemes 4c and d).Interestingly, cinnamamide 2a and succinimides 3a were detected when the reaction was performed with gaseous NH3(6 bar) serving as ammonia source instead of NH4HCO3under the optimized reaction conditions (Scheme 4e).Various solid ammonium salts used as ammonia source provided different results and showed clear influence on the reactivity (Table S3 in Supporting information).It was indicated that NH4HCO3promoted the formation [Fe]-H species responsible for the efficient hydroaminocarbonylation of alkynes, enabling the highly efficient and regioselective synthesis of linearα,β-unsaturated primary amides [26–28].We established that Fe(CO)5is formed from Fe3(CO)12reaction with NH4HCO3based onin situ13C NMR experiments using NH4HCO3and Fe3(CO)12[54].

    Scheme 4 .Control experiments.

    Based on the experimental results and recent experimental data on the hydroaminocarbonylation of alkynes and NH4HCO4[24-28,54-56,58-62], we propose a possible mechanism pathway as shown in Fig.2.Initially, the active mononuclear iron carbonyl Fe(CO)5was formedin situthrough interactions of Fe3(CO)12with NH4HCO3.Meanwhile, NH3and H2CO3is released throughin situdecomposition of NH4HCO3.Then, Fe(CO)5, NH4HCO3and CO generate the intermediate A.Intermediate A reacts with alkyne to produce intermediate B or B’.The steric hindrance of the terminal alkyne plays the major role for the formation of the kinetically favored terminal alkenyl-iron intermediate B.Subsequent CO insertion forms intermediate C and C’, which then affords the final carbonylation product D and D’with the presence of NH3released from NH4HCO3.Besides, the coordination of alkyne substrates and NH3with Fe center makes CO insertion and product D formation much more accessible, which is similarly observed in Beller’s work using organic amines as the substrates [26].

    Fig.2 .Proposed reaction mechanism.

    In summary, we have demonstrated the first example of ligandfree iron-catalyzed hydroaminocarbonylation of alkynes synthesis of linearα,β-unsaturated primary amides using NH4HCO3as the ammonia source.In the presence of NH4HCO3and nonnoble Fe3(CO)12serving as catalyst, a variety of alkynes, including aromatic alkynes, aliphatic alkynes, terminal alkynes, internal alkynes, were transformed into the desired linearα,β-unsaturated primary amides in good to excellent yields.The applicability of this methodology has been demonstrated by synthesis ofα,βunsaturated amides bio-active compound.Preliminary mechanistic studies reveal the activation model involving interactions of NH4HCO3with Fe3(CO)12.Further investigations are currently underway to apply the method to other reactions.

    Declaration of competing interest

    The authors declare no conflict of interest.

    Acknowledgments

    We are grateful for the financial supports from the National Natural Science Foundation of China (Nos.21772035, 22022204,22072167, 21202206) and Natural Science Foundation of Hunan Province (Nos.2021JJ40147).The authors would like to dedicate this work to Professor Matthias Beller (LIKAT) on the occasion of his 60thbirthday.

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2022.01.080.

    国产精品98久久久久久宅男小说| 黄片wwwwww| 在线免费观看不下载黄p国产 | 99国产极品粉嫩在线观看| 天堂网av新在线| 美女 人体艺术 gogo| 在线观看美女被高潮喷水网站| 国产三级在线视频| 国产乱人伦免费视频| 真实男女啪啪啪动态图| videossex国产| 久久婷婷人人爽人人干人人爱| 男女边吃奶边做爰视频| 日本一本二区三区精品| 在线观看午夜福利视频| 国产av不卡久久| 国产一区二区三区av在线 | 成人av一区二区三区在线看| netflix在线观看网站| 亚洲精品456在线播放app | 国产探花极品一区二区| 中文字幕免费在线视频6| 午夜精品在线福利| 九九热线精品视视频播放| 神马国产精品三级电影在线观看| 国产毛片a区久久久久| 免费观看精品视频网站| av黄色大香蕉| aaaaa片日本免费| 夜夜爽天天搞| 久久精品影院6| 国产免费av片在线观看野外av| 亚洲专区中文字幕在线| 国产伦在线观看视频一区| 成人美女网站在线观看视频| 91精品国产九色| 亚洲欧美清纯卡通| av在线天堂中文字幕| 亚洲熟妇中文字幕五十中出| 久久婷婷人人爽人人干人人爱| 日韩精品青青久久久久久| 国产白丝娇喘喷水9色精品| 久久久久久久久中文| 国产久久久一区二区三区| 女人被狂操c到高潮| 好男人在线观看高清免费视频| 亚洲国产精品成人综合色| 亚洲精品国产成人久久av| 搡女人真爽免费视频火全软件 | 久久久国产成人精品二区| 国产精品久久视频播放| 久久久久久国产a免费观看| 最新中文字幕久久久久| 12—13女人毛片做爰片一| 老熟妇乱子伦视频在线观看| 精品久久久久久久久久免费视频| 在线观看午夜福利视频| 国产精品日韩av在线免费观看| 亚洲 国产 在线| 婷婷亚洲欧美| 日韩欧美在线乱码| 久久国产精品人妻蜜桃| www.www免费av| 久久人人爽人人爽人人片va| 亚洲欧美日韩无卡精品| 亚洲电影在线观看av| 成人永久免费在线观看视频| 久久国产精品人妻蜜桃| 久久久久性生活片| 97热精品久久久久久| 亚洲国产精品sss在线观看| 老熟妇乱子伦视频在线观看| 欧美潮喷喷水| 亚洲国产精品久久男人天堂| 日本黄色片子视频| 在现免费观看毛片| 深爱激情五月婷婷| 久久精品影院6| 男女下面进入的视频免费午夜| 国产爱豆传媒在线观看| 变态另类成人亚洲欧美熟女| 身体一侧抽搐| 一进一出抽搐gif免费好疼| 99久久精品一区二区三区| 精品久久久久久久久久免费视频| 国产单亲对白刺激| 精品一区二区三区视频在线| 狠狠狠狠99中文字幕| 狂野欧美激情性xxxx在线观看| 国产成年人精品一区二区| 国产不卡一卡二| 亚洲精品一区av在线观看| 97碰自拍视频| 国产一级毛片七仙女欲春2| 亚洲av五月六月丁香网| 伦精品一区二区三区| 少妇的逼水好多| 联通29元200g的流量卡| 国产一区二区三区在线臀色熟女| 国产老妇女一区| 精品久久久久久久人妻蜜臀av| 老女人水多毛片| 日韩欧美国产在线观看| 国产精品久久电影中文字幕| 男人狂女人下面高潮的视频| 久久99热6这里只有精品| 久99久视频精品免费| 毛片女人毛片| 欧美成人a在线观看| 国产精品久久久久久av不卡| 两个人视频免费观看高清| 偷拍熟女少妇极品色| 免费电影在线观看免费观看| 精品一区二区三区视频在线观看免费| 欧洲精品卡2卡3卡4卡5卡区| 日韩 亚洲 欧美在线| 精品一区二区三区视频在线| 俺也久久电影网| 夜夜爽天天搞| 日本 欧美在线| 久久久久久久精品吃奶| 天堂动漫精品| 国产私拍福利视频在线观看| 国产午夜精品久久久久久一区二区三区 | 亚洲精品乱码久久久v下载方式| 欧美性猛交黑人性爽| 在线免费观看的www视频| 免费av毛片视频| 精华霜和精华液先用哪个| 国产男靠女视频免费网站| 国产男靠女视频免费网站| eeuss影院久久| 国产一区二区在线观看日韩| 最好的美女福利视频网| 久久久午夜欧美精品| 人人妻,人人澡人人爽秒播| 97碰自拍视频| 亚洲精品一区av在线观看| 国产午夜精品久久久久久一区二区三区 | 午夜老司机福利剧场| 国产成人影院久久av| 一本久久中文字幕| 久久久国产成人免费| 亚洲人与动物交配视频| 色视频www国产| 乱系列少妇在线播放| 免费在线观看成人毛片| 女人被狂操c到高潮| 亚洲avbb在线观看| 精品久久久久久久久久久久久| 级片在线观看| 淫妇啪啪啪对白视频| 中文字幕久久专区| 欧美最黄视频在线播放免费| 可以在线观看毛片的网站| 中文在线观看免费www的网站| 他把我摸到了高潮在线观看| 美女xxoo啪啪120秒动态图| 日韩中字成人| 韩国av一区二区三区四区| 女人被狂操c到高潮| 免费在线观看成人毛片| 高清毛片免费观看视频网站| 日韩高清综合在线| 亚洲最大成人手机在线| 春色校园在线视频观看| 亚洲欧美清纯卡通| 国产精华一区二区三区| 午夜福利在线观看吧| 国产亚洲av嫩草精品影院| 在线免费观看不下载黄p国产 | 久久久久久久久久成人| a级一级毛片免费在线观看| 色5月婷婷丁香| 免费av观看视频| 中文字幕高清在线视频| 韩国av一区二区三区四区| 久久久久久久久中文| 老司机深夜福利视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美激情久久久久久爽电影| 欧美激情久久久久久爽电影| 日本成人三级电影网站| 又紧又爽又黄一区二区| 国产精品一区二区性色av| 日韩一本色道免费dvd| 婷婷精品国产亚洲av在线| 身体一侧抽搐| 亚洲av成人av| 午夜福利在线观看吧| 成年女人毛片免费观看观看9| 国产免费男女视频| 成人特级黄色片久久久久久久| 国产高潮美女av| 午夜福利18| www.色视频.com| 久久精品综合一区二区三区| 亚洲aⅴ乱码一区二区在线播放| 亚洲五月天丁香| 中国美女看黄片| 韩国av在线不卡| 老司机福利观看| 成人综合一区亚洲| 伦精品一区二区三区| 亚洲国产高清在线一区二区三| 国产高清视频在线播放一区| 999久久久精品免费观看国产| 九九在线视频观看精品| 看十八女毛片水多多多| 亚洲av五月六月丁香网| 亚洲一区二区三区色噜噜| 欧美bdsm另类| 国产亚洲91精品色在线| 国产黄色小视频在线观看| 免费搜索国产男女视频| 国产欧美日韩一区二区精品| 蜜桃亚洲精品一区二区三区| 久久国产精品人妻蜜桃| 国产亚洲精品av在线| .国产精品久久| 国产高清视频在线播放一区| 精品久久久久久,| 亚洲av免费在线观看| 国内毛片毛片毛片毛片毛片| 一本一本综合久久| 亚洲男人的天堂狠狠| 中文字幕久久专区| 少妇熟女aⅴ在线视频| 又紧又爽又黄一区二区| 国产高潮美女av| 成人三级黄色视频| 亚洲美女视频黄频| 色哟哟·www| 听说在线观看完整版免费高清| 亚洲精华国产精华精| 国产精品美女特级片免费视频播放器| 国产精品伦人一区二区| av黄色大香蕉| 黄色欧美视频在线观看| 国产色婷婷99| 91在线观看av| 精品久久久噜噜| 熟妇人妻久久中文字幕3abv| 欧美最新免费一区二区三区| 欧美+亚洲+日韩+国产| 久久国产乱子免费精品| 男人舔女人下体高潮全视频| 亚洲一级一片aⅴ在线观看| 中文字幕熟女人妻在线| 欧美xxxx黑人xx丫x性爽| 狂野欧美白嫩少妇大欣赏| 国产中年淑女户外野战色| 免费黄网站久久成人精品| 久久久久久久久中文| 精品不卡国产一区二区三区| 精品人妻偷拍中文字幕| 婷婷色综合大香蕉| 欧美一区二区国产精品久久精品| 欧美黑人巨大hd| 亚洲人成伊人成综合网2020| 国产色婷婷99| 亚洲av二区三区四区| 99国产极品粉嫩在线观看| 国产男人的电影天堂91| а√天堂www在线а√下载| 乱系列少妇在线播放| 日韩欧美国产在线观看| 日韩,欧美,国产一区二区三区 | 亚洲人成网站在线播放欧美日韩| av中文乱码字幕在线| 亚洲熟妇熟女久久| 俺也久久电影网| 99热这里只有精品一区| 麻豆一二三区av精品| 熟女电影av网| 欧美bdsm另类| 听说在线观看完整版免费高清| 男插女下体视频免费在线播放| 99精品在免费线老司机午夜| 久久精品91蜜桃| 男人舔奶头视频| 高清日韩中文字幕在线| 亚洲熟妇中文字幕五十中出| 天天躁日日操中文字幕| 国产精品伦人一区二区| 91在线观看av| 国产精品综合久久久久久久免费| 美女黄网站色视频| 久久午夜福利片| 内地一区二区视频在线| 天天一区二区日本电影三级| 最好的美女福利视频网| 琪琪午夜伦伦电影理论片6080| 1024手机看黄色片| 十八禁国产超污无遮挡网站| 国产熟女欧美一区二区| 国产高清激情床上av| 最近视频中文字幕2019在线8| 午夜福利视频1000在线观看| 老司机午夜福利在线观看视频| 日韩一区二区视频免费看| 久久久成人免费电影| 亚洲国产欧美人成| 午夜免费激情av| 欧美成人免费av一区二区三区| 午夜免费男女啪啪视频观看 | 白带黄色成豆腐渣| 国产精品福利在线免费观看| 精品久久国产蜜桃| 高清毛片免费观看视频网站| 日韩欧美在线二视频| 少妇熟女aⅴ在线视频| 欧美日本亚洲视频在线播放| 亚洲自偷自拍三级| 男女之事视频高清在线观看| 国产伦人伦偷精品视频| 一本一本综合久久| 在现免费观看毛片| 国产aⅴ精品一区二区三区波| 尾随美女入室| 久久久久久九九精品二区国产| 亚州av有码| 精品久久久久久久末码| 国产精品久久久久久久久免| 免费观看精品视频网站| 全区人妻精品视频| 99久久精品热视频| 69av精品久久久久久| 91麻豆av在线| 特级一级黄色大片| 日本与韩国留学比较| 偷拍熟女少妇极品色| 久久久久性生活片| 在线国产一区二区在线| 日韩欧美 国产精品| 九色成人免费人妻av| 久久久国产成人免费| 国产av麻豆久久久久久久| 12—13女人毛片做爰片一| 亚洲精品色激情综合| 99久久精品国产国产毛片| 国内久久婷婷六月综合欲色啪| 国产白丝娇喘喷水9色精品| 欧美bdsm另类| 丝袜美腿在线中文| 亚洲avbb在线观看| 免费无遮挡裸体视频| 久久精品夜夜夜夜夜久久蜜豆| 日日干狠狠操夜夜爽| 成年女人毛片免费观看观看9| 国产成人一区二区在线| 亚洲精品在线观看二区| 国产一区二区三区在线臀色熟女| 午夜激情欧美在线| 久久久久久久久中文| 男女啪啪激烈高潮av片| 国产精品日韩av在线免费观看| 乱系列少妇在线播放| 色综合婷婷激情| av中文乱码字幕在线| 美女xxoo啪啪120秒动态图| 色视频www国产| 国产探花极品一区二区| 3wmmmm亚洲av在线观看| 搡老妇女老女人老熟妇| 女的被弄到高潮叫床怎么办 | 精品久久国产蜜桃| 欧美xxxx性猛交bbbb| 日韩在线高清观看一区二区三区 | 欧美精品国产亚洲| 麻豆国产av国片精品| 波多野结衣巨乳人妻| 日韩一本色道免费dvd| 亚洲狠狠婷婷综合久久图片| 三级毛片av免费| 91狼人影院| 一级a爱片免费观看的视频| 亚洲av第一区精品v没综合| 国产精品久久电影中文字幕| 国产高清不卡午夜福利| 美女黄网站色视频| 少妇猛男粗大的猛烈进出视频 | 直男gayav资源| 一级黄色大片毛片| 97超视频在线观看视频| 午夜爱爱视频在线播放| 尾随美女入室| 男女下面进入的视频免费午夜| 99riav亚洲国产免费| 淫妇啪啪啪对白视频| 久久热精品热| 我要搜黄色片| 成熟少妇高潮喷水视频| 麻豆成人av在线观看| 国产精品一及| 欧美xxxx性猛交bbbb| 国产探花极品一区二区| 国产免费av片在线观看野外av| 18禁裸乳无遮挡免费网站照片| 黄色欧美视频在线观看| 日韩精品青青久久久久久| 欧美性感艳星| 亚洲天堂国产精品一区在线| 亚洲乱码一区二区免费版| 观看美女的网站| 亚洲美女搞黄在线观看 | 又紧又爽又黄一区二区| 亚洲精品色激情综合| 欧美xxxx性猛交bbbb| 亚洲国产日韩欧美精品在线观看| 亚洲国产精品sss在线观看| 最近最新免费中文字幕在线| 黄色欧美视频在线观看| 亚洲精品一区av在线观看| 日韩av在线大香蕉| 天堂网av新在线| 欧美日本亚洲视频在线播放| 亚洲国产精品成人综合色| 久久人妻av系列| 欧美+亚洲+日韩+国产| 狠狠狠狠99中文字幕| 久久人妻av系列| 国产精品综合久久久久久久免费| 美女xxoo啪啪120秒动态图| 亚洲美女搞黄在线观看 | 变态另类成人亚洲欧美熟女| 长腿黑丝高跟| 精品久久久久久久久久免费视频| 又粗又爽又猛毛片免费看| 色播亚洲综合网| 亚洲av成人精品一区久久| 久久久午夜欧美精品| 夜夜爽天天搞| av专区在线播放| 日本色播在线视频| 国内精品宾馆在线| 搡老熟女国产l中国老女人| 丰满的人妻完整版| 亚洲人与动物交配视频| 国产精品乱码一区二三区的特点| 最新中文字幕久久久久| 给我免费播放毛片高清在线观看| 韩国av一区二区三区四区| 久久精品国产亚洲av香蕉五月| av女优亚洲男人天堂| 欧美激情国产日韩精品一区| 香蕉av资源在线| 国产中年淑女户外野战色| 伦理电影大哥的女人| 亚洲精品色激情综合| 久久天躁狠狠躁夜夜2o2o| 久久久久性生活片| 精品99又大又爽又粗少妇毛片 | av在线亚洲专区| 亚洲成人免费电影在线观看| 精品久久久久久久人妻蜜臀av| 22中文网久久字幕| 噜噜噜噜噜久久久久久91| 女的被弄到高潮叫床怎么办 | 午夜亚洲福利在线播放| 观看免费一级毛片| 亚洲真实伦在线观看| 嫩草影院入口| 亚洲中文日韩欧美视频| 久久婷婷人人爽人人干人人爱| 亚洲成人久久爱视频| 日韩,欧美,国产一区二区三区 | 两性午夜刺激爽爽歪歪视频在线观看| 午夜免费男女啪啪视频观看 | 黄片wwwwww| 亚洲国产色片| 亚洲欧美日韩东京热| 亚洲av日韩精品久久久久久密| 日韩欧美在线二视频| 国产三级中文精品| 午夜老司机福利剧场| 日韩国内少妇激情av| 久久人人爽人人爽人人片va| 亚洲avbb在线观看| 此物有八面人人有两片| 亚洲黑人精品在线| 国产精品野战在线观看| 搡女人真爽免费视频火全软件 | АⅤ资源中文在线天堂| 干丝袜人妻中文字幕| 亚洲一区二区三区色噜噜| 亚洲av熟女| 国产精品野战在线观看| 欧美bdsm另类| 国产精品美女特级片免费视频播放器| 亚洲av五月六月丁香网| 九色成人免费人妻av| 别揉我奶头 嗯啊视频| 日日啪夜夜撸| a在线观看视频网站| 国产亚洲精品综合一区在线观看| 亚洲av.av天堂| 又爽又黄无遮挡网站| 亚洲一区二区三区色噜噜| av视频在线观看入口| 国产在线男女| 免费不卡的大黄色大毛片视频在线观看 | 又黄又爽又刺激的免费视频.| av在线观看视频网站免费| 精品欧美国产一区二区三| 99久久九九国产精品国产免费| 欧美一区二区国产精品久久精品| 级片在线观看| 美女免费视频网站| 久久久久性生活片| 人妻夜夜爽99麻豆av| 99久久无色码亚洲精品果冻| 色5月婷婷丁香| 久久精品国产清高在天天线| 婷婷丁香在线五月| 亚洲精品在线观看二区| 久99久视频精品免费| 免费观看在线日韩| 少妇猛男粗大的猛烈进出视频 | 亚洲精品一卡2卡三卡4卡5卡| or卡值多少钱| 久久久精品大字幕| 亚洲自拍偷在线| 一进一出抽搐动态| 亚洲中文字幕一区二区三区有码在线看| 一区二区三区四区激情视频 | 综合色av麻豆| 淫妇啪啪啪对白视频| 精品一区二区免费观看| 国产中年淑女户外野战色| 亚洲第一区二区三区不卡| 久久午夜福利片| 国产免费男女视频| 欧美性猛交╳xxx乱大交人| 欧美最黄视频在线播放免费| 男人舔女人下体高潮全视频| 色视频www国产| 此物有八面人人有两片| av女优亚洲男人天堂| 欧美三级亚洲精品| 少妇裸体淫交视频免费看高清| 国产欧美日韩精品一区二区| 亚洲av免费在线观看| 老师上课跳d突然被开到最大视频| www日本黄色视频网| 日韩强制内射视频| 又黄又爽又刺激的免费视频.| 热99在线观看视频| 蜜桃亚洲精品一区二区三区| 自拍偷自拍亚洲精品老妇| 18禁黄网站禁片午夜丰满| 国产高潮美女av| 国产亚洲av嫩草精品影院| 三级男女做爰猛烈吃奶摸视频| 最近中文字幕高清免费大全6 | 老熟妇仑乱视频hdxx| 一本一本综合久久| 亚洲人成网站在线播放欧美日韩| 久久亚洲真实| 成年版毛片免费区| 丝袜美腿在线中文| 又黄又爽又免费观看的视频| 日本a在线网址| 欧美激情久久久久久爽电影| а√天堂www在线а√下载| 国产伦在线观看视频一区| 最近视频中文字幕2019在线8| 亚洲中文日韩欧美视频| 欧美性猛交黑人性爽| 色综合婷婷激情| 久久久精品欧美日韩精品| 在线观看舔阴道视频| 黄色视频,在线免费观看| 韩国av一区二区三区四区| 听说在线观看完整版免费高清| 亚洲成av人片在线播放无| 黄色视频,在线免费观看| 亚洲成av人片在线播放无| 国产精品精品国产色婷婷| 欧美+日韩+精品| 国产黄色小视频在线观看| 亚洲最大成人中文| 女人十人毛片免费观看3o分钟| 欧美不卡视频在线免费观看| 欧美黑人巨大hd| 在线a可以看的网站| 国模一区二区三区四区视频| 国产亚洲精品久久久久久毛片| 国产成人影院久久av| 国产一级毛片七仙女欲春2| 最近在线观看免费完整版| 两个人的视频大全免费| 国产人妻一区二区三区在| 成人国产一区最新在线观看| 国产视频内射| 美女免费视频网站| 一卡2卡三卡四卡精品乱码亚洲| 最新中文字幕久久久久| 日本三级黄在线观看| 免费电影在线观看免费观看| 黄色欧美视频在线观看| 色哟哟·www| 在线播放无遮挡| 嫩草影院新地址| 亚洲经典国产精华液单| 一本久久中文字幕| 国产高清视频在线播放一区| 无人区码免费观看不卡| 久久欧美精品欧美久久欧美| 又爽又黄无遮挡网站| 午夜福利欧美成人| 亚洲久久久久久中文字幕| 国产精品,欧美在线| 欧美最黄视频在线播放免费| 琪琪午夜伦伦电影理论片6080|