• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dual modulation of morphology and electronic structures of VN@C electrocatalyst by W doping for boosting hydrogen evolution reaction

    2022-12-07 08:26:32DnyngHeLiyunCoLinglingFengShuinnLiYongqingFengGuodongLiYifeiZhngJinhnLiJinfengHung
    Chinese Chemical Letters 2022年11期

    Dnyng He, Liyun Co,?, Lingling Feng,?, Shuinn Li, Yongqing Feng,Guodong Li, Yifei Zhng, Jinhn Li, Jinfeng Hung,?

    a School of Materials Science & Engineering, International S&T Cooperation Foundation of Shaanxi Province, Xi’an Key Laboratory of Green Manufacture of Ceramic Materials, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Shaanxi 710021, China

    b State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China

    Keywords:Tungsten doping Vanadium nitride Graphitic carbon Electronic structure Hydrogen evolution

    ABSTRACT Developing high-efficiency and robust durability electrocatalyst for hydrogen evolution reaction (HER) in water electrolysis functions as a crucial role for the construction of green hydrogen economy, herein,ultrafine W-doped vanadium nitride nanoparticles anchored on N-doped graphitic carbon framework(WVN@NGC) are synthesized through a one-step simple pyrolysis protocol.Owing to the enlarged catalytically active sites, enhanced electrical conductivity and optimized electronic structure, the resultant VN/WN@NGC delivered the prominent HER performance with overpotentials of 143 mV and 158 mV at 10 mA/cm2 in acid and alkaline media, respectively, accompanied by the long-term stability for at least 50 h.This work highlights a novel strategy for a metal-triggered modulation of nitride-based HER electrocatalyst for sustainable energy conversion device.

    With the over-consumption of fossil fuels and ever-rising CO2emissions, bettering the energy structures to fulfill the carbon neutrality before 2060 has become an irresistible trendency and a global challenge [1–3].Renewable energy (e.g., solar, wind, hydropower), regarded as an alternative energy source, is severely hindered by its inherent intermittency, volatility and randomness, while hydrogen (H2) as an ecofriendly secondary energy carrier can be conveniently transferred into electricity and heat with high-efficiency and multiple pathways [4–6].To date, electrocatalytic water splitting can be functioned as a far more effi-cient and sustainable strategy to obtain the desired H2.Obviously,platinum (Pt)-based materials present brilliant in catalyzing hydrogen evolution reaction (HER), whereas soaring cost, scarce reserves, environment-hagardous and unsatisfactory stability significantly hamper the widespread commercialization [7,8].Accordingly, a great deal of endeavor has been devoted to seeking the Pt-free electrocatalysts with highly efficiency and robust durability for HER.

    Nowadays, transition metal nitrides (TMNs) have an overwhelming superiority in candidates for electrocatalytic materials encompassing of Pt-like properties, favorable electrochemical stability, high corrosion resistance, melting point and conductivity[9–12].Notably, TMNs are regarded as interstitial compounds, in which nitrogen atoms are intercalated into the transition metal lattice to modulate the d-band state density and redistribute the charge density, thus forming a particular structure to boost electrochemical performance [13,14].Among them, vanadium nitride(VN) is known as an excellent catalyst owing to unique physical and chemical properties whereas its insufficient d electron density still renders it somewhat difficult to production of adsorbed hydrogen (Hads), resulting in the undesirable electrocatalytic HER performance [15].To further enhance the electrochemical properties of catalyst, the incorporation of heteroatoms with highly dband density of state was demonstrated to an effective approach to promote its intrinsic activity, which could optimize the electronic configuration to facilitate the water dissociation and adsorption processes [16–19].Tungsten (W), featuring with relatively substantial resources, flexible valence state and sufficient d electron density, can be served as fascinating dopant to tailor the morphology and electronic state of original compound, thereby favoring the electrochemical reactivity and stability of catalyst [20–22].In response to this, incorporating W atom into VN material is undoubtedly a promising tactic to modulate the electronic structure for improving the electrocatalytic HER performance, but the correlative research and mechanism involved in hydrogen production remained ambiguous and challenging.Moreover, nitrogen (N)-doped graphitic carbon materials are sharing the spotlight as electrocatalysts for HER due to their well-defined structure with large specific surface area, where the graphitic carbon plays an essential role in regulating the electronic and geometric characteristics of carbon substrate [23,24].Meaningfully, confining TMNs within N-doped graphitic carbon materials enable to fully expose catalytic active sites, smoothen electron transport, and strengthen structural stability, leading to the enhancement of HER properties of catalysts.

    In this work, we hereby design a novel W-doped vanadium nitride anchored on N-doped graphitic carbon framework(WVN@NGC) electrocatalystviaa facile one-step calcination protocol.Impressively, the WVN required a quite low overpotential of 143 mV and 158 mV at a current density of 10 mA/cm2in 0.5 mol/L H2SO4and 1.0 mol/L KOH media respectively, and sustained long-term durability for over 50 h in continuous operation.This intriguing work represented a strategy for constructing groups of outstanding noble-metal-free nitrides electrocatalysts by incorporating metal atom in water electrolysis for hydrogen production.

    As schematically depicted in Fig.1a, a novel W doped VN nanoparticles anchored on graphitic carbon framework was prepared by simple pyrolysis in Ar atmosphere (details in experimental section in Supporting information).The structural information of as-synthesized samples was estimated by X-ray diffraction(XRD) analysis.Fig.1b presented the diffraction patterns of VN@NC and WVN@NGC.All the characteristic peaks at 37.6°, 43.7°, 63.5°and 76.2° that assigned to (111), (200), (220) and (311) planes of cubic VN (JCPDS No.35–0768) were observed in as-prepared catalysts, affirming the purity and successful preparation of the desired VN phase.Note that, the patterns of WVN@NGC-900 underwent a slightly positive deviation in comparison with VN@NC-900, which indicated W atom was incorporated into the lattice of VN material.Besides, the phase compositions of contrast samples with different W contents and pyrolysis temperatures were depicted in Figs.S1 and S2 (Supporting information).Notably, when melamine is used as nitrogen source, V2O3(PDF #34–0178) impurity still exists in the prepared sample, making it impossible to produce pure VN.Therefore, pure VN was synthesized successfully and employed CO(NH2)2as nitrogen source for comparison, which demonstrated that W-doping was beneficial to the formation of VN in the WVN@NGC-900 synthesis process (Fig.S3 in Supporting information).Furthermore, Raman spectra of as-synthesized catalysts were employed to evaluate the carbon structure feature (Fig.1c).The WVN@NGC-900 contained two visible peaks positioned at 1349 cm?1and 1596 cm?1, which attributed to D band and G band[25], representing the structural disorder and the degree of sp2hybridization respectively, accompanying with the intensity ratio value (ID/IG) of 0.86.Evidently, the high graphitization endowed WVN@NGC-900 with enhanced conductivity, thereby accelerating the electron transfer rate and leading to the boost of HER kinetics during the electrocatalytic process.

    Fig.1 .(a) Schematic representation of WVN@NGC-900 synthesis.(b) XRD patterns.(c) Raman spectra of VN@NC-900 and WVN@NGC-900 electrocatalysts.

    In this work, the doped tungsten served a vital role in the formation of W-doped vanadium nitride anchored on N-doped graphitic carbon framework (WVN@NGC) during the pyrolysis process.It is worth noting that W can not react with N, as confirmed in Fig.1b, and the W-doping acts as the blocking agent to inhibit the aggregation of VN particles, downsizing and dispersing them in the carbon layer.Meanwhile, the W-doping facilitates the crystallization of carbon as the support (see Raman spectra of VN@NC-900 and WVN@NGC-900 in Fig.1c), which in turns quickly wrap VN nanoparticle, resulting in ultrafine and highly dispersed VN nanoparticles confined into the carbon layer.

    To investigate the technological conditions influences on modulating the final morphology and structure of as-fabricated samples,the scanning electron microscope (SEM) and the transmission electron microscope (TEM) observations were shown in Fig.2.As revealed in Fig.S4 (Supporting information), the WVN@NGC-900 was composed of uniformly rich ultrathin N doped carbon layer with high dispersivity.In contrast, the FESEM distinctly indicated that VN@NC-900 was comprised of aggregated lumpy particles (Figs.S5 and S6 in Supporting information).Evidently, Fig.2a demonstrated that a large number of nanoparticles in WVN@NGC-900 were located homogeneously in wrinkled N doped carbon nanosheets.The high-resolution TEM (HRTEM) image of WVN@NGC-900 exhibited interplanar spacings with 0.21 nm and 0.24 nm (Figs.2b and c),belonging to the (200) and (111) crystallographic planes respectively of cubic VN, which was in well accordance with the XRD result.It was noteworthy that in the resultant WVN@NGC-900 with crystalline ultrafine nanoparticles in a size of approximately 2 nm, confining evenly in amorphous N-doped graphitic carbon.For comparison, the morphologies of WVN@NGC with different W amounts and calcination temperature were also studied, as displayed in Figs.S7-S10 (Supporting information).It was found that the VN nanoparticles in WVN@NGC-900 had the similar size of 2–3 nm, which is smaller than that of WVN@NGC-800 (3–5 nm) and WVN@NGC-1000 (4–5 nm), respectively.Moreover, the X-ray energy dispersive spectroscopy (EDS) mappings elucidated the uniform distribution of C, V, N and W elements in the WVN@NGC-900 catalyst (Figs.2d-h).

    Fig.2 .Morphology characterization of WVN@NGC-900.(a) TEM image, (b, c)HRTEM image, (d) scanning transmission electron microscopy (STEM) image of WVN@NGC-900.(e-h) Energy dispersive spectrometry (EDS) mappings of N, V, C and W elements for WVN@NGC-900.

    To get a deeper understanding of electronic interplay derived from chemical components and bonding configuration, X-ray photoelectron spectroscopy (XPS) of as-prepared catalysts was performed in Fig.3.The XPS spectra of WVN@NGC samples elucidated the presence of C, N, V and W elements, in line with the EDS analysis results.The high-resolution XPS spectra of C 1s in WVN@NGC samples can be resolved into four obvious peaks of C?W (283.0 eV), C?C (284.6 eV), C?N (285.2 eV) and C?O (287.6 eV) bonds(Fig.3a), which revealed the successful doping of W atom in carbon support [26].Fig.3b displayed that the four well-fitted peaks of N element focusing on 396.3 eV, 397.0 eV, 398.7 eV and 400.7 eV assigned to metal-N, pyridinic-N, pyrrolic-N and graphitic-N in WVN@NGC-900, respectively [27,28].In terms of N 1s, the corresponding peaks in WVN@NGC-900 exhibited negative shift in comparison with VN@NC-900, indicating N atom functioned as electron acceptor influenced by W doping.In addition, different types of nitrogen content were demonstrated in Table S1 (Supporting information), in which the atomic proportion of graphitic N in WVN@NGC-900 (46.68%) was much higher than VN@NC-900(6.45%), suggesting the W incorporation helped speed up electrons transfer, further boosting kinetics of WVN@NGC-900 in electrochemical process.In the V 2p spectra of WVN@NGC-900 (Fig.3c),the peaks centered at 513.8 eV, 516.0 eV and 517.3 eV were allocated to V?N, V?O?N and V?O respectively, along with three shakeup satellite peaks at 521.40 eV, 523.96 eV and 525.28 eV,which shifted towards lower binding energy relative to VN@NC-900 as a whole [29,30].As depicted in Fig.3d, the three pair of deconvoluted peaks of W 4f can be ascribed to W ?C (32.3 eV, 34.3 eV), W?N (33.0 eV, 35.5 eV) and W?O (37.7 eV, 40.1 eV) in WVN@NGC-900 respectively [31,32].In view of the abovementioned results, W served as an electron donator to transfer electrons to electron acceptors of N and V sites, effectively modulating the electronic structure in WVN@NGC-900.In order to elaborate electronic interaction of WVN@NGC, the atomic orbitals of W?N?V model were adopted to analyze in Fig.3e.Admittedly, the electron configuration of W and V atoms are 3d34s2and 5d46s2respectively, which suggests the higher d electron density of W atom than V atom.Nevertheless, VN sample possessing of insufficient d electron density extremely impeded the formation of adsorbed hydrogen (Hads) on the surface of VN electrode.Accordingly, the incorporation of W atom featuring with sufficient d electron density can provide more electrons to VN and compensate the intrinsic deficiency of the VN, thus modulating the electronic configuration of VN, boosting the Hadsproduction and H2release, and further optimizing the hydrogen binding energy to conform the Sabatier principles [33,34].Given above this, the incorporation of W atom could efficiently regulate the charge/electron redistribution and optimize the electronic structure in WVN@NGC catalyst, thus enhancing their electrocatalytic HER performance.

    Fig.3 .XPS spectra of VN@NC-900 and WVN@NGC-900.(a) C 1s; (b) N 1s; (c) V 2p; (d) W 4f.(e) Schematic representation of the electronic interaction among W,N and V of WVN@NGC-900.

    The electrocatalytic HER performance of as-fabricated VN@NC,WVN@NGC, bare GCE and 25% Pt/C samples was explored in acid and alkaline electrolytes employing conventional three-electrode configuration.To evaluate the influences of various related factors on electrochemical properties, the amounts of tungsten sources and the pyrolysis temperatures as key indicators were to analyze the catalytic activity in 0.5 mol/L H2SO4and 1.0 mol/L KOH media respectively (Figs.S11 and S12 in Supporting information).Figs.4a and e displayed the linear sweep voltammetry (LSV) curves of all the samples.Notably, WVN@NGC-900 required only the overpotentials of 143 mV and 158 mV to achieve a current density of 10 mA/cm2in 0.5 mol/L H2SO4and 1.0 mol/L KOH media, respectively, outperforming the corresponding VN@NC-900 (361 mV)and VN@NC-900 (460 mV).The experimental results demonstrated that the incorporation of W into VN@NC could greatly enhance the electrocatalytic HER activity.In addition, the electrocatalytic HER performance over the resultant WVN@NGC-900 was better than that of the most of VN-based materials, as shown in Table S2(Supporting information).Furthermore, the linear portion of Tafel slope derived from LSV curves was carried out to assess the behavior of reaction kinetics for as-prepared catalysts, as demonstrated in Figs.4b and f.The WVN@NGC-900 displayed smaller numerical value (acid medium: 84 mV/dec, alkaline medium: 50 mV/dec) of Tafel slope compared with VN@NC-900 (acid medium:410 mV/dec, alkaline medium: 188 mV/dec), revealing the Volmer-Heyrovsky mechanism was regarded as the predominant step of WVN@NGC-900 sample [35].To further analyze HER kinetics of synthetic samples during electrochemical process, the electrochemical impedance spectroscopy (EIS) test was performed in Figs.4c and g.The charge transfer resistance (Rct) for WVN@NGC-900 was lower than that of VN@NC-900 in both acid and alkaline solutions, which implied W dopant was quite advantageous to expedite electron transmission and favor HER kinetics.Furthermore, the equivalent circuit diagram and corresponding resistance were illustrated in the inset of Figs.4c and g and Tables S3, S4 (Supporting information).By ascertaining the prominent HER electrocatalytic activity of WVN@NGC-900 ultrafine nanostructure, the doublelayer capacitance (Cdl) of as-fabricated catalysts was to calculated to estimate the electrochemically active area (ECSA).As we all know, the ECSA was proportionate toCdlvalue, namely the half of slope for as-synthesized catalysts, acquired from cyclic voltammetry (CV) at different scanning rates (Figs.S13 and S14 in Supporting information).As expected, theCdlvalues of WVN@NGC-900 (pH 0:31 mF/cm2, pH 14: 143 mF/cm2) was larger than that of VN@NC-900 (pH 0: 16 mF/cm2, pH 14: 63 mF/cm2), which indicated the largest catalytically active sites of WVN@NGC-900 that boosting the electrocatalytic activity toward HER.To evaluate the durability of WVN@NGC-900, the time-dependent curves were measured, as shown in Figs.4d and h.Evidently, the WVN@NGC-900 could sustain robust electrocatalytic hydrogen evolution with negligible decay for 50 h consecutive operation in both acid and alkaline electrolytes, confirming the superior durability in HER electrochemical process.After 50 h long-termi-tmeasurement in both media,the microstructure and components of WVN@NGC-900 electrocatalyst maintained basically intact, certifying the excellent structural robustness throughout the electrochemical test in both 0.5 mol/L H2SO4and 1.0 mol/L KOH conditions (Figs.S15-S18 in Supporting information).

    Fig.4 .LSV polarization curves of WVN@NGC-900 and the control samples in (a) 0.5 mol/L H2SO4 and (e) 1.0 mol/L KOH solutions; the corresponding Tafel plots in (b) 0.5 mol/L H2SO4 and (f) 1.0 mol/L KOH solutions.Nyquist plots of VN@NC-900 and WVN@NGC-900 in (c) 0.5 mol/L H2SO4 and (g) 1.0 mol/L KOH solutions.Chronoamperometry(i-t) curve of WVN@NGC-900 in (d) 0.5 mol/L H2SO4 and (h) 1.0 mol/L KOH solutions.

    In summary, we successfully constructed the W-doped vanadium nitride anchored on graphitic carbon framework(WVN@NGC)viafacile one-step pyrolysis approach.Notably, the WVN@NGC catalyst showed fantastic electrocatalytic HER performance in 0.5 mol/L H2SO4and 1.0 mol/L KOH media.Such results were primarily ascribed to the following three aspects:i) Highly dispersed ultrafine nanostructures exposed abundant catalytic active sites for accelerating the penetration of electrolyte and releasing H2produced on the electrocatalyst surface;ii) the upgraded electrical conductivity of graphitic carbon in WVN@NGC facilitated the electron transport and charge transfer during HER process; iii) the incorporation of W atom modulating the electronic configuration of WVN@NGC, facilitating the rapid adsorption/desorption of HER intermediates.This work affords a rational strategy to design massive highly-effective and robust carbon-based electrocatalysts by metal doping toward HER in future energy conversion devices.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by National Natural Science Foundation of China (Nos.22179074, 52073166, 52072226), Xi′an Key Laboratory of Green Manufacture of Ceramic Materials Foundation (No.2019220214SYS017CG039), Key Program for International S&T Cooperation Projects of Shaanxi Province (Nos.2020KW-038, 2020GHJD-04), Science and Technology Program of Xi’an,China (No.2020KJRC0009), Scientific Research Program Funded by Shaanxi Provincial Education Department (No.20JY001), Science and Technology Resource Sharing Platform of Shaanxi Province(No.2020PT-022), Science and Technology Plan of Weiyang District, Xi’an (No.202009), Fund of State Key Laboratory of Inorganic Synthesis and Preparative Chemistry (No.2021–14) and Open Project of Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education (No.KFKT2020-06).

    Supplementary materials

    Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.cclet.2022.01.006.

    国产主播在线观看一区二区| 亚洲性夜色夜夜综合| 国产精品电影一区二区三区 | 女警被强在线播放| а√天堂www在线а√下载 | 在线观看免费高清a一片| 国产99久久九九免费精品| 精品少妇久久久久久888优播| av一本久久久久| 多毛熟女@视频| 人妻久久中文字幕网| 校园春色视频在线观看| 久久久国产一区二区| 亚洲第一欧美日韩一区二区三区| 日韩欧美在线二视频 | 黄片小视频在线播放| 久久中文字幕一级| 69av精品久久久久久| 夜夜爽天天搞| aaaaa片日本免费| 免费女性裸体啪啪无遮挡网站| 一区二区三区国产精品乱码| 午夜久久久在线观看| 精品国产一区二区三区久久久樱花| 久久天堂一区二区三区四区| 国产一区在线观看成人免费| 一区福利在线观看| 国产一区在线观看成人免费| 精品国产一区二区三区四区第35| 精品久久久久久,| 亚洲第一av免费看| 国产高清视频在线播放一区| 精品电影一区二区在线| 久久婷婷成人综合色麻豆| 国产精品综合久久久久久久免费 | 露出奶头的视频| 久久人妻福利社区极品人妻图片| 亚洲av日韩在线播放| 久久人妻熟女aⅴ| 黄片大片在线免费观看| 精品熟女少妇八av免费久了| 久久精品亚洲av国产电影网| 午夜成年电影在线免费观看| 最新美女视频免费是黄的| 91老司机精品| 色婷婷久久久亚洲欧美| 亚洲专区国产一区二区| 精品一区二区三区视频在线观看免费 | 一级a爱视频在线免费观看| 午夜福利影视在线免费观看| 亚洲成人国产一区在线观看| 丝袜美腿诱惑在线| 国产精品秋霞免费鲁丝片| 50天的宝宝边吃奶边哭怎么回事| 变态另类成人亚洲欧美熟女 | ponron亚洲| 一进一出好大好爽视频| 亚洲人成电影观看| 最新美女视频免费是黄的| 欧美不卡视频在线免费观看 | 精品一品国产午夜福利视频| 午夜亚洲福利在线播放| 桃红色精品国产亚洲av| 十分钟在线观看高清视频www| 亚洲色图综合在线观看| 91字幕亚洲| 久久久久精品人妻al黑| 久久香蕉激情| 9191精品国产免费久久| 悠悠久久av| 国产免费av片在线观看野外av| 亚洲av欧美aⅴ国产| 欧美中文综合在线视频| 一二三四在线观看免费中文在| 午夜福利乱码中文字幕| 国产黄色免费在线视频| 91老司机精品| 久久久久久久国产电影| 国产av精品麻豆| 亚洲熟女精品中文字幕| 免费在线观看日本一区| 黑人巨大精品欧美一区二区蜜桃| 久久人妻熟女aⅴ| 麻豆国产av国片精品| 欧美日韩视频精品一区| 国产精品二区激情视频| tocl精华| 久久天躁狠狠躁夜夜2o2o| 国产精品久久久久久人妻精品电影| 亚洲五月婷婷丁香| 91国产中文字幕| 桃红色精品国产亚洲av| 一级作爱视频免费观看| 国产激情久久老熟女| 50天的宝宝边吃奶边哭怎么回事| 亚洲av成人一区二区三| 成人永久免费在线观看视频| 国产精品一区二区精品视频观看| 激情视频va一区二区三区| 久久精品国产a三级三级三级| 午夜福利乱码中文字幕| 1024香蕉在线观看| 午夜福利,免费看| 欧美亚洲 丝袜 人妻 在线| 国产人伦9x9x在线观看| 精品国产超薄肉色丝袜足j| 亚洲精品一二三| 久久天躁狠狠躁夜夜2o2o| 久久久久精品国产欧美久久久| 成人永久免费在线观看视频| 91麻豆精品激情在线观看国产 | 视频区图区小说| 亚洲色图综合在线观看| 午夜免费成人在线视频| 大型av网站在线播放| 亚洲国产中文字幕在线视频| 黄网站色视频无遮挡免费观看| 亚洲第一青青草原| 制服诱惑二区| 咕卡用的链子| 美女午夜性视频免费| 18禁美女被吸乳视频| 欧美丝袜亚洲另类 | 精品久久久久久久久久免费视频 | 99久久人妻综合| 国产精品.久久久| 欧美乱妇无乱码| 成人影院久久| 成人av一区二区三区在线看| 日韩熟女老妇一区二区性免费视频| 久99久视频精品免费| 丁香六月欧美| 涩涩av久久男人的天堂| 黄色视频,在线免费观看| 亚洲人成伊人成综合网2020| 欧美精品啪啪一区二区三区| 日韩精品免费视频一区二区三区| 欧美成狂野欧美在线观看| 啦啦啦视频在线资源免费观看| 国产亚洲精品第一综合不卡| 18禁裸乳无遮挡免费网站照片 | 国产精品国产av在线观看| 亚洲五月天丁香| 亚洲国产中文字幕在线视频| 999精品在线视频| 中文字幕人妻丝袜一区二区| 国产麻豆69| 亚洲一区二区三区不卡视频| 色婷婷久久久亚洲欧美| 日韩大码丰满熟妇| 欧美日韩福利视频一区二区| 成熟少妇高潮喷水视频| 少妇猛男粗大的猛烈进出视频| 亚洲成人手机| 啦啦啦视频在线资源免费观看| 男女高潮啪啪啪动态图| 人人妻人人添人人爽欧美一区卜| 伊人久久大香线蕉亚洲五| 精品国产亚洲在线| 日韩成人在线观看一区二区三区| 天堂中文最新版在线下载| 婷婷丁香在线五月| 老司机靠b影院| 久久久久久久午夜电影 | 人人澡人人妻人| 在线观看www视频免费| 在线观看免费视频网站a站| 黑丝袜美女国产一区| 国产成人欧美在线观看 | 国产野战对白在线观看| 国产精品久久久av美女十八| 久久久水蜜桃国产精品网| 18在线观看网站| 欧美日韩视频精品一区| 国产精品久久电影中文字幕 | 一a级毛片在线观看| 亚洲人成77777在线视频| 国产精品偷伦视频观看了| 国产精品久久电影中文字幕 | 久久精品国产亚洲av香蕉五月 | 欧美精品啪啪一区二区三区| 新久久久久国产一级毛片| 欧美日本中文国产一区发布| 亚洲av欧美aⅴ国产| 色婷婷av一区二区三区视频| 我的亚洲天堂| 亚洲午夜精品一区,二区,三区| 亚洲国产欧美日韩在线播放| 亚洲久久久国产精品| 一边摸一边抽搐一进一小说 | 在线视频色国产色| 女性生殖器流出的白浆| 最近最新中文字幕大全免费视频| 99久久国产精品久久久| 精品少妇久久久久久888优播| 9191精品国产免费久久| 麻豆乱淫一区二区| 搡老岳熟女国产| 狠狠婷婷综合久久久久久88av| 日本撒尿小便嘘嘘汇集6| 成人精品一区二区免费| 国产精品综合久久久久久久免费 | 正在播放国产对白刺激| 99国产精品一区二区三区| 一进一出抽搐gif免费好疼 | 亚洲熟妇中文字幕五十中出 | 久久久精品国产亚洲av高清涩受| 精品少妇久久久久久888优播| 在线观看www视频免费| 美女午夜性视频免费| 欧美激情高清一区二区三区| 国产成人欧美在线观看 | 国产男女超爽视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 国产男女内射视频| 亚洲av片天天在线观看| 老司机靠b影院| 另类亚洲欧美激情| 最近最新中文字幕大全免费视频| 精品熟女少妇八av免费久了| 黄色怎么调成土黄色| 久久久久久免费高清国产稀缺| 亚洲片人在线观看| 一夜夜www| 极品人妻少妇av视频| 高潮久久久久久久久久久不卡| a级毛片黄视频| 免费看a级黄色片| 国产亚洲欧美在线一区二区| 国产极品粉嫩免费观看在线| 国产精品永久免费网站| 99国产精品一区二区三区| 午夜福利视频在线观看免费| 午夜福利在线免费观看网站| 亚洲色图 男人天堂 中文字幕| 国产激情久久老熟女| 精品高清国产在线一区| 亚洲中文字幕日韩| 人人妻人人爽人人添夜夜欢视频| 国产精品久久久久久人妻精品电影| 777米奇影视久久| 精品国产国语对白av| 国产一区二区三区视频了| 18禁国产床啪视频网站| 久久久久国内视频| 国产aⅴ精品一区二区三区波| 老司机在亚洲福利影院| 久久精品熟女亚洲av麻豆精品| 色精品久久人妻99蜜桃| 91麻豆av在线| 国产成+人综合+亚洲专区| 身体一侧抽搐| 午夜免费观看网址| 亚洲五月婷婷丁香| 91大片在线观看| 一二三四在线观看免费中文在| 精品国产美女av久久久久小说| 免费女性裸体啪啪无遮挡网站| 少妇的丰满在线观看| 在线观看免费高清a一片| 精品电影一区二区在线| 女人久久www免费人成看片| 欧美日韩视频精品一区| 夜夜躁狠狠躁天天躁| 悠悠久久av| 日本黄色日本黄色录像| 中文字幕人妻熟女乱码| 亚洲色图综合在线观看| 亚洲欧美日韩另类电影网站| 欧美在线黄色| 日韩人妻精品一区2区三区| 国产精品永久免费网站| 精品一区二区三区视频在线观看免费 | 一边摸一边做爽爽视频免费| 久热这里只有精品99| 亚洲av欧美aⅴ国产| 欧洲精品卡2卡3卡4卡5卡区| 变态另类成人亚洲欧美熟女 | 精品少妇久久久久久888优播| 精品国产超薄肉色丝袜足j| 亚洲av美国av| 亚洲熟女精品中文字幕| 91大片在线观看| 日本黄色视频三级网站网址 | 成人18禁高潮啪啪吃奶动态图| 精品少妇一区二区三区视频日本电影| 少妇被粗大的猛进出69影院| 国产成人影院久久av| 91大片在线观看| 欧美国产精品va在线观看不卡| 国产成人系列免费观看| 狠狠狠狠99中文字幕| 国产男女内射视频| 又黄又爽又免费观看的视频| 一区福利在线观看| 国产精华一区二区三区| 高潮久久久久久久久久久不卡| 黄色 视频免费看| av有码第一页| 在线观看日韩欧美| 一区二区三区国产精品乱码| 欧美精品高潮呻吟av久久| 狠狠狠狠99中文字幕| www.精华液| 精品国产亚洲在线| 精品人妻在线不人妻| 大香蕉久久成人网| 国产男女内射视频| 婷婷成人精品国产| 久久香蕉国产精品| 热99re8久久精品国产| 亚洲成人手机| 啦啦啦免费观看视频1| а√天堂www在线а√下载 | 精品国产美女av久久久久小说| 国产欧美日韩一区二区精品| 精品国内亚洲2022精品成人 | 久久久国产精品麻豆| 国产欧美日韩一区二区精品| 韩国av一区二区三区四区| 国产不卡一卡二| 精品福利永久在线观看| 亚洲精品国产色婷婷电影| 亚洲精品在线美女| 国产成人精品在线电影| 欧美成人免费av一区二区三区 | 国产精品免费一区二区三区在线 | 看黄色毛片网站| 天天躁狠狠躁夜夜躁狠狠躁| 色精品久久人妻99蜜桃| 国产日韩一区二区三区精品不卡| 欧美+亚洲+日韩+国产| 国产精品av久久久久免费| 午夜久久久在线观看| 亚洲欧美日韩另类电影网站| 91字幕亚洲| 国产av精品麻豆| 最新在线观看一区二区三区| 美女国产高潮福利片在线看| 亚洲欧美色中文字幕在线| 久久99一区二区三区| 欧美大码av| av中文乱码字幕在线| 亚洲精品中文字幕一二三四区| 欧美日韩亚洲国产一区二区在线观看 | 国产精品99久久99久久久不卡| 黄片小视频在线播放| 人人妻人人澡人人看| 欧美国产精品va在线观看不卡| 国产91精品成人一区二区三区| 热99re8久久精品国产| 水蜜桃什么品种好| 欧美黑人精品巨大| a级毛片在线看网站| 国产高清国产精品国产三级| 久久久久久久国产电影| 国产伦人伦偷精品视频| 久久午夜综合久久蜜桃| 嫩草影视91久久| 亚洲精品自拍成人| 亚洲精品av麻豆狂野| 韩国精品一区二区三区| 久久精品91无色码中文字幕| 黄片播放在线免费| 亚洲专区中文字幕在线| 国内毛片毛片毛片毛片毛片| 脱女人内裤的视频| 精品久久久久久,| 18禁黄网站禁片午夜丰满| 97人妻天天添夜夜摸| 91成年电影在线观看| 精品午夜福利视频在线观看一区| 建设人人有责人人尽责人人享有的| 老司机影院毛片| 国产在线精品亚洲第一网站| 色在线成人网| 高清毛片免费观看视频网站 | 中亚洲国语对白在线视频| av天堂久久9| 涩涩av久久男人的天堂| 亚洲五月天丁香| 丝袜美足系列| 欧美av亚洲av综合av国产av| 国产精品偷伦视频观看了| 一级毛片高清免费大全| av在线播放免费不卡| av福利片在线| 老司机亚洲免费影院| 国产一区有黄有色的免费视频| 亚洲一卡2卡3卡4卡5卡精品中文| 日韩免费高清中文字幕av| 欧美黑人欧美精品刺激| 欧美成人免费av一区二区三区 | 90打野战视频偷拍视频| av一本久久久久| 国产一区有黄有色的免费视频| bbb黄色大片| 亚洲午夜精品一区,二区,三区| 女性生殖器流出的白浆| 亚洲精品国产色婷婷电影| 无遮挡黄片免费观看| 久久精品亚洲av国产电影网| 757午夜福利合集在线观看| 国产欧美亚洲国产| svipshipincom国产片| 亚洲精品在线观看二区| 丰满饥渴人妻一区二区三| 久久中文字幕一级| 精品一区二区三区av网在线观看| 国产男靠女视频免费网站| 91国产中文字幕| 一边摸一边抽搐一进一出视频| 90打野战视频偷拍视频| 国产aⅴ精品一区二区三区波| 波多野结衣av一区二区av| 波多野结衣一区麻豆| 欧美激情久久久久久爽电影 | 久久 成人 亚洲| 美女午夜性视频免费| 别揉我奶头~嗯~啊~动态视频| 亚洲色图av天堂| 色94色欧美一区二区| 国产aⅴ精品一区二区三区波| 极品少妇高潮喷水抽搐| 最新的欧美精品一区二区| 中文字幕精品免费在线观看视频| av在线播放免费不卡| 啪啪无遮挡十八禁网站| 一级毛片高清免费大全| 午夜老司机福利片| 一级毛片高清免费大全| 午夜免费观看网址| 久久久国产一区二区| 丝瓜视频免费看黄片| 久久性视频一级片| 老司机亚洲免费影院| 成人亚洲精品一区在线观看| 黑人猛操日本美女一级片| 亚洲国产精品sss在线观看 | 99精国产麻豆久久婷婷| 久久久久国产一级毛片高清牌| 成年人午夜在线观看视频| 国产男女超爽视频在线观看| 国产精品一区二区免费欧美| 午夜福利欧美成人| 亚洲成a人片在线一区二区| 老熟妇仑乱视频hdxx| 成人手机av| av免费在线观看网站| 99国产综合亚洲精品| 日日爽夜夜爽网站| 热99久久久久精品小说推荐| 久久久久视频综合| 黄色 视频免费看| 一级,二级,三级黄色视频| 亚洲一区二区三区不卡视频| 久久中文看片网| 男女高潮啪啪啪动态图| 天天影视国产精品| bbb黄色大片| 成人特级黄色片久久久久久久| 男女下面插进去视频免费观看| 亚洲在线自拍视频| 久久精品国产亚洲av香蕉五月 | 国产亚洲精品第一综合不卡| 中文字幕人妻熟女乱码| 超碰97精品在线观看| 免费人成视频x8x8入口观看| netflix在线观看网站| 亚洲精品美女久久av网站| 高清在线国产一区| 亚洲第一av免费看| 夜夜夜夜夜久久久久| 自线自在国产av| 国产精品成人在线| 亚洲欧美精品综合一区二区三区| 91av网站免费观看| 看黄色毛片网站| 啦啦啦 在线观看视频| 两个人看的免费小视频| 久久亚洲精品不卡| 亚洲综合色网址| 99国产极品粉嫩在线观看| 99精品久久久久人妻精品| 亚洲五月色婷婷综合| 国产成人精品久久二区二区91| 搡老熟女国产l中国老女人| 精品人妻熟女毛片av久久网站| 久久久久精品国产欧美久久久| 午夜影院日韩av| 日本vs欧美在线观看视频| 午夜精品国产一区二区电影| 国产精品偷伦视频观看了| 麻豆成人av在线观看| 国产精品久久久久久人妻精品电影| 美国免费a级毛片| 亚洲性夜色夜夜综合| 精品卡一卡二卡四卡免费| 大香蕉久久网| 国产激情欧美一区二区| 亚洲精品美女久久久久99蜜臀| 久久影院123| 1024香蕉在线观看| 在线播放国产精品三级| 成年动漫av网址| 自拍欧美九色日韩亚洲蝌蚪91| 久久国产精品男人的天堂亚洲| 久久久国产成人精品二区 | 久久精品熟女亚洲av麻豆精品| 欧美另类亚洲清纯唯美| 日韩精品免费视频一区二区三区| 色综合欧美亚洲国产小说| 国产又爽黄色视频| 精品午夜福利视频在线观看一区| 啦啦啦免费观看视频1| 大片电影免费在线观看免费| 国产真人三级小视频在线观看| 精品久久蜜臀av无| 精品亚洲成国产av| 中文字幕色久视频| 精品国产亚洲在线| 欧美日韩视频精品一区| 美女视频免费永久观看网站| 欧美色视频一区免费| 欧美 日韩 精品 国产| 久久香蕉激情| 久久久久久人人人人人| 久久久国产成人免费| 动漫黄色视频在线观看| 久久精品亚洲av国产电影网| 建设人人有责人人尽责人人享有的| 欧美亚洲 丝袜 人妻 在线| 黄网站色视频无遮挡免费观看| 国产精品偷伦视频观看了| 妹子高潮喷水视频| 亚洲熟女精品中文字幕| 一进一出抽搐gif免费好疼 | 久久精品国产99精品国产亚洲性色 | a级片在线免费高清观看视频| 国产成人啪精品午夜网站| 国产免费av片在线观看野外av| 国产片内射在线| 亚洲成人国产一区在线观看| 人妻丰满熟妇av一区二区三区 | av网站免费在线观看视频| 曰老女人黄片| 国产精品 国内视频| 又紧又爽又黄一区二区| 国产成人影院久久av| 黑人巨大精品欧美一区二区mp4| 99riav亚洲国产免费| 丰满饥渴人妻一区二区三| 久久香蕉激情| 乱人伦中国视频| a在线观看视频网站| 国产精品亚洲一级av第二区| 国产色视频综合| 久久久久久人人人人人| x7x7x7水蜜桃| 久久国产乱子伦精品免费另类| 久久久久国产一级毛片高清牌| 一a级毛片在线观看| 国产片内射在线| 亚洲成av片中文字幕在线观看| 久久 成人 亚洲| 黑丝袜美女国产一区| av不卡在线播放| 精品福利永久在线观看| 国产亚洲精品久久久久久毛片 | 亚洲精品在线美女| 欧美人与性动交α欧美精品济南到| 丝瓜视频免费看黄片| 女人被狂操c到高潮| 久久狼人影院| 国产aⅴ精品一区二区三区波| 捣出白浆h1v1| 欧美日韩国产mv在线观看视频| 俄罗斯特黄特色一大片| 亚洲国产精品合色在线| 最近最新免费中文字幕在线| 激情视频va一区二区三区| 99精品久久久久人妻精品| 婷婷精品国产亚洲av在线 | 在线观看一区二区三区激情| 人妻久久中文字幕网| 国产不卡av网站在线观看| 亚洲在线自拍视频| 成人免费观看视频高清| 亚洲专区字幕在线| 久久久久久久久久久久大奶| 久久久精品区二区三区| bbb黄色大片| 在线观看一区二区三区激情| 成人影院久久| 久久香蕉国产精品| 无限看片的www在线观看| 精品福利永久在线观看| 精品国产亚洲在线| av福利片在线| 波多野结衣av一区二区av| 多毛熟女@视频| 亚洲熟妇中文字幕五十中出 | 欧美日韩瑟瑟在线播放| 免费看十八禁软件| 18禁观看日本| 亚洲精品乱久久久久久| 午夜免费观看网址| 久久 成人 亚洲| 久久精品国产亚洲av高清一级| 亚洲欧美激情在线| 国产成人av教育| 国产一区在线观看成人免费| 91大片在线观看| videosex国产| 欧美激情久久久久久爽电影 |