• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Extrapolated Smoothing Descent Algorithm for Constrained Nonconvex and Nonsmooth Composite Problems?

    2022-12-06 07:56:24YunmeiCHENHongchengLIUWeinaWANG

    Yunmei CHENHongcheng LIU Weina WANG

    Abstract In this paper,the authors propose a novel smoothing descent type algorithm with extrapolation for solving a class of constrained nonsmooth and nonconvex problems,where the nonconvex term is possibly nonsmooth.Their algorithm adopts the proximal gradient algorithm with extrapolation and a safe-guarding policy to minimize the smoothed objective function for better practical and theoretical performance.Moreover,the algorithm uses a easily checking rule to update the smoothing parameter to ensure that any accumulation point of the generated sequence is an(affine-scaled)Clarke stationary point of the original nonsmooth and nonconvex problem.Their experimental results indicate the effectiveness of the proposed algorithm.

    Keywords Constrained nonconvex and nonsmooth optimization,Smooth approximation,Proximal gradient algorithm with extrapolation,Gradient descent algorithm,Image reconstruction

    1 Introduction

    Nonconvex and nonsmooth composite problems have been receiving much attention in modern science and technology,such as signal processing(see[9,17,51]),image restoration(see[19,32,34,49])and image reconstruction(see[2,15,33,39—40]).This is mainly because of their superior ability to produce sparser solutions and recover images with neater edges(see[11,22,32—34,49]).In particular,compared to unconstrained nonconvex models,the corresponding constrained models can achieve reasonable improvements when most pixel intensities of an image are around the boundary of a closed convex set(see[3—6,10,12,24,41,51]).In this paper,we focus on the following constrained nonconvex nonsmooth composite minimization

    where ? is a closed convex set,r(u)is a nonconvex possibly non-Lipschitz function and h(u)is a smooth function and possibly nonconvex.In image processing problems,r(u)in(1.1)can be considered as the regularization term dependent on the prior knowledge of images,such as?pregularization(0 ≤ p<1)(see[2,12,19,22,45,48—49,51]),h(u)can be considered as the fidelity term for measuring the deviation of a solution from the observation,such as the least squares data fitting term(see[2,37,43])and ? is usually a box constrained set.

    Algorithms for solving the nonsmooth and nonconvex problems of form(1.1)have been studied extensively,due to their wide range of applications.If h is smooth(possibly nonconvex)and r is simple(i.e.,its proximal operator has a closed form solution or the proximal point is easy to compute),the proximal gradient method(also known as the forward-backward splitting)is very effective(see[1,7,18,29]).An abstract convergence result for nonconvex descent methods including proximal gradient and gradient descent algorithms under a sufficient decrease condition and a relative inexact optimality condition has been presented in[1].For non-simple r,several inexact proximal gradient and gradient descent algorithms have developed to reduce computational cost while still ensuring convergence under certain conditions(see[1,21,24—25,28,30,38,47]).Moreover,a number of works were proposed to integrate the Nesterov’s accelerated gradient descent algorithm into the proximal gradient algorithm for improved iteration efficiency while maintaining convergence guarantee for nonconvex programming(see[20,27—28,39,42]).The iPiano algorithm combined proximal gradient method with an inertial force has better performance and nice convergence properties(see[35,44]).However,most of standard or accelerated and/or inexact proximal gradient algorithms for nonconvex programming require r to be smooth or satisfy the Kurdyka-Lojasiewicz(KL for short)inequality for global convergence(see[1,27,44,46]).In this work we consider more general nonconvex nonsmooth problem composed of gradient operators,which may not satisfy these conditions.

    For more general nonconvex and nonsmooth optimization problems,especially for the nonconvex component being also nonsmooth,a natural choice is to use the smoothing strategy(see[4—6,11—14,22,26,33—34,36]).Smoothing methods construct a sequence of smooth nonconvex problems to approximate the original nonsmooth problem,and each smooth problem with the fixed smoothing parameter can be solved by efficient algorithms such as the gradient descent method combined with line search(see[11]),the nonlinear conjugate gradient method(see[14])and the trust region Newton method(see[13]).By updating the smoothing parameter,smoothing algorithms are able to solve the original nonsmooth nonconvex optimizations and any accumulation point of the generated sequence is a Clarke stationary point when the gradient consistency of subdifferential associated with a smoothing function is proved(see[4—6,11—14]).For instance,[4]discussed the first order necessary optimality condition for local minimizers and defined the generalized stationary point for a class of constrained nonsmooth nonconvex problems where the feasible set is a closed convex set.Recently,to accelerate the smoothing method for nonconvex problems,[39]introduced a convergent smoothing gradient descent type algorithm with extrapolation technique.It can not only guarantee that any accumulation point is an(affine-scaled)Clarke stationary point,but also obtain better experimental results compared to the standard smoothing gradient descent method.Instead of directly converting the nonsmooth function into parameterized smooth function,iterative support shrinking with proximal linearization algorithms(see[19,30,40—41,48])obtained a nonconvex smooth objective function by putting nondifferentiable points of the nonsmooth function into constraints.These methods were easy to produce piecewise constant regions and thus were not suitable for recovering smooth parts of images.

    In this paper,we propose an accelerated smoothing descent algorithm for solving a general class of constrained nonsmooth nonconvex optimization problems,where the nonconvex term is a potential function composed with the L2norm of the gradient of the unknown function.Our algorithm adopts the proximal gradient algorithm with extrapolation and a safe-guarding policy to minimize the smoothed objective function to guarantee a better practical and theoretical performance.The smoothing method is inspired by[11],which is equivalent to Nesterov’s smoothing technique for non-smooth optimization(see[31]).Moreover,the algorithm uses a rule that is easy to implement to adoptively reduce the smoothing parameter.We can prove that any accumulation point of the generated sequence is an(affine-scaled)Clarke stationary point of the nonsmooth nonconvex problem(1.1).The main contributions are summarized as follows:

    ?We propose an extrapolated smoothing descent algorithm for constrained nonconvex nonsmooth minimization problems,where the nonconvex part is also nonsmooth and may not be simple or satisfy KL property.Our algorithm adopts the proximal gradient algorithm with extrapolation and a safe-guarding policy to minimize the smoothed objective function.The algorithm can also adaptively reduce the smoothing level to approach a stationary point of the original problem.

    ?We prove that the sequence generated by the proposed algorithm has at least an accumulation point,and any accumulation point of the sequence is an(affine-scaled)Clarke stationary point of the nonconvex and nonsmooth problem.Moreover,the total number of iterations required to terminate our algorithm with a given tolerance is also studied.

    ?We conduct a series of numerical experiments with comparisons to several existing descent type of algorithms with or without box constraints and with or without extrapolation for sparseview CT reconstruction.The experimental results demonstrate the effectiveness of the proposed algorithm.

    The paper is organized as follows.In Section 2,we identify a class of constrained nonconvex and nonsmooth optimization problems,and present an extrapolated smoothing descent algorithm(ESDA for short)for solving the problem.In the meantime the smoothing method and properties of the smoothed objective function are studied.In Section 3,we provide convergence and iteration complexity analyses of the proposed algorithm.Experimental results are given in Section 4.At last,conclusions are summarized in Section 5.

    2 The Problem and the Algorithm

    2.1 Preliminaries

    Using the definition of Clarke generalized directional derivative(see[8,16])we give the following definitions.

    Definition 2.1 Assume that g:Rn→(?∞,+∞]is a locally Lipschitz continuous function.The Clarke subdifferential of g at x ∈ Rnis defined as

    2.2 The problem and basic assumptions

    2.3 The algorithm

    Before we present the proposed algorithm,we first define a smooth approximation problem for the nonsmooth and nonconvex problem(2.1).

    The function ?(‖diu‖)is nonsmooth and possibly also non-Lipschitz at ‖diu‖ =0 when ?′(0+)=+∞.Inspired by the approximation technique for|t|in[11],we approximate ?(‖diu‖)

    Table 1 Nonconvex nonsmooth potential functions with a parameter β>0.

    Algorithm 1:Extrapolated Smoothing Decent Algorithm(ESDA for short)for(2.1)Step 0:Input(ρ,δ,τ1)∈(0,1),τ>0,Maximum number of iterations K or tolerance εtol>0;Initialize u?1=u0 ∈ ?,θ0=1,and η?1= η0>0.Step 1:For k=0,1,2,···,Step 1.1:Set θk+1=1+√1+4θ2 2 .Step 1.2:Let wk+1=uk+(θk?1 k)(uk?uk?1).Step 1.3:Define qk+1:θk+1(qk+1=wk+1, if Fηk(wk+1)≤ Fηk(uk)and wk+1∈ ?,uk, otherwise. (2.10)Step 1.4:Compute buk+1:zk+1=qk+1?s0?h(qk+1), (2.11)buk+1= Π?(zk+1?sk+1?rηk(zk+1)), (2.12)Step 1.5:Compute uk+1:uk+1= Π?(uk? αk+1?Fηk(uk)),if (2.13)Fηk(uk+1)? Fηk(uk)≤ ?δ‖uk+1?uk‖2. (2.14)Otherwise,αk+1← ραk+1and go back to(2.13). (2.15)Step 1.6:Choose uk+1:(uk+1=uk+1, if Fηk( buk+1)≤ Fηk(uk+1),uk+1,otherwise. (2.16)b Step 2:Update ηk+1(ηk+1=τ1ηk, if ‖uk+1?uk‖ < τηkαk+1,ηk, otherwise.(2.17)Step 3:If τηkαk+1< εtol,terminate and output uk+1.

    Note that in ESDA the generation ofin(2.11)can be viewed as using the proximal gradient algorithm with extrapolation,where s0and sk+1are stepsizes determined by user.Theplays a role in ESDA to attain better efficiency than the standard gradient descent method.Our experimental results confirmed this.However,due to the nonconvexity and nonsmoothness of problem(2.1),the sequencemay not converge.Thein(2.13)is obtained by the standard gradient descent to safeguard the convergence of the ESDA.The stepsize αk+1is determined by a simple line search strategy in(2.14).We set uk+1beingorwhichever has lower value of Fηkto encourage reduction of the objective function.

    3 Convergence and Complexity Analysis

    In this section,we will discuss the convergence of ESDA and the bound for the number of the iterations required to terminate the algorithm with the prescribed accuracy εtolfor

    First,we give the following lemma that has been proved in[39].

    Now we are ready to present the convergence result for ESDA.

    Theorem 3.3 Let{uk}is the sequence generated by the ESDA with any u0∈ ?,δ>0,εtol=0,and the maximum number of iterations K= ∞.Let{ukl+1}be the subsequence of{uk},where the reduction criterion in Step 2 is satisfied for k=kland l=1,2,···Then the following statements hold:

    1.{ukl+1}has at least one accumulation point on ?.

    2.If ?(t)is continuously differentiable on[0,+∞),every accumulation point of{ukl+1}is a Clarke stationary point of problem(2.1).

    3.If ?(t)is continuously differentiable only on(0,+∞),then every accumulation point of{ukl+1}is an affine-scaled Clarke stationary point of model(2.1),i.e.,if u?is an accumulation

    4 Numerical Experiments

    In this section,we consider a class of box constrained problem(2.1),where ?={u∈Rn:l1e ≤ u ≤ l2e}and e=(1,1,···,1)T∈ Rnin the application of sparse view CT reconstruction.To exam the performance of the proposed algorithm,we compare it to the standard smoothing gradient descent method to minimize the same objective function with and without box constraints,named as(BSGD for short)and(SGD for short)respectively.The BSGD is the same as the proposed algorithm without Steps 1.1—1.4.We also compare the proposed algorithm with accelerated smoothing algorithm(ESA for short)in[39]for corresponding unconstrained problem.All numerical experiments are conducted in MATLAB R2016a running on a PC with Intel Core i5 CPU at 1.6GHz and 8G of memory.Besides visual evaluation we also use peak signal-to-noise ratio(PSNR for short)to evaluate the quality of reconstruction.The PSNR is defined by

    CT reconstruction problem can be modeled as an inverse problem f=Hu+υ,where u is the image to be reconstructed,H is the system matrix for CT scanner depending on the beam geometer,f is the noisy sinogram measurements and υ is the noise with normal distribution.Here,we consider 2D parallel-beam CT with an N×N domain,usingparallel rays for each angle as in[23].The regular view CT has angles 0,1,···,179,whereas the sparse view CT that we deal with has angles 0,5,10,···,175(i.e.,=36 rotated projection views).Number of parallel rays for each angle and the distance from the first ray to the last ray are set to be the nearest integer to,respectively.H is implemented by Radon transform.The images used in this experiment are the“Shepp-Logan”phantom(128× 128),“NCAT”phantom(256×256)and the cerebral phantom(512×512)(see[50])shown in Figure 1.The corresponding noisy sinograms for parallel-beam scanning with=36 are also presented in this figure.

    Figure 1 Test images and the corresponding sinogram observations when =36.

    In Figure 4,we present reconstruction results on“cerebral”after 100 iterations with=36.In this experiment,we adopt same rules as above to tune parameters in all compared algorithms.The PSNR of reconstructed images from SGD,ESA,BSGD and proposed algorithms for three different regularization functions are shown under the image in this figure.The improvement of PSNR by the proposed algorithm is about 1.01dB,0.20dB,0.90dB increase on average for those regularization functions compared to SGD,ESA and BSGD,respectively.To better visualize the results,the zoomed regions are shown in Figure 5.

    Figure 2 Results after 100 iterations on “Shepp-Logan”.From the first column to the third column:Reconstructions by different potential functions.From the first row to the fourth row:Reconstructions by SGD,ESA,BSGD and the proposed algorithm.PSNR values are listed.

    Figure 3 Results after 100 iterations on “NCAT”.From the first column to the third column:Reconstructions by different potential functions.From the first row to the fourth row:Reconstructions by SGD,ESA,BSGD and the proposed algorithm.PSNR values are listed.

    Figure 4 Results after 100 iterations on “cerebral”.From the first column to the third column:Reconstructions by different potential functions.From the first row to the fourth row:Reconstructions by SGD,ESA,BSGD and the proposed algorithm.PSNR values are listed.

    Figure 5 The zoomed regions corresponding to results in Figure 4.

    Figure 6 From left to right:The PSNR value of the recovered images by BSGD and the proposed algorithm versus iteration with three potential functions for “Shepp-Logan”,“NCAT” and “cerebral”.

    5 Conclusion

    In this paper,we proposed a smoothing inexact projected gradient descent with extrapolation to solve a class of constrained nonsmooth nonconvex minimization problems.The inexact projected gradient descent with extrapolation is applied to improve the performance of minimizing the corresponding smoothed nonconvex problem.Combined with a safe-guarding policy and adaptively updating the smoothing parameter,the proposed algorithm guarantees that any accumulation point of the sequence generated by this algorithm is an(affine-scaled)Clarke stationary point of the original nonsmooth and nonconvex problem.Numerical experiments and comparisons indicated that the proposed algorithm performed better visually and quantitatively than nonaccelerated gradient descent algorithms for the same model with or without box constraints for CT reconstruction problem.

    一级,二级,三级黄色视频| 美女扒开内裤让男人捅视频| 看片在线看免费视频| 老司机在亚洲福利影院| 乱人伦中国视频| 1024香蕉在线观看| 黄片大片在线免费观看| 99久久综合精品五月天人人| 亚洲一区二区三区不卡视频| 亚洲精品国产区一区二| 天堂√8在线中文| 最近最新免费中文字幕在线| 国产片内射在线| 亚洲午夜精品一区,二区,三区| 免费看a级黄色片| 国产三级黄色录像| 男人操女人黄网站| 亚洲在线自拍视频| 欧美 日韩 精品 国产| 免费在线观看完整版高清| 一级,二级,三级黄色视频| 熟女少妇亚洲综合色aaa.| 黑人操中国人逼视频| 大型黄色视频在线免费观看| 亚洲中文av在线| 欧美色视频一区免费| 欧美大码av| 欧美精品亚洲一区二区| 18禁国产床啪视频网站| 制服诱惑二区| 国产激情欧美一区二区| 91字幕亚洲| 亚洲熟妇熟女久久| 国产麻豆69| 少妇粗大呻吟视频| 久久精品aⅴ一区二区三区四区| 亚洲av第一区精品v没综合| 国产成人免费观看mmmm| 亚洲av片天天在线观看| 色在线成人网| 最近最新中文字幕大全免费视频| 黑人猛操日本美女一级片| 精品国产国语对白av| 老司机靠b影院| 深夜精品福利| 一边摸一边抽搐一进一小说 | 国产精品久久久久久精品古装| 亚洲成人国产一区在线观看| 欧美人与性动交α欧美精品济南到| 欧美久久黑人一区二区| 国产高清视频在线播放一区| 视频区欧美日本亚洲| 18禁黄网站禁片午夜丰满| 高潮久久久久久久久久久不卡| 变态另类成人亚洲欧美熟女 | 日韩大码丰满熟妇| 亚洲精品粉嫩美女一区| 男女床上黄色一级片免费看| 女性生殖器流出的白浆| 亚洲七黄色美女视频| 欧美乱妇无乱码| 女人精品久久久久毛片| 国内久久婷婷六月综合欲色啪| 国产精品电影一区二区三区 | 大陆偷拍与自拍| 久久精品成人免费网站| 两人在一起打扑克的视频| 亚洲欧洲精品一区二区精品久久久| 国产1区2区3区精品| 亚洲欧美精品综合一区二区三区| 自线自在国产av| 久久狼人影院| 电影成人av| 午夜成年电影在线免费观看| 国产精品亚洲一级av第二区| 19禁男女啪啪无遮挡网站| 国产熟女午夜一区二区三区| 精品少妇久久久久久888优播| 飞空精品影院首页| 欧美日韩乱码在线| 久久精品国产99精品国产亚洲性色 | 99精品欧美一区二区三区四区| 国产精华一区二区三区| 色综合婷婷激情| 亚洲精品在线观看二区| 亚洲av欧美aⅴ国产| 日韩欧美在线二视频 | 精品熟女少妇八av免费久了| 天天躁日日躁夜夜躁夜夜| 亚洲成人免费av在线播放| 久久中文字幕人妻熟女| av网站在线播放免费| 亚洲午夜精品一区,二区,三区| 国产主播在线观看一区二区| 麻豆国产av国片精品| 国产精品电影一区二区三区 | 法律面前人人平等表现在哪些方面| 欧美日韩精品网址| 国产一区二区三区综合在线观看| aaaaa片日本免费| 无限看片的www在线观看| 国产在线观看jvid| 午夜福利在线观看吧| 中文字幕最新亚洲高清| 好男人电影高清在线观看| 午夜福利在线免费观看网站| 色综合欧美亚洲国产小说| 九色亚洲精品在线播放| 大香蕉久久网| 久久久国产一区二区| 成年版毛片免费区| 亚洲,欧美精品.| 午夜精品在线福利| 两性午夜刺激爽爽歪歪视频在线观看 | 热99久久久久精品小说推荐| 欧美亚洲 丝袜 人妻 在线| 黄色怎么调成土黄色| 成人国产一区最新在线观看| 69av精品久久久久久| 亚洲精品国产色婷婷电影| 热re99久久精品国产66热6| 捣出白浆h1v1| 中文字幕色久视频| 亚洲精品在线美女| 俄罗斯特黄特色一大片| 国产高清videossex| 成人特级黄色片久久久久久久| 国产激情久久老熟女| 国产激情欧美一区二区| 国产日韩欧美亚洲二区| 亚洲精品中文字幕一二三四区| 欧美中文综合在线视频| 999精品在线视频| 久久精品人人爽人人爽视色| 国产激情久久老熟女| 激情视频va一区二区三区| 欧美激情极品国产一区二区三区| 老司机福利观看| 国产精品亚洲一级av第二区| 精品久久久久久久毛片微露脸| 自拍欧美九色日韩亚洲蝌蚪91| 曰老女人黄片| 亚洲精品美女久久久久99蜜臀| 99热国产这里只有精品6| 啦啦啦视频在线资源免费观看| 丰满的人妻完整版| av天堂久久9| 一进一出抽搐动态| 亚洲色图 男人天堂 中文字幕| 亚洲国产欧美网| 美女扒开内裤让男人捅视频| 丰满迷人的少妇在线观看| 欧美色视频一区免费| 99久久精品国产亚洲精品| 啪啪无遮挡十八禁网站| 精品久久久久久久毛片微露脸| 久久中文字幕一级| 91国产中文字幕| 在线av久久热| 国产亚洲欧美98| 午夜精品久久久久久毛片777| 1024香蕉在线观看| 欧美日韩亚洲高清精品| 亚洲熟女毛片儿| 丁香欧美五月| 深夜精品福利| 男女之事视频高清在线观看| 亚洲第一青青草原| 国产免费现黄频在线看| 母亲3免费完整高清在线观看| 亚洲国产欧美一区二区综合| 日韩大码丰满熟妇| 十分钟在线观看高清视频www| 成年女人毛片免费观看观看9 | 99国产精品免费福利视频| 亚洲aⅴ乱码一区二区在线播放 | 中文字幕高清在线视频| 热re99久久国产66热| 亚洲成人手机| 91九色精品人成在线观看| 99久久99久久久精品蜜桃| 亚洲av成人一区二区三| 韩国av一区二区三区四区| 中文字幕精品免费在线观看视频| 久久精品国产综合久久久| 美国免费a级毛片| 国产免费男女视频| 欧美不卡视频在线免费观看 | 精品免费久久久久久久清纯 | 精品久久久精品久久久| 欧美性长视频在线观看| 欧美激情久久久久久爽电影 | 亚洲av日韩在线播放| 亚洲aⅴ乱码一区二区在线播放 | 人妻丰满熟妇av一区二区三区 | 午夜影院日韩av| 又黄又爽又免费观看的视频| 午夜福利影视在线免费观看| 亚洲国产中文字幕在线视频| 日日摸夜夜添夜夜添小说| 国产乱人伦免费视频| 男女午夜视频在线观看| 亚洲成av片中文字幕在线观看| 高清视频免费观看一区二区| 午夜福利一区二区在线看| 俄罗斯特黄特色一大片| 国产熟女午夜一区二区三区| 国产高清国产精品国产三级| 欧美日韩av久久| 在线观看66精品国产| 亚洲精品在线美女| 亚洲五月色婷婷综合| 少妇粗大呻吟视频| 国产淫语在线视频| 91麻豆av在线| 亚洲国产中文字幕在线视频| 久久ye,这里只有精品| 老司机午夜福利在线观看视频| 多毛熟女@视频| 亚洲精品国产色婷婷电影| 啦啦啦视频在线资源免费观看| 在线十欧美十亚洲十日本专区| 麻豆乱淫一区二区| 久久久久久久国产电影| 日本五十路高清| 精品国产一区二区三区久久久樱花| 亚洲精华国产精华精| 国产亚洲欧美98| 中文字幕高清在线视频| 国产亚洲精品久久久久久毛片 | 在线免费观看的www视频| 亚洲av第一区精品v没综合| 高清毛片免费观看视频网站 | 亚洲熟妇中文字幕五十中出 | 国产精品久久久久久人妻精品电影| 狠狠婷婷综合久久久久久88av| 午夜福利在线免费观看网站| 国产欧美日韩精品亚洲av| 亚洲精品美女久久av网站| 免费女性裸体啪啪无遮挡网站| 操出白浆在线播放| 色婷婷av一区二区三区视频| xxxhd国产人妻xxx| 国产精品1区2区在线观看. | 99在线人妻在线中文字幕 | 午夜免费鲁丝| 91九色精品人成在线观看| 精品电影一区二区在线| 精品国产一区二区三区四区第35| 1024香蕉在线观看| 夜夜爽天天搞| 在线av久久热| 国产精品免费大片| 亚洲精品av麻豆狂野| 999久久久精品免费观看国产| 精品人妻在线不人妻| av网站免费在线观看视频| 日本撒尿小便嘘嘘汇集6| 一区在线观看完整版| 欧美丝袜亚洲另类 | av在线播放免费不卡| 99re6热这里在线精品视频| 91av网站免费观看| 十八禁人妻一区二区| 精品无人区乱码1区二区| 国内久久婷婷六月综合欲色啪| 亚洲色图综合在线观看| www日本在线高清视频| 国产99白浆流出| 国产日韩欧美亚洲二区| 一区福利在线观看| 久久久久精品人妻al黑| 中文字幕人妻丝袜制服| 久久精品成人免费网站| 老司机午夜十八禁免费视频| 正在播放国产对白刺激| 欧美乱码精品一区二区三区| 国产精品久久久久久精品古装| 深夜精品福利| 青草久久国产| 淫妇啪啪啪对白视频| 中文亚洲av片在线观看爽 | 亚洲av电影在线进入| 久久久久久久久久久久大奶| 性少妇av在线| 欧美久久黑人一区二区| 国产亚洲av高清不卡| 国产精品免费一区二区三区在线 | 精品一区二区三区四区五区乱码| 国产日韩一区二区三区精品不卡| 少妇 在线观看| 91麻豆精品激情在线观看国产 | 一级,二级,三级黄色视频| 久久久久久亚洲精品国产蜜桃av| 日日爽夜夜爽网站| 亚洲午夜理论影院| 黄网站色视频无遮挡免费观看| 国产不卡av网站在线观看| 满18在线观看网站| 中出人妻视频一区二区| 看黄色毛片网站| 国产成人欧美| 一区二区日韩欧美中文字幕| 丝袜美腿诱惑在线| 亚洲人成电影免费在线| 国产日韩一区二区三区精品不卡| 成年版毛片免费区| 巨乳人妻的诱惑在线观看| 老汉色av国产亚洲站长工具| 一级片免费观看大全| 国产亚洲欧美精品永久| 久久久久国产精品人妻aⅴ院 | 欧美亚洲 丝袜 人妻 在线| 成人影院久久| 欧美日韩av久久| 亚洲国产看品久久| 国产麻豆69| 成人影院久久| 在线观看免费视频日本深夜| av在线播放免费不卡| 精品免费久久久久久久清纯 | 免费看a级黄色片| 亚洲av日韩在线播放| 精品欧美一区二区三区在线| 中文字幕精品免费在线观看视频| 丝瓜视频免费看黄片| 久久天堂一区二区三区四区| 亚洲九九香蕉| 亚洲一区高清亚洲精品| 中文字幕精品免费在线观看视频| 一区福利在线观看| 嫁个100分男人电影在线观看| 一级毛片女人18水好多| 老汉色∧v一级毛片| 国产蜜桃级精品一区二区三区 | 国产成人av激情在线播放| 丰满饥渴人妻一区二区三| 午夜福利乱码中文字幕| cao死你这个sao货| 中文字幕最新亚洲高清| 亚洲中文字幕日韩| 一区福利在线观看| 久久天躁狠狠躁夜夜2o2o| 国产精品一区二区免费欧美| 老熟妇仑乱视频hdxx| 久久中文字幕人妻熟女| 国产男女内射视频| 又黄又爽又免费观看的视频| 韩国精品一区二区三区| 99re6热这里在线精品视频| 超色免费av| 搡老乐熟女国产| av线在线观看网站| 香蕉丝袜av| 黄色片一级片一级黄色片| 国产激情欧美一区二区| 丝袜在线中文字幕| 日本精品一区二区三区蜜桃| 国产精华一区二区三区| 免费久久久久久久精品成人欧美视频| 久久精品亚洲精品国产色婷小说| 精品人妻1区二区| 免费高清在线观看日韩| 精品国产一区二区久久| 一级毛片女人18水好多| 国产精品久久久久久精品古装| 午夜福利,免费看| 久久性视频一级片| 久久ye,这里只有精品| 少妇 在线观看| 91麻豆精品激情在线观看国产 | 免费观看人在逋| 亚洲精品乱久久久久久| 亚洲一区二区三区不卡视频| 少妇粗大呻吟视频| 中文字幕人妻丝袜一区二区| 在线观看免费午夜福利视频| 咕卡用的链子| 午夜福利乱码中文字幕| 在线观看免费日韩欧美大片| 窝窝影院91人妻| 亚洲五月色婷婷综合| 国产精品国产av在线观看| a级毛片在线看网站| 国产亚洲欧美精品永久| 激情视频va一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 日韩精品免费视频一区二区三区| 高清毛片免费观看视频网站 | 三级毛片av免费| 高清欧美精品videossex| 久久国产精品男人的天堂亚洲| 久久久久久久久久久久大奶| 多毛熟女@视频| 丝袜在线中文字幕| 日韩欧美免费精品| 高清在线国产一区| 12—13女人毛片做爰片一| 香蕉丝袜av| 狂野欧美激情性xxxx| 下体分泌物呈黄色| 80岁老熟妇乱子伦牲交| 欧美成狂野欧美在线观看| 99精品在免费线老司机午夜| av中文乱码字幕在线| 国产成人精品久久二区二区91| 亚洲精品国产色婷婷电影| 黄色 视频免费看| 午夜福利在线免费观看网站| 欧美日韩亚洲国产一区二区在线观看 | 亚洲在线自拍视频| av中文乱码字幕在线| 久久天躁狠狠躁夜夜2o2o| 99国产精品99久久久久| 国产日韩欧美亚洲二区| 最近最新中文字幕大全免费视频| 精品国产乱子伦一区二区三区| 免费少妇av软件| 国产色视频综合| 色综合婷婷激情| 国产又色又爽无遮挡免费看| 国产熟女午夜一区二区三区| 成年版毛片免费区| 国产亚洲欧美在线一区二区| 欧美国产精品一级二级三级| 日韩制服丝袜自拍偷拍| 亚洲精品自拍成人| 黄色怎么调成土黄色| 午夜影院日韩av| 性色av乱码一区二区三区2| 国产成人啪精品午夜网站| 又紧又爽又黄一区二区| 免费高清在线观看日韩| 伦理电影免费视频| 日本五十路高清| 国产精品成人在线| 国精品久久久久久国模美| 啦啦啦免费观看视频1| 精品熟女少妇八av免费久了| 亚洲自偷自拍图片 自拍| 国产xxxxx性猛交| 久久久久久久久久久久大奶| 欧美午夜高清在线| 久久久久精品人妻al黑| 亚洲成国产人片在线观看| 一边摸一边做爽爽视频免费| 午夜福利免费观看在线| 国产高清videossex| 国产日韩欧美亚洲二区| 亚洲五月婷婷丁香| 无限看片的www在线观看| 亚洲精品美女久久av网站| 欧美一级毛片孕妇| 黑人巨大精品欧美一区二区mp4| 亚洲中文av在线| 色综合欧美亚洲国产小说| 丝袜在线中文字幕| cao死你这个sao货| 一级毛片高清免费大全| 在线永久观看黄色视频| 99热网站在线观看| 一进一出抽搐gif免费好疼 | 一个人免费在线观看的高清视频| 欧美中文综合在线视频| 自线自在国产av| 久久精品亚洲av国产电影网| 国产精品乱码一区二三区的特点 | 两个人看的免费小视频| 巨乳人妻的诱惑在线观看| 操出白浆在线播放| 欧美乱色亚洲激情| 人妻一区二区av| 精品国产一区二区久久| 久久国产精品影院| 免费观看人在逋| 国产成人av激情在线播放| 久久狼人影院| 99热网站在线观看| 亚洲精品国产区一区二| 中文字幕另类日韩欧美亚洲嫩草| 搡老乐熟女国产| 波多野结衣av一区二区av| 一区二区三区精品91| 两性午夜刺激爽爽歪歪视频在线观看 | 国产成人精品无人区| 脱女人内裤的视频| 久久久精品免费免费高清| 99热网站在线观看| 久久久久久人人人人人| 国产精华一区二区三区| 国产精品一区二区精品视频观看| 18禁美女被吸乳视频| 9191精品国产免费久久| 99国产精品免费福利视频| 一级片'在线观看视频| 12—13女人毛片做爰片一| a级毛片在线看网站| 又黄又爽又免费观看的视频| 极品教师在线免费播放| 高潮久久久久久久久久久不卡| 午夜福利欧美成人| 国产极品粉嫩免费观看在线| 一边摸一边做爽爽视频免费| 日韩欧美免费精品| 美女福利国产在线| a级片在线免费高清观看视频| 一级片'在线观看视频| 亚洲少妇的诱惑av| 精品熟女少妇八av免费久了| 侵犯人妻中文字幕一二三四区| 国产精品av久久久久免费| 我的亚洲天堂| 在线观看免费视频网站a站| 国产97色在线日韩免费| 久久人人97超碰香蕉20202| 青草久久国产| 久久国产精品影院| 国产精品久久久久久人妻精品电影| 欧美 亚洲 国产 日韩一| 国产成人精品在线电影| av国产精品久久久久影院| 人妻 亚洲 视频| 老司机午夜十八禁免费视频| 成人av一区二区三区在线看| 亚洲五月婷婷丁香| 又紧又爽又黄一区二区| 国产亚洲精品久久久久5区| 国产成人免费无遮挡视频| 高清视频免费观看一区二区| 中文字幕最新亚洲高清| avwww免费| 日本vs欧美在线观看视频| 国产精品综合久久久久久久免费 | 夫妻午夜视频| 99re在线观看精品视频| 大码成人一级视频| 亚洲国产精品sss在线观看 | 国产精品九九99| 国产aⅴ精品一区二区三区波| 亚洲国产毛片av蜜桃av| bbb黄色大片| 亚洲精品国产区一区二| 视频在线观看一区二区三区| 欧美国产精品va在线观看不卡| 午夜福利在线免费观看网站| 高潮久久久久久久久久久不卡| 国产蜜桃级精品一区二区三区 | 嫩草影视91久久| 两性夫妻黄色片| 变态另类成人亚洲欧美熟女 | 日韩免费高清中文字幕av| 亚洲精品粉嫩美女一区| 久久久久久久久免费视频了| 人妻 亚洲 视频| 国产亚洲欧美精品永久| 日韩成人在线观看一区二区三区| 无人区码免费观看不卡| 999精品在线视频| 欧美亚洲 丝袜 人妻 在线| 欧美日韩精品网址| 亚洲欧美一区二区三区黑人| 好看av亚洲va欧美ⅴa在| 视频区欧美日本亚洲| 亚洲精品久久午夜乱码| av视频免费观看在线观看| 国产男女内射视频| 99re在线观看精品视频| 91麻豆av在线| 日本欧美视频一区| 中出人妻视频一区二区| 国产日韩欧美亚洲二区| 日本wwww免费看| ponron亚洲| 国产熟女午夜一区二区三区| 不卡一级毛片| 国产色视频综合| 999精品在线视频| av福利片在线| 黑人巨大精品欧美一区二区蜜桃| 精品无人区乱码1区二区| 乱人伦中国视频| 美女 人体艺术 gogo| 悠悠久久av| 一区二区三区精品91| 中国美女看黄片| 丝袜在线中文字幕| e午夜精品久久久久久久| 欧美av亚洲av综合av国产av| 成年女人毛片免费观看观看9 | 久久国产精品大桥未久av| 女人爽到高潮嗷嗷叫在线视频| 中文字幕人妻丝袜制服| 色婷婷久久久亚洲欧美| а√天堂www在线а√下载 | 国产男女超爽视频在线观看| 精品卡一卡二卡四卡免费| 国产男女超爽视频在线观看| 久久精品国产综合久久久| 欧美日韩乱码在线| 美女国产高潮福利片在线看| cao死你这个sao货| 久热爱精品视频在线9| 中文欧美无线码| 欧美日韩亚洲高清精品| 亚洲人成电影免费在线| 一进一出抽搐gif免费好疼 | 国产成人影院久久av| 精品国产亚洲在线| 午夜精品久久久久久毛片777| 999久久久国产精品视频| 精品无人区乱码1区二区| 午夜影院日韩av| 老司机福利观看| 午夜福利一区二区在线看| 黑人欧美特级aaaaaa片|