• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Holomorphic Retractions of Bounded Symmetric Domains onto Totally Geodesic Complex Submanifolds

    2022-12-06 07:56:36NgaimingMOK

    Ngaiming MOK

    Abstract Given a bounded symmetric domain ? the author considers the geometry of its totally geodesic complex submanifolds S? ?.In terms of the Harish-Chandra realization ? ? Cnand taking S to pass through the origin 0∈ ?,so that S=E ∩ ? for some complex vector subspace of Cn,the author shows that the orthogonal projection ρ:?→E maps ? onto S,and deduces that S?? is a holomorphic isometry with respect to the Carath′eodory metric.His first theorem gives a new derivation of a result of Yeung’s deduced from the classification theory by Satake and Ihara in the special case of totally geodesic complex submanifolds of rank 1 and of complex dimension≥2 in the Siegel upper half plane Hg,a result which was crucial for proving the nonexistence of totally geodesic complex suborbifolds of dimension≥2 on the open Torelli locus of the Siegel modular variety Agby the same author.The proof relies on the characterization of totally geodesic submanifolds of Riemannian symmetric spaces in terms of Lie triple systems and a variant of the Hermann Convexity Theorem giving a new characterization of the Harish-Chandra realization in terms of bisectional curvatures.

    Keywords Bounded symmetric domain,Harish-Chandra embedding,Holomorphic retraction,Totally geodesy

    1 Introduction

    Let ??Cnbe a bounded symmetric domain in its Harish-Chandra realization(cf.Theorem 2.3).Denote bythe G0-invariant K?hler metric on ? such that minimal disks on each irreducible factor of ? are of constant Gaussian curvature ?2.When ? is irreducible,is a complete K?hler-Einstein metric.In general,the choice of a G0-invariant K?hler metric on ? depends on normalizing scalar constants,one for each irreducible factor.

    In this article we consider complex linear slices S of ? which are totally geodesic with respect toand prove the following theorem yielding a holomorphic retraction of ? onto S.

    Theorem 1.1 Let ??Cnbe a bounded symmetric domain in its Harish-Chandra realization.Let E?Cnbe a complex vector subspace such that S:=E∩??? is a totally geodesic complex submanifold with respect to.Let ρ :Cn→ E be the orthogonal projection.Then,ρ(?)=S.

    We observe that any totally geodesic complex submanifold of(?,)passing through the origin 0∈? is necessarily of the form S=E∩? for a complex vector subspace E?Cnsatisfying additional conditions(cf.Proposition 2.1),hence Theorem 1.1 yields a holomorphic retraction of ? onto any given totally geodesic complex submanifold of ? with respect to one and hence all G0-invariant K?hler metrics.

    Theorem 1.1 in the special case where ? is the type-III domain,and S is biholomorphic to the complex unit ball Bmof dimension m,where M(a,b;C)stands for the complex vector space of a-by-b matrices with complex coefficients and Ztdenotes the transposed matrix of Z,was established in Yeung[12,Theorem 1]by explicitly checking according to the classification of such embeddings due to Satake[10]and Ihara[2].Theorem 1.1 in these special cases are crucial for the establishment of the following theorem in[12]concerning the open Torelli locus.For the understanding of the statement,note first of all that the type-III domainis biholomorphic via the inverse Cayley transform τ= λ(Z):= ??(Z+ ?Ig)(Z ? ?Ig)?1,where Igstands for the g-by-g identity matrix,to the Siegel upper half plane Hg:={τ:Im(τ):τt= τ,Im(τ)>0}defined by the Riemann bilinear relations,so that Ag:=Hg/PSp(g;Z)is the Siegel modular variety,the classification space of principally polarized abelian varieties.

    The Torelli map tg:Mg→Ag,where Mgis the Teichmüller modular variety,i.e.,the moduli space of compact Riemann surfaces C of genus g≥2,is the holomorphic map defined for a compact Riemann surface C of genus g≥2 by tg([C])=[Jac(C)],where Jac(C)stands for the Jacobian variety of C in its natural principal polarization,and[···]is here and henceforth a notation for the class of an object in some classification space.Denote bythe Deligne-Mumford compactification,and bythe Satake-Baily-Borel compactification,then it is known that tg:Mg→ Agextends holomorphically to τg:The set T0g:=tg(Mg)is called the open Torelli locus,which is a Zariski open subset of the Zariski closed subset.Denoting by Hg? Mgthe locus of hyperelliptic curves,then Hg?Mgis Zariski closed.It is well-known that the Torelli map tg:Mg→Agis injective and that tg|Mg?Hg:Mg?Hg→ Agis immersive.The principal result of[12]is the following theorem.

    Theorem 1.2 (cf.[12,Theorem 2])The set T0g?tg(Hg)?Agfor g>2 does not contain any complex hyperbolic complex ball quotient,compact or non-compact with finite volume,of complex dimension at least 2 as a totally geodesic complex suborbifold of Ag.

    The above result of Yeung,in conjunction with known rigidity results in the higher rank case and existence results of Shimura curves on the open Torelli locus,yielded Yeung[12,Theorem 3],related to Oort’s Conjecture,which described all Shimura varieties(necessarily of dimension 1)contained in the open Torelli locus T0g?tg(Hg).(For the statement of[12,Theorem 3]and related background and references cf.[12,§1].)

    We give in this article a proof of Theorem 1.1 in the general situation,where the target bounded symmetric domain ? may contain direct factors which are exceptional domains,and where the complex submanifold S=E∩? is of arbitrary rank as a Hermitian symmetric manifold of the semisimple and noncompact type.Our proof is free from classification theory.It exploits the Harish-Chandra realization and a variant of the Hermann Convexity Theorem defining ? in terms of inequalities involving bisectional curvatures.In Section 2 we collect basic materials on Riemannian symmetric spaces and bounded symmetric domains.In Section 3 we give in Theorem 3.1 a new description of independent interest of the Harish-Chandra realization of a bounded symmetric domain in terms of bisectional curvatures.In Section 4 we give the proof of Theorem 1.1 together with the immediate implication(Theorem 4.1)that totally geodesic complex submanifolds of ? are holomorphic deformation retracts of ?.In Section 5 we give in Theorem 5.1 an application of Theorem 1.1 to the geometry of the complex submanifold S?? in terms of the Carath′eodory metric and equivalently the Kobayashi metric,which are equal on weakly convex bounded domains according to the celebrated work of Lempert[3]and a theorem of Royden-Wong(cf.Section 5 for remarks and references).In the Appendix we give a selfcontained proof that the(infinitesimal)Carath′eodory metric and the(infinitesimal)Kobayashi metrics agree with each other on a bounded symmetric domain ? by means of Theorem 1.1.The article has been written in a somewhat expository style,supplied sometimes with more details than those are absolutely necessary,in order to make it more accessible to non-experts.

    2 Background Materials

    2.1 Basic materials in Lie theory and on Riemannian symmetric spaces

    On a Riemannian symmetric space(M,ds2M)denote by G the identity component of the isometry group of(M,ds2M),and by e∈G its identity element.We have Te(G):=g.Here and in what follows,for real Lie groups in Roman letters we denote by the corresponding Gothic letters their associated Lie algebras,and vice versa.Let K?G be the isotropy subgroup at a reference point 0∈M,so that M=G/K as a homogeneous space,and 0=eK.Let s be the involution of(M,ds2M)as a Riemannian symmetric space at 0,s=s?1,and σ :G → G be defined by σ(g)=sgs=s?1gs,so that dσ(e):g → g,and we have the Cartan decomposition g=⊕m where(resp.m)is the eigenspace of dσ(e)associated to the eigenvalue+1(resp.?1),from which we have an identification T0(M)~=m.We have the following characterization of totally geodesic submanifolds of Riemannian symmetric spaces(cf.Helgason[1,Chapter IV,Theorem 7.2]).

    Theorem 2.1 On the Riemannian symmetric space(M,ds2M)and in the notation above,let m1? m ~=T0(M)be a vector subspace.Then,denoting by Exp0:T0(M)→ M the exponential map in the sense of Riemannian geometry,S:=Exp0(m1)?M is a totally geodesic submanifold if and only if m1?g is a Lie triple system,i.e.,if and only if[m1,[m1,m1]]?m1for the Lie bracket[·,·]on g.Moreover,in the notation above,writing1=[m1,m1] ? [m,m] ?and defining g1:=m1⊕1?m⊕=g,g1?g is a Lie subalgebra,and,denoting by G1?G the Lie subgroup corresponding to the Lie subalgebra g1?g,K1?K the Lie subgroup corresponding to the Lie subalgebra1?,(S,ds2M|S)is a Riemannian symmetric space on which G1acts transitively,and S=G1/K1as a homogeneous space.

    For a Cartesian product of Riemannian manifoldsthe Riemannian connection?is unchanged if the background metricof each Cartesian factor is replaced byfor some λk>0.Since a smooth submanifold Z ? N is totally geodesic if and only if its tangent bundle T(Z)is parallel along Z,which depends only on?,the latter occurs if and only if Z is totally geodesic with respect to any of the Riemannian metric h thus obtained by scaling.It is therefore not surprising that the necessary and sufficient condition in Theorem 2.1 in terms of Lie triple systems is a purely Lie-theoretic condition independent of the choice of the background metric ds2Mrendering(M,ds2M)Riemannian symmetric,noting also that the subset S=Exp0(m1),which is the union of geodesics emanating from 0,also remains unchanged by introducing the scaling constants.

    2.2 Basic materials on bounded symmetric domains

    Consider now the case where(M,ds2M)=(X0,g)is a Hermitian symmetric space of the noncompact type,so that X0is biholomorphic to a bounded symmetric domain.Here and henceforth by a Hermitian symmetric space of the noncompact(resp.compact)type we will mean one with negative(resp.positive)Ricci curvature,i.e.,it is implicitly assumed that the Hermitian symmetric space is of the semisimple type.

    Write G0for the identity component of the isometry group of X0,which is equivalently the identity component of the group Aut(X0)of biholomorphic automorphisms of X0.Write K?G0for the isotropy subgroup at 0∈X0,0=eK.Denote by Xc:=Gc/K the Hermitian symmetric space of the compact type dual to X0.Denote by GCthe identity component of Aut(Xc)and by P?GCthe isotropy(parabolic)subgroup at 0,so that Xc=GC/P as a complex homogeneous space.Write X0=G0/K?→GC/P=Xcfor the Borel embedding identifying X0as an open subset of its compact dual Xc.Whenever appropriate,we write VC=V?RC for the complexification of a real vector space V.Write g0=+m for the Cartan decomposition of g0with respect to the involution at 0.Then,gc=stands for the corresponding Cartan decomposition of gc.

    For u,v∈gcwe write ad(u)(w):=[u,w],for ad(u)∈End(gc),etc.and denote by B(u,v):=Tr ad(u)ad(v)the Killing form B(·,·)on gc.Since gcis a compact real form of a semisimple complex Lie algebra,B(·,·)is negative definite.Extend B(·,·)to the complexification gCof gcby complex bilinearity so that B(·,·)is a nondegenerate complex bilinear form on gC.Denote by(·,·)the Hermitian bilinear pairing defined by(u,v)=B(u,?τc(v)),where τcstands for the conjugation on gCwith respect to the real form gc? gC,and write.The isotropy subgroup K?Gcis reductive,and the complex structure on Xcis induced by the adjoint action of some element z belonging to the centerof.We have the Harish-Chandra decomposition gC=m+⊕C⊕m?which is eigenspace decomposition of ad(z)∈End(gC)corresponding to the eigenvalues,respectively.By considering the action of ad(z)it follows readily that[m+,m+]=[m?,m?]=0,[C,C]?C,[C,m+]? m+,[C,m?]? m?and[m+,m?]?C.In particular,the complex vector subspaces m+,m??gCare abelian subalgebras.We have m+⊕m?=mCand.Here and in what follows,for u∈gC,will be taken with respect to the conjugation τ0on the noncompact real form g0? gC.We have τ0|= τc|and τ0|mC= ?τc|mC.

    The Hermitian symmetric space X0of the noncompact type can be identified as a bounded symmetric domain by means of the Harish-Chandra embedding,as follows(cf.Wolf[11]).For its formulation given the Harish-Chandra decomposition gC=m+⊕C⊕m?,we have correspondingly the abelian subgroups M+,M??GC,and the reductive subgroup KC?GC.

    Theorem 2.2 (Harish-Chandra Embedding Theorem)The holomorphic map F:M+×KC×M?→GCdefined by F(m+,k,m?)=m+km?is a biholomorphism of M+×KC×M?onto a dense open subset of the complex Lie group GCcontaining G0.In particular,the map η :m+→ GC/P=Xcdefined by η(m+)=exp(m+)P is a biholomorphism onto a dense open subset of Xccontaining G0/K=X0.Furthermore,η?1(X0)=:? is a bounded domain on m+~=Cn,n=dimCX0.

    The bounded symmetric domain ??Cnin its Harish-Chandra realization can be precisely described in Lie-theoretic terms as the unit ball in m+~=Cnwith respect to a Banach norm,implying in particular its convexity,by the Hermann Convexity Theorem(cf.Wolf[11]),as follows.

    Theorem 2.3(Hermann Convexity Theorem)Identify Cnwith the holomorphic tangent space T0(?).Then,? ? Cnis the unit ball in Cncorresponding to the Banach norm ‖ ·‖Hon T0(?)defined by

    Remark 2.1 Note that in the statement of the Hermann Convexity Theorem,the operator norm of ad(Reξ) ∈ End(gC)is unchanged when the Hermitian inner product(·,·)is rescaled,i.e.,when the Hermitian inner product on each of the simple factors of gCis replaced by a scalar multiple.

    2.3 Characterization of totally geodesic complex submanifolds of bounded symmetric domains in Harish-Chandra coordinates

    In this subsection,we give a characterization of totally geodesic complex submanifolds S?? of bounded symmetric domains ??Cnin terms of Harish-Chandra coordinates.From the homogeneity of ? under G0it suffices to characterize those S ? ? passing through 0.

    Since the focus is now on complex manifolds,here and henceforth we adopt a convention common in complex geometry on the notation for tangent spaces.Given an n-dimensional complex manifold Z and a point x∈Z,we denote by TRx(Z)the real(2n)-dimensional tangent space at x of the real(2n)-dimensional smooth manifold underlying Z,while the notation Tx(Z)is reserved for the complex n-dimensional holomorphic tangent space at x,as opposed to the meaning of the same notation in(2.1).Writingand decomposing the(2n)-dimensional complex vector spaceas a direct sum of eigenspaces of the J-operator underlying the integrable almost complex structure of Z,the holomorphic tangent space Tx(Z)is canonically identified with the complex vector subspaceof complexified tangent vectors of type(1,0).We have the following proposition.

    Proposition 2.1 Let ??Cnbe a bounded symmetric domain in its Harish-Chandra realization,?=G0/K as a homogeneous space in the notation above,and S?? be a complex submanifold passing through the origin 0 ∈ ?.Then,identifying T0(S)as an abelian complex Lie subalgebra m+1?m+?gC,S?? is totally geodesic with respect to a given invariant K?hler metric g on ? if and only if[m+1,[m+1,m?1]] ? m+1.Furthermore,S=E ∩ ? for the complex vector subspace E?Cncorresponding to m+1?m+whenever S?? is totally geodesic.

    Proof Let S?? be a totally geodesic complex submanifold passing through 0∈?.Under the identification T0(?) ~=m+,we identify T0(S)with a complex vector subspace m+1? m+.The real tangent space TR0(S)is given by Re(m+1)=:m1? m=TR0(?).By Theorem 2.1,m1? g0is a Lie triple system,i.e.,(?)[m1,[m1,m1]] ? m1holds.We claim that(?)is equivalent to(??)[m+1,[m+1,m?1]]? m+1.

    Starting with(?)and complexifying,we have[mC1,[mC1,mC1]] ? mC1.Since mC1=m+1⊕m?1,where m?1=m+1,and[m+1,m+1]=[m?1,m?1]=0,(?)is equivalent to[m+1,[m+,m?1]]+[m?1,[m?1,m+1]]?m+1⊕m?1.Noting that[m?1,[m?1,m+1]]=and that[m+1,[m+1,m?1]]? [m+,[m+,m?]]? [m+,C]? m+,we conclude that(?)is equivalent to(??)[m+1,[m+1,m?1]]?m+1,as claimed.

    We have deduced from Theorem 2.1 that S=Exp0(m+1)?? is a totally geodesic complex submanifold if and only if(??)holds.To complete the proof of Proposition 2.1 it remains to show that S?? must be given by S=E∩? for the complex vector subspace E?Cncorresponding to m+1?m,whenever the complex submanifold S?? is totally geodesic with respect to(?.g)and it passes through the origin 0∈ ?.

    For θ∈ R define μθ∈ GL(n;C)by μθ(z)=eiθz.Consider now the circle group S1={μθ:θ ∈ R} ? K,which acts on ? by scalar multiplication,so that ? is a circular domain.Write Sθ:= μθ(S).We have 0 ∈ Sθand T0(Sθ)=eiθ·S=S.Since there is exactly one totally geodesic submanifold(Z,g|Z)of(?,g)passing through 0 such that TR0(Z)=TR0(S),we have Sθ=S.Thus,for any point x ∈ S,eiθx ∈ S for any θ∈ R,hence for x/=0,the complex analytic subset Cx∩S of the open disk Cx∩? must be the whole disk as it contains the real analytic curve S1·x,so that S ? ? is a union of open disks centered at 0 on complex lines ? passing through 0.Thus,writing λ :Cn?{0}→ Pn?1for the canonical projection,there is a complex analytic subvariety A ? Pn?1such that S=(λ?1(A)∪{0})∩ ?.Finally,since S ? ? is smooth at 0,as is well-known the subvariety A ? Pn?1must necessarily be a projective linear subspace,i.e.,S must be of the form E∩? for some complex linear subspace E??(noting that E∩ ? is connected as ? is convex).Clearly E ?Cncorresponds to m+1,as desired.The proof of Proposition 2.1 is complete.

    3 Characterization of Harish-Chandra Realizations of Bounded Symmetric Domains in Terms of Bisectional Curvatures

    Recall that the G0-invariant K?hler metricon the bounded symmetric domain ? has been chosen so that the minimal disks of each irreducible Cartesian factor ? are of constant Gaussian curvature ?2.For an irreducible bounded symmetric domain ? =G0/K,we give a brief description of the root space decomposition of the complex simple Lie group gCrelevant to the study of bisectional curvatures,and refer the reader to[4,11]and references therein for details.Here and in what follows we use the notation of the first two paragraphs in(2.2).

    In what follows,we will fix a lexicographic ordering of the roots compatible with the choice of positive Weyl chamber so that there is a unique highest root μ of g,and μ∈Φ+0 is always a long root.When gCis of type A,D or E,all roots in Φ are of equal length.

    From now on,for ? irreducible,we will replace the Killing form B(·,·)on gCin the definition of the Hermitian inner product(·;·)and the Hermitian norm ‖ ·‖ by B′(·,·)=cB(·,·)for some constant c=cg>0 such that the induced Hermitian inner product(u;v):=B′(u,?τc(v))is the standard Euclidean Hermitian inner product for u,v∈ T0(?),i.e.,for the G0-invariant K?hler metric g we have gij(0)= δij,and g is precisely our choice of ds2?when ? is irreducible.The restriction B′|?his positive definite,and it defines a real linear isomorphism form:= ?h?to ?h=:hR,and we identify ? ∈ Φ in this way with an element H?∈ hR.

    In the general case for gC=⊕ ···⊕we rescale the Killing form on each simple direct factor,1 ≤ i≤ s,accordingly.Observe that the operator Banach norm ‖ad(u)‖Hsuch as that appearing in the statement of the Hermann Convexity Theorem for u∈gCremains unchanged by such a replacement of B by B′(cf.Remark 2.1).

    For a positive noncompact root ? we write g[?]:=g?⊕ g??⊕ [g?,g??],where[g?,g??]=CH?.Writing e?∈ g?for a unit root vector,e??=e?∈ g??,we have[H?,e?]=2e?,[H?,e??]= ?2e??and[e?,e??]=H?,so that g[?]~=sl(2,C).

    The orbit of 0 ∈ ? under the Lie group G[?]? GCcorresponding to g[?]? gCis a rational curve ??:=G[?]·0 on the compact dual Xcof X0~= ?,which is totally geodesic with respect to the Gc-invariant K?hler metric gcon ? dual to, ? ? Xcbeing the Borel embedding.When ? ∈ Φ+0is a long root,??? Xcis a minimal rational curve.Defining g0[?]:=g[?]∩ g0,we have g0[?]~=su(1,1).The orbit of 0 ∈ ? under the corresponding Lie subgroup G0[?]? G0is a totally geodesic holomorphic disk D?:=G0[?]·0 on ?.When ? ∈ Φ+0is a long root,Dα=??∩? is a minimal disk on ?.

    We say that two roots ?1,?2∈ Φ are strongly orthogonal if and only if neither ?1+?2nor ?1? ?2is a root.Let Ψ ={ψ1,···,ψs} ? Φ+0be a maximal strongly orthogonal subset,i.e.,a subset of maximal cardinality of mutually strongly orthogonal positive noncompact roots.Then,s=r:=rank(?).Note that ψ1,ψ2∈ Φ+0are strongly orthogonal to each other if and only if ψ1?ψ2/∈Φ,since ψ1+ψ2is never a root,observing that[m+,m+]=0.

    For a strongly orthogonal set of positive noncompact roots Θ ? Φ+0we write

    Then,g[Θ]is a semisimple complex Lie algebra,g[Θ]~=sl(2,C)|Θ|.Writing g0[Θ]=g[Θ]∩ g0,then g0[Θ]? g[Θ]is a semisimple Lie algebra which is a noncompact real form of g[Θ]without compact factors,g0[Θ]~=su(1,1)|Θ|,and the G0[Θ]-orbit of 0 ∈ ? is a Euclidean polydisk.

    To extract a maximal strongly orthogonal subset Ψ ?,we may start with choosing ψ1= μ ∈ Φ+0being the highest root and consider the subset Σ ? Φ+0consisting of roots ? strongly orthogonal to ψ1.Then there exists a simple Lie subalgebra g′0? g0such that,putting′=∩g′0,G′0/K′0?G0/K=X0~=? is an irreducible Hermitian symmetric space of the noncompact type embedded as a totally geodesic complex submanifold of ?′? ?,and such that T0(?′)is spanned by{gσ:σ ∈ Σ}.Writing h′:=h ∩,h′C? g′Cis a Cartan subalgebra,and the restriction σ′:= σ|h′ for all σ ∈ Σ gives the set of positive noncompact roots of g′.We have a totally geodesic complex submanifold ? × ?′?→ ? such that T0(?)=Cgμand.Repeating the same procedure with ?′in place of ?,we obtain inductively a maximal strongly orthogonal subset Ψ ?of positive noncompact roots,Ψ ={ψ1,···,ψr}.

    Given any ξ∈ T0(?),there exists k ∈ K such that η :=k(ξ)is tangent to the reference maximal polydisk Π0? ?.Since Aut(Π0)embeds into G0,composing with the action of(S1)rfor the circle group S1,acting according to(eiθ1,···,eiθr)·(z1,···,zr) → (eiθ1z1,···,eiθrzr)and with permutations of the r Cartesian factors,we obtain some element k′∈ K such that k′(ξ)=(a1,···,ar;0,···,0)such that all ai,1 ≤ i≤ r are real and nonnegative,and such that a1≥ ···≥ ar≥ 0.We call(a1,···,ar;0,···,0),or simply(a1,···,ar),the normal form of ξ under the action of K.

    Lemma 3.1 For any irreducible bounded symmetric domain ?0? Cn0,there exists an irreducible bounded symmetric domain ? ? Cnsuch that ?0? ? as a totally geodesic complex submanifold passing through 0,and such that,writing ?=G0/K,gCis of type A,D or E.Hence,writing Φ for the set of all roots of gCwith respect to a Cartan subalgebra hC? gC,all roots ?∈Φ are of equal length.

    Proof Up to biholomorphisms,the only irreducible bounded symmetric domains ? not of these types are those of types B or C.These include type II domainswhere n≥5 is odd,type III domainsof rank n,n≥3,and type IV domains of odd dimension n≥3.For,m ≥ 2,it suffices to takeFor,it suffices to takeFor,m ≥ 1,it suffices to take.All notations for bounded symmetric domains are standard ones and the embedding ?0? ? are also standard embeddings.

    We will need the following lemma on the combinatorics relating the space of positive noncompact rootswith a maximal strongly orthogonal set Ψ of positive noncompact roots.

    Lemma 3.2 Let ??Cnbe an irreducible bounded symmetric domain of type A,D or E.Let Ψ ={ψ1,···,ψr}be a maximal strongly orthogonal set of positive noncompact roots and pick ? ∈? Ψ.Then either

    (a)there exist exactly two distinct roots ψi1,ψi2∈ Ψ such that ? ? ψj∈ Φ if and only if j=i1or j=i2;or

    (b)there is exactly one root ψ ∈ Ψ such that ? ? ψ ∈ Φ.

    Proof We use standard notation for irreducible bounded symmetric domains.For1≤p≤q,and for,m≥2,the lemma is obvious by using the standard representation of T0(?)as a complex vector space of matrices and the root vectors of ? ∈ Φ+0as a standard basis of such a vector space.For example,take in the case of a type I domain DIp,q,1≤p≤q the standard choice of the Cartan subalgebra hC?gCso that each of the 1-dimensional root spaces g?,? ∈ Φ+0,is spanned by an elementary matrix Eij,with(i,j)-entry being 1,and all other entries being 0,where 1≤i≤ p,1≤j≤q,and choose the maximal polydisk Π to be such that T0(Π)=SpanC{Ekk:1≤ k≤ p}.Then,case(a)occurs if and only if g?=CEij,1≤i≤p,1≤j≤p.and case(b)occurs if and only if g?=CEij,1≤i≤p,p+1≤j≤q.The case of type II domainsis very similar to the case of type I domains,except that only case(a)occurs.Since type-IV domains,m≥2 are of rank 2,the lemma is vacuous in that case.The same is true for DV,which is also of rank 2.

    It remains to check the case of ?=DVI,which is of type E7and of rank 3.We will make use of the labeling of roots as in Zhong[13].In the standard notation used in[13],a maximal set of strongly orthogonal positive noncompact roots Ψ ? Φ+0is given by Ψ ={ψ1,ψ2,ψ3},in which ψ1=x1?x2,ψ2=x1+x2+x3,ψ3=d? x3,where d=x1+···+x7.For eachwe define Hν:={?∈Φ+0:ν??∈Φ}.To complete the proof of the lemma,it suffices to show that Hψ1∩Hψ2∩Hψ3= ?.Any root ν∈ Φ+0is a long root,so that[eν]∈ C0(Xc),the various of minimal rational tangents(VMRT for short)on the irreducible Hermitian symmetric space Xcof the compact type,and we have a decomposition of T0(?)into a direct sum of eigenspaces of the Hermitian bilinear form Heν(u,v)= Θeνeνuv,given by T0(?)=Ceν⊕Heν⊕Neν,where Ceν,Heνand Neνare the eigenspaces of Heνcorresponding to the eigenvalues 2,1 and 0,respectively,and Heν=Span{e?:? ∈ Hν}.Now for each unit vector α such that[α]∈ C0(Xc),Hαcan be identified with T[α](C0(Xc)).In the case of Xcdual to X0~=DVI,C0(Xc)is dual to DV,hence dimCHα=16,|Hν|=16 for each ν∈ Φ+0.Now Hψi? Φ+0?Ψ,|Φ+0?Ψ|=24 and the maximal possible cardinality of Hψ1∩Hψ2is 16+16?24=8.By direct checking we have Hψ1∩Hψ2={x1?x4,x1?x5,x1?x6,x1?x7,x1+x3+x4,x1+x3+x5,x1+x3+x6,x1+x3+x7}.Finally,ψ3=d? x3,and none of the 8 elements of the set ψ3?(Hψ1∩ Hψ2)={x2+2x4+x5+x6+x7,x2+x4+2x5+x6+x7,x2+x4+x5+2x6+x7,x2+x4+x5+x6+2x7,x2?x3+x5+x6+x7,x2?x3+x4+x6+x7,x2?x3+x4+x5+x7,x2?x3+x4+x5+x6}?is a root,hence Hψ1∩Hψ2∩Hψ3= ?,as desired.The proof of Lemma 3.2 is complete.

    The given proof of Lemma 3.2 relies on some direct checking on roots.While that has the advantage of being straightforward,it is also desirable to give a more conceptual proof of the lemma.We give here such a proof which relies on some knowledge of the VMRT C0(Xc)of an irreducible Hermitian symmetric space Xcof the compact type,and on a curvature formula for C0(Xc) ? PT0(?)as a K?hler submanifold,PT0(?)being endowed with the Fubini-study metric induced by(0)on T0(?).Let gcbe the Gc-invariant K?hler metric on Xcsuch that gcagrees withat 0.(Xc,gc)is of nonnegative bisectional curvature,and,denoting by R0(resp.Rc)the curvature tensor of(?,ds2?)(resp.(Xc,gc)),we havefor α,β,γ,δ∈ T0(?).For convenience we write.We recall the following result from[4,Appendix(III.2)].Here we will write(X,g)for(Xc,gc).

    Proposition 3.1 Let(X,g)be an irreducible Hermitian symmetric space of the compact type,and denote by h the Fubini-study metric on PT0(?)induced by g.Then(C0(X),h|C0(X)) ?→(PT0(?,h))is a Hermitian symmetric space of the compact type of rank ≤ 2.Moreover,denoting by S the curvature tensor of(C0(X),h|C0(X)),and identifying at each[α] ∈ C0(X),T[α](PT0(?))with the orthogonal complement of Cα with respect to ds2?(0)for a unit characteristic vector α,S is the restriction of the curvature tensor Θ of(X,g)at 0 to T[α](C0(X)),which corresponds under the aforementioned identification with Hα,the eigenspace belonging to the eigenvalue 1 of the Hermitian bilinear form Hα(u,v)= Θααuv.In particular,for bisectional curvatures we have

    for all ξ,η ∈ Hα.

    Using Proposition 3.1 we prove the following statement,without requiring g to be of type A,D or E,which implies Lemma 3.2.

    Proposition 3.2 Let X be an irreducible Hermitian symmetric space of the compact type,h ?be a Cartan subalgebra of? g0,and Φ be the set of all hC-roots of gC.Let Ψ ={ψ1,···,ψr} ? Φ+0be a maximal set of strongly orthogonal positive noncompact roots,and ρ ∈ Φ+0be a long root. Then,there are at most two distinct elements ψ of Ψ such that ρ?ψ∈Φ.

    Proof Since ρ ∈ Φ+0is a long root,the unit root vector eρis a minimal rational tangent,i.e.,α :=[eρ]∈ C0(X).Suppose there exist distinct positive integers i,j and k such that ρ?ψi,ρ?ψjand ρ?ψkare roots.ξψ:=eψmod Cα ∈ T0(X)/Cα are unit tangent vectors of type(1,0)at[α]for ψ = ψi,ψj,ψk.For brevity we write also ξ?for ξψ?,1 ≤ ?≤ r.By the definition of Ψ,we haveBy Proposition 3.1,for the curvature tensor of C0(X) ? PT0(X),we have.It follows that SpanR{Reξi,Reξj,Reξk}is a real 3-dimensional abelian subalgebra in TR0(C0(X)).Exponentiating,we get a real 3-dimensional totally geodesic flat submanifold Σ?C0(X),so that the latter must be of rank≥3 as a Riemannian symmetric space,which contradicts with the fact that rank(C0(X))≤2 as given in[4,Appendix III.2],proving the proposition.

    On a complex affine line Λ ? Cnand x ∈ Λ,Tx(Λ)=Cα,where α is a unit vector,for r>0 we denote by ?α(x;r)the open disk on Λ centered at x of radius r,i.e.,?α(x;r):=Bn(x;r)∩Λ.

    Theorem 3.1 Let ??Cnbe a bounded symmetric domain in its Harish-Chandra realization.Then,? is the union of open disks ?α(0;rα)? Λαon the complex lines Λα:=Cα,as α ranges over unit vectors on Cn,where

    In other words, ξ∈ ? if and only iffor any unit vector ν ∈ T0(?).

    Proof By Lemma 3.1 without loss of generality,we may assume that writing ?=G0/K,each irreducible factor of the semisimple complex Lie algebra gCis of type A,D or E.Let α ∈ T0(?)be a unit vector.For simplicity in the ensuing arguments we will assume also that ? is irreducible.The theorem for the general case where ? = ?1× ···× ?sand each irreducible factor ?,1≤ k≤ s is of A,D or E type follows readily from the arguments in the special case where ? is irreducible.

    Writing Ψ ={ψ1,···,ψr} ? Φ+0for a maximal set of strongly orthogonal positive noncompact roots,and writing e?for a unit root vector associated to a root ? ∈ Ψ,there is a reference maximal polydisk Π0? ? passing through 0,such that T0(Π0)=Ceψ1⊕ ···⊕ Ceψr,and,for any α ∈ T0(?)there exists k ∈ K such that k(α) ∈ T0(Π0).An element c1eψ1+ ···+eψ1will be denoted as(c1,···,cr).Choosing k properly,we may take k(α)to be the normal form(a1,···,ar)such that each aiis real and nonnegative,and furthermore a1≥ ···≥ ar?1≥ ar.For the proof of Theorem 3.1 without loss of generality we consider α to be the normal form(a1,···,ar)itself.

    Remark 3.1(a)The identification of each C0(X)? PT0(?)as a Hermitian symmetric space of the compact type and of rank≤ 2 can be read off from the Dynkin diagram D(g),g=gC.If the Hermitian symmetric space(X,ds2X)is of type(g,αk)in standard notation,and Σ is the set of simple positive roots adjacent to αk,then each connected component of D(g)? {αk},with a marking at σ ∈ Σ,corresponds to an ireducible factor of the Hermitian symmetric space C0(X).

    (b)Theorem 3.1 can be reformulated by stating that ξ∈ ? if and only iffor any unit vector ν ∈ m+,from which the convexity of ? follows immediately.As such,Theorem 3.1 may be regarded as a variant of the Hermann Convexity Theorem.Here we prefer to formulate Theorem 3.1 as a statement concerning bisectional curvatures,with an essentially geometric and self-contained proof.

    (c)One can prove Theorem 3.1 by geometric means free from classification results.As given here,Theorem 3.1 is deduced from the Polydisk Theorem and the combinatorial Lemma 3.2.The main feature of the Polydisk Theorem relevant to us is that each Cartesian factor is of radius 1,which can be derived without using any classification theory.The alternative proof of Lemma 3.2 given here relies on identifying the VMRT of X as a Hermitian symmetric space(C0(X),s)of rank≤ 2,which follows from the pinching conditionon holomorphic sectional curvatures for unit vectors η ∈ T[α](C0(X))established in[4,Appendix III.2]by elementary means,and which by Ros[7]implies the parallelism of the second fundamental form of C0(X)? PT0(?)and hence the Hermitian symmetry of(C0(X),s),as its curvature tensor S must then necessarily be parallel.By considering maximal polyspheres,the fact that(C0(X),s)must be of rank≤2 follows by observing that the Segre embedding of(P1)3into P7does not have parallel second fundamental form.

    (d)The result of[7]was accompanied by a complete listing of K?hler submanifolds satisfying the aforementioned pinching condition of the projective space(Pm,ds2FS)equipped with the Fubini-study metric of constant holomorphic sectional curvature+2,according to Nakagawa-Takagi[6,Theorem 7.4],which miraculously corresponds exactly to the listing of VMRTs of(X,gc)for irreducible Hermitian symmetric spaces of the compact type(cf.[4]).

    4 Proof of Theorem 1.1

    We will continue to adopt notation with the meaning of symbols as defined in Section 3.For the proof of Theorem 1.1 using results of Section 4 we will need furthermore a couple of preliminary results,as follows.

    Consider now the case where the normal form(a1,···,ar)of the unit vector α ∈ T0(? is arbitrary).Writing

    Proof Recall that S???Cnis a totally geodesic complex submanifold passing through 0,S=E∩?,in which E ? Cnis a complex vector subspace identified with T0(S)? T0(?)~=Cn,and that ρ :? → E is the orthogonal projection with respect to the Euclidean metric ds20(0)on T0(?) ~=Cn.Let ξ∈ ?.Write ξ= ξ1+ η according to the orthogonal decomposition T0(?)=T0(S)⊕ T0(S)⊥,in which ξ1∈ T0(S)and η ∈ T0(S)⊥,where A⊥for a complex vector subspace A ? T0(?)denotes its orthogonal complement with respect to ds2?(0).By Theorem 3.1,we havefor any unit vector ν∈ T0(?).For μ ∈ T0(S),by Lemma 4.1 we have.Together with the orthogonal decomposition ξ= ξ1+ η we deduce that forμ∈T0(S)we have

    where the last inequality follows from the nonnegativity of bisectional curvatures of(Xc,gc).On the other hand,by Proposition 4.1 we know that for any unit vector ν ∈ T0(?)we have

    for any unit vector ν ∈ T0(?),hence ξ1∈ ? by Theorem 3.1.In other words, ρ(ξ)= ξ1∈? ∩ E=S,so that ρ(?)=S,as desired.The proof of Theorem 1.1 is complete.

    Remark 4.1 With an aim towards a specific application,the special case of Theorem 1.1 where the bounded symmetric domain ? ? Cnis irreducible and S? ? is a minimal(totally geodesic)disk was proved in Mok-Ng[5].The proof there relied on the Hermann Convexity Theorem.

    From Theorem 1.1,we readily have the following theorem.

    Theorem 4.1 Let(X,g)be a Hermitian symmetric manifold of the noncompact type,and(Y,g|Y)?→(X,g)be a totally geodesic complex submanifold.Then,Y ?X is a holomorphic retract of X,i.e.,there exists a holomorphic mapping r:X→Y such that r|Y=idY.Moreover the identity map idXon X is homotopic through a continuous family{Ft:t∈[0,1]}of holomorphic maps Ft:X→X such that F0(x)=x and F1=r is a holomorphic retract of X on Y and such that the continuous map F:X×[0,1]→X defined by F(x,t):=Ft(x)is real analytic on X×(0,1).

    Proof Since the total geodesy of Y in X does not depend on the choice of the Aut0(X)-invariant K?hler metric g on X,without loss of generality we may take g to correspond to the K?hler metricon ? ~=X.Denoting by ξ:X → ? the Harish-Chandra realization,define S:= ξ(Y).Then,writing r:X → Y to correspond to the orthogonal projection ρ:?→S,we have r:X→Y and r|Y=idY.Finally,for 0≤t≤1,define ft:?→S by ft= ρ(x)+t(x? ρ(x)),we have ft(x)∈ ?.As t ranges over[0,1],for each point x ∈ ?,ft(x)describes the closed interval joining x to ρ(x) ∈ S ? ?.Hence,writing f(x,t)=ft(x)we have defined a continuous map f:? ×[0,1]→ ?,which corresponds under the inverse of the Harish-Chandra realization η :to a continuous map F:X×[0,1]→Y yielding a deformation of the identity map to the holomorphic retract r:X→Y,as desired.

    5 Holomorphic Totally Geodesic Isometric Embeddings with Respect to Carath′eodory and Koba-yashi Metrics

    For a bounded domain D in a complex Euclidean space CN,we denote by ‖ ·‖CDits infinitesimal Carath′eodory metric and by ‖ ·‖KDits infinitesimal Kobayashi metric.On the unit disk ?,we denote by ‖ ·‖?its Poincar′e metric of constant Gaussian curvature ?2.By convention we have ‖ ·‖?= ‖·‖C?= ‖ ·‖K?.Concerning the Carath′edory metric and the Kobayashi metric on bounded symmetric domains and those of their totally geodesic complex submanifolds(which are themselves biholomorphic to bounded symmetric domains)we have the following theorem.

    Theorem 5.1 Let(X,g)be a Hermitian symmetric manifold of the noncompact type,and(Y,g|Y) ?→ (X,g)be a totally geodesic complex submanifold.Then,the inclusion map ?:Y ?→ X is a holomorphic isometric embedding with respect to the Carath′eodory(and equivalently the Kobayashi)metric.

    Proof In this proof for a complex manifold M we denote by ‖ ·‖Mthe Carath′eodory pseudonorm on M.Write n(resp.m)for the complex dimension of X(resp.Y).Let χ:? be the Harish-Chandra realization of X as a bounded domain ? ? Cn.Since(Y,g|Y) ?→(X,g)is a totally geodesic complex manifold,S:= χ(Y)=E∩? for an m-dimensional complex vector subspace E ? Cn.By a theorem of Wong-Royden based on Lempert’s theorem on extremal holomorphic Kobayashi disks on strictly convex bounded domains,we know that the infinitesimal Carath′eodory and Kobayashi metrics on ?.S=E ∩ ?,being the intersection of a bounded domain with a complex linear subspace,is itself a weakly convex domain in the complex vector space E,thus the infinitesimal Carath′eodory and Kobayashi metrics agree on S.To prove the theorem it remains to show that the inclusion ?:S ?→ ? is an isometric embedding with respect to the Carath′eodory metrics.

    Given any point x ∈ S and any vector η of type(1,0)tangent to S at x,among all holomorphic maps h:S → ? of S into the unit disk ? as a consequence of Montel’s theorem and the homogeneity of? that there exists f:S → ? such that ‖?f(η)‖?realizes the supremum of all‖?h(η)‖?.Let now ρ :? → S be the holomorphic retract defined as in Theorem 1.1 as the orthogonal projection with respect to the Euclidean metric on Cn.Then,F:=f?ρ:?→?and we have ?F(η)= ?f(η)since ρ|S=idS.From the inclusion S ? ? we have

    On the other hand,by the choice of f we have ‖η‖CS= ‖?f(η)‖?,while the extension F:? →?yields

    Combining the two inequalities we have ‖η‖C?= ‖η‖CS,as desired.The proof of Theorem 5.1 is complete.

    Remark 5.1 Regarding the Theorem of Royden-Wong referred to in the second paragraph of the proof,the original unpublished manuscript was elaborated and further developed posthumously leading to the published work of Royden-Wong-Krantz[8],and there was also a different proof by Salinas[9]using operator theory.

    6 Appendix

    In the proof of Theorem 5.1,in place of quoting the Theorem of Royden-Wong,for the special case of a bounded symmetric domain in its Harish-Chandra realization ??Cn,one can assert the equivalence of the infinitesimal Carath′eodory metric ‖ ·‖C?and the infinitesimal Kobayashi metric ‖·‖K?by means of Theorem 1.1 itself,thus yielding a self-contained proof of the equivalence of‖·‖C?and ‖ ·‖K?independent of Lempert’s theorem in[3],as follows.

    Proposition 6.1 For any η ∈ T?we have ‖η‖C?= ‖η‖K?.

    Proof Write r for the rank of ? as a bounded symmetric domain.Let Π ? ? be a maximal polydisk passing through 0 ∈ ?,. Π ? ? is totally geodesic with respect to ds2?,and we have Π=V ∩?,where V ?Cnis a complex vector subspace,dimCV=r.By the Polydisk Theorem,any tangent vector ν ∈ T?is equivalent under the action of G0to a vector η ∈ T0(Π).Then,by Theorem 1.1,the image of the orthogonal projection ρ :? → V is exactly Π.Note that on the unit disk we have ‖·‖C?= ‖ ·‖K?from the definitions.On,for any x ∈ Π and η ∈ Π written as η =(η1,···,ηr)in terms of Euclidean coordinates,we have obviously

    The proof of Theorem 5.1,without quoting the theorem of Royden-Wong,shows that Π ? ? is an isometric embedding with respect to the Carath′eodory metric.Thus,‖η‖C?= ‖η‖CΠ.On the other hand,

    Acknowledgement The author would like to thank Sai-Kee Yeung for communicating his work[12],in which the key issue was a special case of a question of independent interest on the Euclidean geometry of Harish-Chandra realizations of bounded symmetric domains vis-avis totally geodesic complex submanifolds,a question settled conceptually here in the general form.He would like to dedicate the current article to the memory of Professor Gu Chaohao at this juncture 10 years after he left us.

    在线看a的网站| 欧美日韩亚洲高清精品| 国产国拍精品亚洲av在线观看| 亚洲精品自拍成人| 亚洲性久久影院| 男人添女人高潮全过程视频| 久久精品aⅴ一区二区三区四区 | 国产白丝娇喘喷水9色精品| 丝瓜视频免费看黄片| 国产成人av激情在线播放| 欧美亚洲 丝袜 人妻 在线| 女性生殖器流出的白浆| 亚洲国产毛片av蜜桃av| 免费黄色在线免费观看| 中文字幕av电影在线播放| 精品午夜福利在线看| 少妇被粗大猛烈的视频| 亚洲av电影在线进入| 天天躁夜夜躁狠狠躁躁| 午夜福利视频精品| 久久人人爽人人爽人人片va| 如日韩欧美国产精品一区二区三区| 国产有黄有色有爽视频| 亚洲,欧美,日韩| 久久久精品免费免费高清| 国产爽快片一区二区三区| 97精品久久久久久久久久精品| 王馨瑶露胸无遮挡在线观看| 亚洲欧洲日产国产| 精品国产一区二区久久| 这个男人来自地球电影免费观看 | 日韩中文字幕视频在线看片| 午夜av观看不卡| 90打野战视频偷拍视频| 日本91视频免费播放| 国产日韩欧美视频二区| 毛片一级片免费看久久久久| av片东京热男人的天堂| 91午夜精品亚洲一区二区三区| 亚洲精华国产精华液的使用体验| 香蕉精品网在线| 中文字幕精品免费在线观看视频 | 少妇猛男粗大的猛烈进出视频| 久久久国产一区二区| 两性夫妻黄色片 | 国产极品粉嫩免费观看在线| 免费女性裸体啪啪无遮挡网站| 少妇被粗大的猛进出69影院 | 看免费成人av毛片| 久久国产精品男人的天堂亚洲 | 国产永久视频网站| 九九在线视频观看精品| 亚洲欧美成人精品一区二区| 亚洲少妇的诱惑av| 建设人人有责人人尽责人人享有的| 成人18禁高潮啪啪吃奶动态图| 亚洲国产欧美在线一区| 日本与韩国留学比较| 全区人妻精品视频| 熟女av电影| 老女人水多毛片| 国产老妇伦熟女老妇高清| 亚洲精品久久午夜乱码| 18禁裸乳无遮挡动漫免费视频| 制服诱惑二区| 欧美精品人与动牲交sv欧美| 久久久久久久国产电影| 欧美精品亚洲一区二区| 美女内射精品一级片tv| 伦理电影免费视频| 日韩不卡一区二区三区视频在线| 国产黄色免费在线视频| 高清黄色对白视频在线免费看| 国产一区二区激情短视频 | 亚洲国产欧美在线一区| 久久精品国产自在天天线| 亚洲一码二码三码区别大吗| 国产精品一区二区在线观看99| 久久久欧美国产精品| 在线观看一区二区三区激情| 亚洲精品中文字幕在线视频| a级毛片黄视频| 国产精品久久久久成人av| av卡一久久| 最近中文字幕高清免费大全6| 亚洲情色 制服丝袜| 各种免费的搞黄视频| 69精品国产乱码久久久| 亚洲成国产人片在线观看| 亚洲情色 制服丝袜| 好男人视频免费观看在线| 下体分泌物呈黄色| 欧美 日韩 精品 国产| 国产在线一区二区三区精| 18禁观看日本| 亚洲图色成人| 又黄又爽又刺激的免费视频.| 成人综合一区亚洲| 两个人免费观看高清视频| 少妇被粗大的猛进出69影院 | 岛国毛片在线播放| 欧美老熟妇乱子伦牲交| 亚洲丝袜综合中文字幕| 男女无遮挡免费网站观看| 乱人伦中国视频| 免费看av在线观看网站| 亚洲av综合色区一区| 中文字幕制服av| 国产色爽女视频免费观看| 精品亚洲成a人片在线观看| 少妇的逼水好多| 女性生殖器流出的白浆| 男女边摸边吃奶| av.在线天堂| 欧美亚洲 丝袜 人妻 在线| 欧美日韩精品成人综合77777| 国产精品秋霞免费鲁丝片| 精品久久久久久电影网| 极品人妻少妇av视频| 99香蕉大伊视频| 亚洲av电影在线进入| 亚洲精品日韩在线中文字幕| 看免费成人av毛片| 午夜福利,免费看| 高清视频免费观看一区二区| 亚洲人成77777在线视频| 人成视频在线观看免费观看| 亚洲国产精品一区二区三区在线| 波野结衣二区三区在线| 日本免费在线观看一区| 欧美日韩一区二区视频在线观看视频在线| 99视频精品全部免费 在线| 肉色欧美久久久久久久蜜桃| 国产一区二区三区综合在线观看 | 七月丁香在线播放| 日本wwww免费看| 国产激情久久老熟女| 黑人猛操日本美女一级片| 观看美女的网站| 丝袜在线中文字幕| 久久久精品94久久精品| 免费久久久久久久精品成人欧美视频 | 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日本爱情动作片www.在线观看| 日本av手机在线免费观看| 亚洲 欧美一区二区三区| 久久青草综合色| 国产亚洲精品久久久com| 51国产日韩欧美| 国产又色又爽无遮挡免| 成年av动漫网址| 又黄又爽又刺激的免费视频.| 尾随美女入室| 久久久久精品人妻al黑| 色网站视频免费| 边亲边吃奶的免费视频| 这个男人来自地球电影免费观看 | 亚洲国产色片| 亚洲精品成人av观看孕妇| 国产乱来视频区| 久久精品国产鲁丝片午夜精品| 天天影视国产精品| 少妇的逼水好多| 91精品三级在线观看| 亚洲成色77777| 你懂的网址亚洲精品在线观看| 欧美日韩视频精品一区| 99香蕉大伊视频| 美女国产视频在线观看| 久久人人爽人人爽人人片va| 伦理电影免费视频| 午夜福利视频精品| 男人爽女人下面视频在线观看| 最近的中文字幕免费完整| 韩国av在线不卡| 伊人久久国产一区二区| 国产不卡av网站在线观看| 欧美激情 高清一区二区三区| 国产在线视频一区二区| 全区人妻精品视频| 亚洲激情五月婷婷啪啪| 亚洲天堂av无毛| 美女主播在线视频| 五月伊人婷婷丁香| 精品一区二区免费观看| 777米奇影视久久| 精品第一国产精品| 大片免费播放器 马上看| a级毛片黄视频| 999精品在线视频| 韩国精品一区二区三区 | 欧美精品一区二区免费开放| 又大又黄又爽视频免费| 美女国产视频在线观看| 国产高清国产精品国产三级| 日韩成人av中文字幕在线观看| 亚洲高清免费不卡视频| 国产黄色视频一区二区在线观看| 晚上一个人看的免费电影| 乱码一卡2卡4卡精品| 日韩精品免费视频一区二区三区 | 亚洲一码二码三码区别大吗| 91国产中文字幕| 亚洲av.av天堂| 中文精品一卡2卡3卡4更新| 制服人妻中文乱码| 亚洲精品日本国产第一区| 在线免费观看不下载黄p国产| 超碰97精品在线观看| 久久久久久人人人人人| 精品亚洲成国产av| 日韩欧美一区视频在线观看| 亚洲国产日韩一区二区| 午夜福利网站1000一区二区三区| 国产精品一国产av| 久久久久久久精品精品| 国产成人aa在线观看| 亚洲精品成人av观看孕妇| 97在线人人人人妻| 午夜视频国产福利| 欧美激情极品国产一区二区三区 | 色吧在线观看| 777米奇影视久久| 搡老乐熟女国产| 一本久久精品| 国产亚洲一区二区精品| 亚洲国产毛片av蜜桃av| 尾随美女入室| 久久鲁丝午夜福利片| 搡女人真爽免费视频火全软件| 黄色毛片三级朝国网站| 香蕉精品网在线| 深夜精品福利| 最黄视频免费看| 国精品久久久久久国模美| 久久久久久人妻| 久久久久久久久久久免费av| 日韩伦理黄色片| 免费大片18禁| 美女国产高潮福利片在线看| 国产亚洲精品第一综合不卡 | 国产成人免费观看mmmm| 黑人欧美特级aaaaaa片| 欧美日韩av久久| 免费黄频网站在线观看国产| 免费看光身美女| 亚洲av日韩在线播放| 精品国产一区二区久久| 高清不卡的av网站| 少妇熟女欧美另类| 91精品三级在线观看| 在线观看免费日韩欧美大片| 大片电影免费在线观看免费| 国产免费视频播放在线视频| 免费黄色在线免费观看| 丁香六月天网| 精品少妇黑人巨大在线播放| 国产成人精品一,二区| 久久狼人影院| 女人久久www免费人成看片| 久久久亚洲精品成人影院| 视频区图区小说| 国国产精品蜜臀av免费| 中文字幕av电影在线播放| 久久精品夜色国产| 久久精品国产鲁丝片午夜精品| 久久亚洲国产成人精品v| 免费女性裸体啪啪无遮挡网站| 日本av免费视频播放| 日本猛色少妇xxxxx猛交久久| 国产精品久久久久久av不卡| 国产精品一二三区在线看| 天天影视国产精品| 大香蕉久久网| 男女啪啪激烈高潮av片| 少妇被粗大猛烈的视频| 一级片免费观看大全| 中文字幕人妻熟女乱码| 日韩av免费高清视频| 18禁在线无遮挡免费观看视频| 少妇人妻精品综合一区二区| 亚洲伊人色综图| 97超碰精品成人国产| 香蕉丝袜av| 日本色播在线视频| 国产精品三级大全| 午夜福利视频精品| 日韩一区二区三区影片| 亚洲欧美色中文字幕在线| 亚洲精品美女久久av网站| 久久久久久久久久久久大奶| 国产麻豆69| 搡老乐熟女国产| 美国免费a级毛片| 妹子高潮喷水视频| 欧美精品高潮呻吟av久久| 亚洲中文av在线| 超色免费av| 国产一区亚洲一区在线观看| 啦啦啦视频在线资源免费观看| av国产久精品久网站免费入址| 在线天堂中文资源库| 欧美老熟妇乱子伦牲交| 在线看a的网站| 亚洲av成人精品一二三区| 青春草亚洲视频在线观看| 亚洲av免费高清在线观看| 女人被躁到高潮嗷嗷叫费观| 两个人免费观看高清视频| 九九在线视频观看精品| 日本午夜av视频| 色哟哟·www| 久久国产亚洲av麻豆专区| 曰老女人黄片| 天天影视国产精品| 夫妻性生交免费视频一级片| 国产精品国产三级专区第一集| 啦啦啦在线观看免费高清www| 91精品国产国语对白视频| 中文字幕制服av| 欧美激情 高清一区二区三区| 交换朋友夫妻互换小说| 99久久中文字幕三级久久日本| 亚洲色图综合在线观看| 日韩 亚洲 欧美在线| 又黄又爽又刺激的免费视频.| 老司机影院毛片| 亚洲av.av天堂| 国产片特级美女逼逼视频| 亚洲国产色片| 亚洲少妇的诱惑av| 免费大片黄手机在线观看| 国产精品国产三级专区第一集| 夫妻午夜视频| 女性被躁到高潮视频| 国产日韩欧美亚洲二区| 亚洲国产日韩一区二区| 久久99蜜桃精品久久| 免费av中文字幕在线| 美国免费a级毛片| 精品99又大又爽又粗少妇毛片| 日韩在线高清观看一区二区三区| 亚洲一码二码三码区别大吗| 最近最新中文字幕免费大全7| 91精品伊人久久大香线蕉| 久久久久国产精品人妻一区二区| 丝袜喷水一区| 插逼视频在线观看| 少妇人妻久久综合中文| 一区二区三区四区激情视频| 久久人人爽人人片av| 久热这里只有精品99| 国产熟女欧美一区二区| 久久这里只有精品19| 观看美女的网站| 国产69精品久久久久777片| 欧美激情 高清一区二区三区| 亚洲精品乱码久久久久久按摩| 久久人人爽人人爽人人片va| 一区二区三区乱码不卡18| 亚洲美女搞黄在线观看| 大香蕉久久网| 国产一区二区在线观看日韩| 青青草视频在线视频观看| 麻豆精品久久久久久蜜桃| 国产又色又爽无遮挡免| 黑人巨大精品欧美一区二区蜜桃 | 亚洲精华国产精华液的使用体验| 日本-黄色视频高清免费观看| 精品国产乱码久久久久久小说| 亚洲欧美日韩卡通动漫| 亚洲国产成人一精品久久久| 久久精品人人爽人人爽视色| 亚洲欧美成人综合另类久久久| 久久韩国三级中文字幕| av在线app专区| 黑丝袜美女国产一区| 日韩不卡一区二区三区视频在线| 丝袜美足系列| 国产乱人偷精品视频| 成人亚洲欧美一区二区av| av片东京热男人的天堂| 曰老女人黄片| 欧美变态另类bdsm刘玥| 69精品国产乱码久久久| 又大又黄又爽视频免费| 日日爽夜夜爽网站| 久久久国产欧美日韩av| 亚洲精品久久久久久婷婷小说| 亚洲精品久久午夜乱码| av线在线观看网站| 久久99蜜桃精品久久| 色婷婷久久久亚洲欧美| 人妻一区二区av| 成人国产麻豆网| 国语对白做爰xxxⅹ性视频网站| 在线观看免费视频网站a站| 最近最新中文字幕大全免费视频 | 亚洲内射少妇av| 蜜桃国产av成人99| 久久国产精品大桥未久av| 国产精品三级大全| 亚洲精品国产av蜜桃| 欧美激情极品国产一区二区三区 | 欧美亚洲日本最大视频资源| 日本-黄色视频高清免费观看| 青青草视频在线视频观看| 欧美 日韩 精品 国产| 久久久久久久亚洲中文字幕| 精品人妻偷拍中文字幕| 精品少妇久久久久久888优播| 高清毛片免费看| 国产熟女欧美一区二区| 精品一区在线观看国产| 久久久久久久大尺度免费视频| 亚洲经典国产精华液单| 亚洲av.av天堂| 亚洲欧美中文字幕日韩二区| 九草在线视频观看| 免费久久久久久久精品成人欧美视频 | 七月丁香在线播放| 少妇人妻精品综合一区二区| 十八禁网站网址无遮挡| 十分钟在线观看高清视频www| 水蜜桃什么品种好| 十八禁网站网址无遮挡| 久久久久视频综合| 成人二区视频| 亚洲精品aⅴ在线观看| 看免费av毛片| 亚洲欧美色中文字幕在线| 久久精品久久久久久噜噜老黄| 嫩草影院入口| 成人综合一区亚洲| 国产精品国产三级专区第一集| 国产成人免费无遮挡视频| 日本91视频免费播放| 亚洲激情五月婷婷啪啪| 亚洲精品av麻豆狂野| 高清在线视频一区二区三区| 一级片免费观看大全| 免费观看性生交大片5| 少妇精品久久久久久久| 天天操日日干夜夜撸| 黑人欧美特级aaaaaa片| 国产日韩欧美亚洲二区| 最新的欧美精品一区二区| 毛片一级片免费看久久久久| 日韩精品免费视频一区二区三区 | 极品人妻少妇av视频| 中文字幕精品免费在线观看视频 | 大码成人一级视频| 黄网站色视频无遮挡免费观看| 国产高清不卡午夜福利| 亚洲av男天堂| 三级国产精品片| 国产在线免费精品| av播播在线观看一区| 日日爽夜夜爽网站| 久久国产精品大桥未久av| 考比视频在线观看| 香蕉国产在线看| 久久久久网色| 国产白丝娇喘喷水9色精品| 少妇的逼好多水| 午夜精品国产一区二区电影| 国产精品 国内视频| 中文字幕精品免费在线观看视频 | 国产男人的电影天堂91| 国产精品久久久久久久久免| 美女脱内裤让男人舔精品视频| 狂野欧美激情性xxxx在线观看| 九九爱精品视频在线观看| 久久午夜综合久久蜜桃| 中文字幕制服av| 亚洲精品自拍成人| 久久韩国三级中文字幕| 久久狼人影院| 少妇人妻久久综合中文| 天堂俺去俺来也www色官网| 精品国产一区二区三区久久久樱花| 9色porny在线观看| 在线观看人妻少妇| freevideosex欧美| 国语对白做爰xxxⅹ性视频网站| 中国美白少妇内射xxxbb| 一本色道久久久久久精品综合| 久久久久久人妻| 99香蕉大伊视频| 亚洲国产成人一精品久久久| 制服诱惑二区| 亚洲国产欧美日韩在线播放| 观看av在线不卡| 国产精品久久久久久久久免| 成人黄色视频免费在线看| 国产精品久久久久久精品古装| 91国产中文字幕| 下体分泌物呈黄色| 亚洲成色77777| 国产亚洲最大av| 天天影视国产精品| 日韩伦理黄色片| 人妻系列 视频| 男女免费视频国产| 国产在视频线精品| 伦理电影大哥的女人| 国产高清国产精品国产三级| 国产淫语在线视频| 99热国产这里只有精品6| 侵犯人妻中文字幕一二三四区| 国产精品一区二区在线观看99| 国产精品女同一区二区软件| 成人综合一区亚洲| 日本vs欧美在线观看视频| 少妇人妻精品综合一区二区| 久久人妻熟女aⅴ| 久久午夜福利片| 伦理电影大哥的女人| 久久久久人妻精品一区果冻| 日本欧美视频一区| 美女国产视频在线观看| 久久久久久人人人人人| 国产精品偷伦视频观看了| 国产精品99久久99久久久不卡 | 国产高清国产精品国产三级| 一个人免费看片子| 少妇被粗大猛烈的视频| 最近2019中文字幕mv第一页| 99精国产麻豆久久婷婷| av在线播放精品| 欧美人与善性xxx| 日韩av免费高清视频| 新久久久久国产一级毛片| 69精品国产乱码久久久| 国产成人aa在线观看| 欧美日韩一区二区视频在线观看视频在线| 久久精品久久精品一区二区三区| 考比视频在线观看| av又黄又爽大尺度在线免费看| 亚洲图色成人| 日本午夜av视频| 麻豆精品久久久久久蜜桃| 寂寞人妻少妇视频99o| 亚洲婷婷狠狠爱综合网| 亚洲经典国产精华液单| 综合色丁香网| 午夜免费观看性视频| 国产精品人妻久久久影院| 国产亚洲精品第一综合不卡 | 国产黄色视频一区二区在线观看| 日本-黄色视频高清免费观看| 亚洲成人手机| 亚洲中文av在线| 精品少妇久久久久久888优播| 欧美变态另类bdsm刘玥| 又粗又硬又长又爽又黄的视频| 精品亚洲乱码少妇综合久久| 免费在线观看黄色视频的| 国产亚洲一区二区精品| 丝袜人妻中文字幕| 97人妻天天添夜夜摸| 永久网站在线| 又黄又粗又硬又大视频| 免费高清在线观看日韩| 国产免费一区二区三区四区乱码| 黄色配什么色好看| 黄色怎么调成土黄色| 国产伦理片在线播放av一区| 激情五月婷婷亚洲| a级片在线免费高清观看视频| 国国产精品蜜臀av免费| 考比视频在线观看| 亚洲综合色网址| 精品一区二区三卡| 大片电影免费在线观看免费| 亚洲第一av免费看| 高清av免费在线| 久久久精品免费免费高清| 亚洲内射少妇av| 日韩欧美一区视频在线观看| 又粗又硬又长又爽又黄的视频| 欧美97在线视频| 国国产精品蜜臀av免费| 午夜免费观看性视频| 男女国产视频网站| 国产不卡av网站在线观看| 欧美另类一区| 免费在线观看完整版高清| 久久99热这里只频精品6学生| 日韩,欧美,国产一区二区三区| 在线观看免费高清a一片| 黄色一级大片看看| av在线播放精品| 国产成人精品在线电影| 午夜福利视频精品| 日本免费在线观看一区| 王馨瑶露胸无遮挡在线观看| 国产一区二区激情短视频 | 永久免费av网站大全| 最近的中文字幕免费完整| 国产一区二区三区av在线| 国产爽快片一区二区三区| 亚洲国产av影院在线观看| 国产高清三级在线| 亚洲欧洲日产国产| 中国美白少妇内射xxxbb| 最近中文字幕高清免费大全6| 精品酒店卫生间| 日韩欧美精品免费久久| 永久网站在线| 少妇 在线观看| 亚洲熟女精品中文字幕| 国产在线一区二区三区精| 大码成人一级视频| 另类亚洲欧美激情|