• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Rapid fabrication of zwitterionic sulfobetaine vinylimidazole-based monoliths via photoinitiated copolymerization for hydrophilic interaction chromatography

    2022-12-02 01:52:02QiqinWngLingjueSunHuihuiWuNingDengXinglongZhoJingweiZhouTingtingZhngHiHnZhengjinJing
    Journal of Pharmaceutical Analysis 2022年5期

    Qiqin Wng,Lingjue Sun,Huihui Wu,Ning Deng,Xinglong Zho,Jingwei Zhou,Tingting Zhng,Hi Hn,**,Zhengjin Jing,d,*

    aInstitute of Pharmaceutical Analysis,College of Pharmacy,Jinan University,Guangzhou,510632,China

    bAnhui Prevention and Treatment Center for Occupational Disease,Anhui No.2 Provincial People's Hospital,Hefei,230041,China

    cKey Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education,Lab of Biochemistry,College of Chemistry,Xiangtan University,Xiangtan,Hunan,411105,China

    dDepartment of Pharmacy and Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine&New Drug Research,Jinan University,Guangzhou,510632,China

    ABSTRACT

    Zwitterionic sulfobetaine-based monolithic stationary phases have attracted increasing attention for their use in hydrophilic interaction chromatography.In this study,a novel hydrophilic polymeric monolith was fabricated through photo-initiated copolymerization of 3-(3-vinyl-1-imidazolio)-1-propanesulfonate(SBVI)with pentaerythritol triacrylate using methanol and tetrahydrofuran as the porogenic system.Notably,the duration for the preparation of this novel monolith was as little as 5 min,which was significantly shorter than that required for previously reported sulfobetaine-based monoliths prepared via conventional thermally initiated copolymerization.Moreover,these monoliths showed good morphology,permeability,porosity(62.4%),mechanical strength(over 15 MPa),column efficiency(51,230 plates/m),and reproducibility(relative standard deviations for all analytes were lower than 4.6%).Mechanistic studies indicated that strong hydrophilic and negative electrostatic interactions might be responsible for the retention of polar analytes on the zwitterionic SBVI-based monolith.In particular,the resulting monolith exhibited good anti-protein adhesion ability and low nonspecific protein adsorption.These excellent features seem to favor its application in bioanalysis.Therefore,the novel zwitterionic sulfobetaine-based monolith was successfully employed for the highly selective separation of small bioactive compounds and the efficient enrichment of N-glycopeptides from complex samples.In this study,we prepared a novel zwitterionic sulfobetaine-based monolith with good performance and developed a simpler and faster method for preparation of zwitterionic monoliths.

    Keywords:

    Zwitterionic monolith

    Sulfobetaine

    Photo-initiated copolymerization

    Hydrophilic interaction chromatography

    Complex sample

    1.Introduction

    Owing to their excellent biocompatibility,hydrophilicity,and ultralow-fouling capacity, zwitterionic sulfobetaine-based materials have been commonly employed as next-generation biomaterials to modify bio-interfaces in the fields of medicine,biology,bionics,and separation science[1-4].For instance,poly(sulfobetaine),employed as an implant material and device,can reduce protein adsorption and limit cellular adhesion and inflammatory response[3].Various sulfobetaine-based packing columns,including commercial zwitterionic hydrophilic interaction liquid chromatography(ZIC-HILIC)[5],N,N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl)ammonium betaine(SPE)-[6],3-[2-(acrylamido)-ethyldimethylammonio]propane sulfonate-[7],and acrylamide-type sulfobetaine-based[8]stationary phases,have been developed for the separation of polar analytes or enrichment of glycopeptides via hydrophilic or electrostatic interactions[9].Although good chromatographic performance was obtained,the preparation process of the packed column was very complicated,which limits its further application[10-12].

    Recently,monolithic stationary phases have attracted close attention because of their easy preparation(thermally initiated copolymerization of functional monomers and crosslinkers),good column efficiency,high permeability and stability,and low cost[13-18].Therefore,a series of sulfobetaine-based zwitterionic hydrophilic polymeric monoliths,including SPE[19-24],1-(3-sulphopropyl)-4-vinylpyridinium-betaine[25],N,N-dimethyl-N-acryloyloxyethyl-N-(3-sulfopropyl)ammonium betaine[26,27],and N,N-dimethyl-N-(3-methacrylamidopropyl)-N-(3-sulfopropyl)

    ammonium betaine[28],were successively developed to overcome the above mentioned shortcomings of the packed columns.These monoliths exhibited better chromatographic performance.Further studies also showed that the properties of crosslinker have a significant influence on the performance of these sulfobetaine-based zwitterionic hydrophilic monoliths in terms of column polarity,selectivity,and efficiency[29].Moreover,mechanistic studies indicated that the spatial arrangement of charged moieties(quaternary ammonium group and sulfonyl group)[30]or the sample solvent[31]also affects column performance.Large-scale zwitterionic sulfobetaine-based monoliths with a capillary(400μm i.d.and 800μm o.d.)[32]or stainless-steel column(100 mm×2.0 mm i.d.) [33] have also been developed for micro-liquid chromatography(LC)or traditional high performance liquid chromatography(HPLC)/supercritical fluid chromatography.These findings demonstrate that sulfobetaine-based monoliths have great application potential for HILIC with good selectivity and efficiency.

    As an important sulfobetaine derivative, 3-(3-vinyl-1-imidazolio)-1-propanesulfonate (SBVI) has been previously employed to prepare polymeric brushes for anti-fouling,anti-fog,and anti-frost applications[34-37].Jiang and co-workers[34]found that the introduction of vinylimidazole can significantly improve the tensile and compressive mechanical properties of the obtained materials compared with those of sulfobetaine methacrylate-based hydrogels.Despite its good anti-fouling and mechanical properties,SBVI has never been exploited for the preparation of zwitterionic HILIC monolithic stationary phases.Additionally,compared with that of traditional thermally initiated copolymerization,photo-initiated copolymerization involves a significantly faster preparation process(only a few minutes),with lower energy consumption and cost[38].

    To enrich the types of sulfobetaine-based monoliths and simplify their preparation process,a novel monolith was developed by employing SBVI as a functional monomer and pentaerythritol triacrylate(PETA)as a crosslinker via photo-initiated copolymerization.The physicochemical properties of the resulting monoliths were systematically investigated.The chromatographic separation ability,anti-protein adsorption ability,and enrichment capacity for N-glycopeptide of the SBVI-based monolith were evaluated using various polar analytes,fluorescence-labeled bovine serum albumin(FITC-labeled BSA),and tryptic digest of hIgG,respectively.

    2.Experimental

    2.1.Materials and reagents

    The compounds 1,3-propanesultone and 1-vinylimidazole were purchased from Energy Chemical(Shanghai,China),and HPLC-grade acetonitrile(ACN)and methanol(MeOH)were obtained from Merck(Shanghai,China).All other chemicals,including benzoin dimethylether (DMPA),PETA,2,6-di-tert-butyl-4-methylphenol(BHT),tetrahydrofuran(THF),3-(trimethoxysilyl)propyl methacrylate(γ-MAPS),toluene,thiourea,benzoic acid(BA),2-hydroxybenzoic acid(2-HB),2,5-dihydroxybenzoic acid(2,5-DHB),3,5-dihydroxybenzoic acid (3,5-DHB),3,4,5-trihydroxybenzoic acid(3,4,5-THB),thymine,uracil,adenine,adenosine,phenol,hydroquinone,pyrogallic acid,phloroglucinol,urea,allantoin,BSA,FITC-labeled BSA,phosphate buffered saline(PBS),hIgG,trypsin,ammonium formate(AF),and trifluoroacetic acid(TFA),were purchased from Aladdin Chemical(Shanghai,China).Ultraviolet(UV)transparent capillaries(100μm i.d.× 365μm o.d.)obtained from Ruifeng Chromatography Ltd.(Handan,China)were used to prepare the monoliths.Deionized water filtered through a 2μm membrane was used for all experiments.

    2.2.Instrumentation

    The photo-initiated copolymerization of SBVI was carried out using UV light at 254 nm and 50 Hz(ALYS Labware,Lausanne,Switzerland).A Zeiss ULTRA 55 field-emission scanning electron microscope(Oberkochen,Germany)was employed for scanning electron microscopy(SEM)and energy-dispersive X-ray spectrometry(EDS)tests of the novel monolith at acceleration voltages of 5 and 15 kV,respectively.A Micromeritics Auto Pore 9500 automatic mercury porosimeter(Norcross,GA,USA)was used to measure pore size distribution.The zeta potential of the resulting monolith was measured using a Malvern Nano-ZSζ-potential meter(Malvern Panalytical,Malvern,UK).An inverted fluorescence microscope(Olympus,Tokyo,Japan)was used to evaluate the adsorption of FITC-labeled BSA on the monolith.Moreover,the adsorbed protein amount was tested using a Synergy LX microplate reader(BioTek,Winooski,VT,USA).Matrix assisted laser desorption ionization time of flight mass spectrometry(MALDI-TOF MS)analysis was performed using a Bruker UltrafleXtreme MALDI TOF/TOF mass spectrometer(Bruker Daltonics,Billerica,MA,USA)to identify the enriched N-glycopeptides.Only peptides containing the Asn-X-Ser/Thr/Cys sequence(X is any amino acids other than Pro)were identified as N-glycopeptides.

    2.3.Synthesis of the SBVI monomer

    SBVI was synthesized according to a previously published method[34](Fig.S1).First,in a 500 mL three-neck round bottom flask,14.8 g(120 mmol)of 1,3-propanesultone was dissolved in 200 mL of ACN.Then,9.4 mL(100 mmol)of 1-vinylimidazole was slowly dropped into the three-neck round-bottom flask under N2protection.After two days,the reaction was stopped,and the resulting precipitate was separated and washed thrice with ether.Finally,the polymerization inhibitor BHT was added for the longterm storage of the target compound,and the yield of SBVI was calculated to be 80%.The synthesis of the SBVI monomer was confirmed using MS(Fig.S2),nuclear magnetic resonance(NMR)spectroscopy,and elemental analysis.Electrospray ionization-MS m/z:217[M+H]+;1H NMR(D2O,300 MHz):9.02(s,1H),7.73(s,1H),7.57(s,1H),7.08(t,1H),5.75(d,1H),5.37(d,1H),4.35(t,2H),2.88(t,2H),2.28(m,2H);element content(%,m/m):40.31% for C,15.50% for N,5.73% for H,12.25% for S,and 24.72% for O.

    2.4.Rapid fabrication of the SBVI functionalized polymeric monoliths

    To provide anchoring sites for the bulk polymer,the inner surfaces of the UV-transparent capillaries were first modified with γ-MAPS according to previously described methods[16].The polymerization mixture was prepared by accurately weighing the designated amounts of the functional monomer(SBVI),crosslinker(PETA),porogen(a mixture of MeOH and THF),and photo-initiator(DMPA,approximately 1%(m/m)with respect to the monomer)into a 2.0 mL glass vial.After ultrasonication for 10 min,the mixture was filled into pre-treated capillaries,sealed with GC septa,and placed under preheated UV light.The photo-initiated copolymerization lasted for 5 min,and the resultant monoliths were flushed thoroughly with MeOH.For the SEM and EDS analyses,a piece of monolith(approximately 1 cm)was cut from the column.The residual mixture inside the 2.0 mL glass vial was simultaneously copolymerized.The obtained bulk polymer was crushed into small pieces,Soxhlet extracted with MeOH for 24 h,and dried under vacuum at 40°C for 6 h.Finally,the dried materials were subjected to a series of physicochemical analyses,including pore size distribution,zeta potential,and specific surface area analyses.

    2.5.Micro-LC separation of small bioactive compounds

    A self-assembled nano-HPLC system was used to evaluate the separation performance of the zwitterionic SBVI-based monoliths.It consisted of a DiNa-S nano gradient pump(Techno Alpha,Tokyo,Japan),a Shimadzu SPD-15C UV detector(Kyoto,Japan)with a labmade on-column detection system,and a Valco four-port injection valve with a 20-nL internal loop(Houston,TX,USA).A commercial Unimicro Trisep?Workstation 2003(Shanghai,China)was used to collect data,and the obtained chromatograms were converted to.txt files and then redrawn using Microcal OriginPro 2018(OriginLab,Northampton,MA,USA).The mobile phases for the micro-LC experiments were prepared by mixing appropriate amounts of water or ammonium formate with ACN.Diluted formic acid was used to adjust the pH of the ammonium formate buffer.All samples were dissolved in the corresponding mobile phases.Both sample solutions and mobile phases were filtered through a 0.22-μm membrane.

    3.Results and discussion

    3.1.Rapid preparation of the zwitterionic SBVI-based hydrophilic monoliths

    Zwitterionic hydrophilic monoliths with excellent selectivity and efficiency are highly desirable in separation science.For this purpose,several important parameters,such as the polymerization time,composition of the functional monomer and crosslinker,and weight content and composition of the porogens,were optimized.According to our previous study[16],5 min in situ photo-initiated copolymerization(Fig.1)was selected for preparing zwitterionic SBVI-based hydrophilic monoliths,which was a significantly shorter duration than that used for conventional thermally initiated copolymerization of multi-monomer systems(at least 12 h,such as those functionalized with zwitterionic sulfobetaine[30,32],phosphatidylethanolamine[39],phosphorylcholine[12,40],and choline phosphate[17]).

    Considering the significant effect of the composition of the monomer mixture(SBVI and PETA)on the column backpressure and efficiency,the weight ratio of SBVI in the monomer mixture was changed from 60%(C1)to 85%(C6),whereas the other parameters(UV exposure time and the composition of the porogenic mixture)remained constant.The column backpressure decreased with an increasing weight ratio of SBVI(Table 1).Column C3 exhibited acceptable backpressure(2.0 MPa)and good column efficiency(38,323 plates/m),and was therefore selected for further optimization.Next,the total amount of porogen(a mixture of MeOH and THF)was optimized.When the weight content of the porogens decreased from 85%(C8)to 80%(C3),the backpressure and column efficiency increased.However,it was difficult to pump the mobile phase through the C7 column(using 75% porogens).Finally,the influence of the porogen composition was evaluated by changing the weight ratio of MeOH/THF from 75/25(C9)to 85/15(C10).Even a slight change in this weight ratio could significantly affect the column backpressure and efficiency.For example,the backpressure dramatically decreased from 4.5(C9)to 0.4(C10)MPa.In summary,the C3 column possessed the highest column efficiency and acceptable backpressure;therefore,the polymerization conditions associated with this column were selected for further experiments.

    Fig.1.Rapid preparation of the zwitterionic poly(SBVI-co-PETA)monolith.SBVI:3-(3-vinyl-1-imidazolio)-1-propanesulfonate;PETA:pentaerythritol triacrylate;DMPA:benzoin dimethyl ether;MeOH:methanol;THF:tetrahydrofuran;UV:ultraviolet.

    Table 1Optimization of preparation conditions for poly(SBVI-co-PETA)monolith.

    3.2.Characterization of the SBVI-based polymeric monoliths

    Fig.2.(A)Energy-dispersive X-ray spectrometry(EDS)images,(B)scanning electron microscopy(SEM)image,and(C)pore size distribution graphs of the poly(SBVI-co-PETA)monolith.SBVI:3-(3-vinyl-1-imidazolio)-1-propanesulfonate;PETA:pentaerythritol triacrylate.

    The Van Deemter curve(Fig.3B)shows that the highest column efficiency for thiourea is 51,230 plates/m(H=19.52μm)at a linear velocity of 0.33 mm/s.Furthermore,the run-to-run,day-to-day,column-to-column,and batch-to-batch reproducibility of the novel monolith was investigated,and acceptable results were obtained(relative standard deviations for all analytes were less than 4.6%,Table S1).Fig.3C presents a typical HILIC retention behavior on the SBVI-based monolith over ACN ranging from 10% to 95%.Moreover,zeta-potential tests revealed that the surface of the SBVI-based monolith was almost negatively charged,and the absolute value of zeta-potential decreased with decreasing buffer pH from 10 to 3(Fig.3D).Therefore,both hydrophilic and electrostatic interactions are believed to contribute to the retention of charged polar analytes on SBVI-based monoliths.

    To further investigate the influence of hydrophilic and electrostatic interactions on the separation ability of the SBVI-based monolith,benzoic acid and its derivatives(BA,2-HB,2,5-DHB,3,5-DHB,and 3,4,5-THB,which have pKavalues of 4.19,2.98,2.97,4.04,and 4.41,respectively)were employed as analytes.The buffer pH varied from 3 to 9,whereas the ACN content(85%)and buffer concentration(20 mM AF)remained constant.As shown in Fig.4A,the buffer pH had almost no effect on the retention of the three analytes(BA,2-HB and 2,5-DHB),indicating that the contribution of electrostatic repulsion interactions to their retention could be neglected under high ACN content.In contrast,the retention of 3,4,5-THB and 3,5-DHB dramatically increased with increasing buffer pH.This could be explained by their deprotonation,leading to more negative charge and higher hydrophilicity.To further study the electrostatic interactions,the ACN content in the mobile phase was reduced to 20%,where the hydrophilic interaction was suppressed to the utmost extent.As shown in Fig.4B,the retention of all five acids decreased with increasing buffer pH,which can be attributed to the increased electrostatic repulsion between the acidic analytes and the negatively charged SBVI-based zwitterionic stationary phase.

    3.3.Application of zwitterionic monolithic columns

    3.3.1.Chromatographic application of the SBVI-based monolith

    To investigate the separation selectivity of the SBVI-based monolith,different polar compounds,including nucleobases and nucleosides,phenols,benzoic acid and its derivatives,and cosmetic additives,were used as analytes.Under the selected separation conditions(ACN:H2O;95:5,V/V),hydrophilic interactions could dominate the retention on the monolith.As shown in Fig.5A,the separation of toluene,thymine,uracil,adenine,and adenosine was achieved within 6 min with an acceptable peak shape and selectivity.A good separation ability was further demonstrated by the separation of the four phenols(Fig.5B).Subsequently,20 mM of ammonium formate(pH 5.0)in ACN:H2O(85:15,V/V)was used as the mobile phase for baseline separation of benzoic acid and its derivatives within 30 min(Fig.5C).According to the above retention mechanism(Fig.4A),hydrophilic interactions could contribute to the retention and separation of acidic analytes on the SBVI-based monolith.Finally,the applicability of the SBVI-based monolith was further verified through the fast separation of two highly polar additives,urea and allantoin,in cosmetic products(Fig.5D).

    Fig.3.(A)Relationship between linear velocity and column backpressure of the poly(SBVI-co-PETA)monolith.Experimental conditions:column dimension,130 mm×100μm i.d.;mobile phase,acetonitrile(ACN),ACN:H2O(95:5,V/V),methanol(MeOH),and H2O.(B)Van Deemter curve of the poly(SBVI-co-PETA)monolith.Experimental conditions:column dimension,135 mm ×100μm i.d.;mobile phase,ACN:H2O(95:5,V/V).(C)Hydrophilic interaction liquid chromatography(HILIC)retention behavior of the poly(SBVI-co-PETA)monolith over ACN ranging from 10% to 95%.Experimental conditions:column dimension,135 mm×100μm i.d.;mobile phase,ACN:H2O(V/V);flow rate,800 nL/min.k:retention factor.(D)Zeta-potential measurement of the poly(SBVI-co-PETA)monolith.For(A),(B),and(C),detection wavelength,254 nm;injection,20 nL;samples,toluene(dead time marker)and thiourea.SBVI:3-(3-vinyl-1-imidazolio)-1-propanesulfonate;PETA:pentaerythritol triacrylate.

    Fig.4.Investigation of the hydrophilic and electrostatic interactions on the poly(SBVI-co-PETA)monolith under the mobile phases:(A)20 mM ammonium formate(AF)in acetonitrile(ACN):H2O(85:15,V/V)and(B)20 mM AF in ACN:H2O(20:80,V/V).Experimental conditions:column dimension,135 mm×100μm i.d.;detection wavelength,214 nm;fl ow rate,700 nL/min;injection,20 nL;sample,benzoic acid(BA),2-hydroxybenzoic acid(2-HB),2,5-dihydroxybenzoic acid(2,5-DHB),3,5-dihydroxybenzoic acid(3,5-DHB),and 3,4,5-trihydroxybenzoic acid(3,4,5-THB).k:retention factor.SBVI:3-(3-vinyl-1-imidazolio)-1-propanesulfonate;PETA:pentaerythritol triacrylate.

    3.3.2.Anti-protein adsorption ability of the SBVI-based monolith

    A layer of zwitterionic hydrophilic coating can effectively reduce nonspecific adsorption of proteins to solid/liquid interfaces[42],which could improve the column performance and lifetime in bioanalysis.Therefore,it is of great interest to investigate the antiprotein adsorption ability of poly(SBVI-co-PETA)monoliths.A poly(PETA)monolith was prepared for comparison and BSA was used as the analyte.First,a standard curve was established by measuring the fluorescence intensity of a series of sample solutions(0.0625,0.125,0.25,0.5,0.75,and 1.0 mg/mL BSA in 50 mM PBS).Subsequently,5 mg of the dried poly(SBVI-co-PETA)or poly(PETA)polymeric powder was added into the BSA solution(250μL,0.5 mg/mL,c0).The mixture was shaken for 4 h at room temperature and then centrifuged.The fluorescence intensity of the supernatant was tested.The measured BSA concentration was calculated as c1.Finally,the nonspecific protein adsorption rate on the monolith was calculated according to the following equation:nonspecific protein adsorption rate=(1-c1/c0)×100%.The adsorbed protein on the zwitterionic poly(SBVI-co-PETA)monolith(approximately 7%)was found to be much lower than that of the poly(PETA)monolith(approximately 40%).Furthermore,an FITC-labeled BSA solution was pumped through the poly(SBVI-co-PETA)monolith for 0.5 h(Fig.6A)and then washed with water for 1 h(Fig.6B).The monolith without an FITC-labeled BSA solution pumped through was used as control column for comparison(Figs.6C and D).As shown in Fig.6,the strong fluorescence on the poly(SBVI-co-PETA)monolith was significantly weakened after flushing with water(Fig.6B).These results indicated that the zwitterionic SBVI-based monolith had good anti-protein adsorption ability.

    Fig.5.Chromatographic evaluation of the poly(SBVI-co-PETA)monolith(column dimension:135 mm×100μm i.d.).(A)Separation of nucleobases and nucleosides:mobile phase,acetonitrile(ACN):H2O(95:5,V/V);flow rate,700 nL/min;detection wavelength,254 nm;samples:(1)toluene,(2)thymine,(3)uracil,(4)adenine,and(5)adenosine.(B)Separation of phenols:mobile phase,ACN:H2O(95:5,V/V);flow rate,700 nL/min;detection wavelength,214 nm;samples:(1)phenol,(2)hydroquinone,(3)pyrogallic acid,and(4)phloroglucinol.(C)Separation of benzoic acid and its derivatives:mobile phase,20 mM AF pH 5.0 in ACN:H2O(85:15,V/V);flow rate,700 nL/min;detection wavelength,214 nm;samples:(1)benzoic acid,(2)2-hydroxybenzoic acid,(3)2,5-dihydroxybenzoic acid,(4)3,5-dihydroxybenzoic acid,and(5)3,4,5-trihydroxybenzoic acid.(D)Separation of urea and allantoin:mobile phase,ACN:H2O(95:5,V/V);flow rate,700 nL/min;detection wavelength,190 nm;samples:(1)urea and(2)allantoin.SBVI:3-(3-vinyl-1-imidazolio)-1-propanesulfonate;PETA:pentaerythritol triacrylate.

    Fig.6.Fluorescence intensity of fluorescence-labeled bovine serum albumin(FITC-labeled BSA)on the poly(SBVI-co-PETA)monolith:(A)before and(B)after washing with H2O,(C)control column without FITC-labeled BSA,and(D)control column under visible light.SBVI:3-(3-vinyl-1-imidazolio)-1-propanesulfonate;PETA:pentaerythritol triacrylate.

    Fig.7.Matrix assisted laser desorption ionization time of flight mass spectrometry spectra(MALDI-TOF MS)of the standard hIgG digestion solution(A)before and(B)after enrichment by the poly(SBVI-co-PETA)monolithic materials; The detected N-glycopeptides.SBVI:3-(3-vinyl-1-imidazolio)-1-propanesulfonate;PETA:pentaerythritol triacrylate.

    3.3.3.Enrichment of glycopeptides

    Protein glycosylation,one of the major post-translational modifications,plays a crucial role in the development of some chronic or infectious diseases,such as Alzheimer's disease and various autoimmune and inflammatory diseases[43-45].Therefore,it is of great interest to monitor variations in protein glycosylation using highly sensitive analytical methods,such as MALDITOF MS peptide profiling[46,47].However,the MS signal of glycopeptides was suppressed in the presence of high-abundance non-glycopeptides.Therefore,rapid and efficient enrichment is required before MS analysis.Porous materials with good hydrophilicity have shown great capability for glycopeptide enrichment in recent studies[12,45].To evaluate the enrichment capacity of the SBVI-based monolith for glycopeptides,a tryptic digest of hIgG(1 mg)was prepared according to a previous report[15].Subsequently,200μL of the tryptic digest of hIgG was added to 1.5 mg of SBVI-based polymer powder,and the mixture was shaken for 20 min.After centrifugation,the remaining polymer was washed three times with 400μL of buffer A(ACN:H2O:TFA;88:11.9:0.1,V/V/V)to eliminate the interference of non-glycopeptides.Finally,the enriched glycopeptides were eluted with 100μL of buffer B(ACN:H2O:TFA;40:59.9:0.1,V/V/V),and the obtained supernatant was analyzed using MALDI-TOF MS.As shown in Fig.7A,owing to the strong signal suppression from high-abundance non-glycosylated peptides,no glycopeptides were detected via direct analysis of the hIgG tryptic digest.After enrichment with the SBVI-based material,the signal responses of glycopeptides were significantly improved,and 18 N-glycopeptides were detected in the m/z range of 2,200-3,200(Fig.7B).This observed enrichment performance was comparable to that of commercial ZIC-HILIC materials(less than 21 N-glycopeptides[48]).

    4.Conclusions

    In this study,a novel polymeric monolith employing sulfobetaine vinylimidazole as the functional monomer and PETA as the crosslinker was designed and fabricated via a photoinitiated copolymerization strategy for the first time.Compared to sulfobetaine-based monoliths prepared via thermally initiated copolymerization,this novel monolith could be prepared within only 5 min.The resultant monolith exhibited excellent physicochemical properties in terms of mechanical strength,permeability,and column efficiency,which are beneficial for applications in the fields of small polar molecule separation and enrichment of N-glycopeptides.Moreover,the introduction of zwitterionic SBVI could significantly suppress the nonspecific adsorption of BSA on the polymeric surface,which is a good characteristic for applications in bioanalysis.In summary,this study provides a robust strategy for the development of a novel sulfobetaine-based monolith and also offers a rapid method for the preparation of zwitterionic hydrophilic monoliths.

    CRediT author statement

    Qiqin Wang:Formal analysis,Validation,Investigation,Data curation,Visualization,Writing-Original draft preparation;Lingjue Sun:Formal analysis,Validation,Investigation,Data curation;Huihui Wu:Methodology,Software;Ning Deng:Methodology,Software;Xianglong Zhao:Validation;Jingwei Zhou:Validation;Tingting Zhang:Methodology;Hai Han:Writing-Reviewing and Editing,Validation;Zhengjin Jiang:Conceptualization,Methodology,Resources,Supervision,Writing-Reviewing and Editing,Project administration,Funding acquisition.

    Declaration of competing interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China(Grant Nos.:82173773 and 82073806),the Natural Science Foundation of Guangdong Province,China(Grant Nos.:2020A1515010569 and 2021A0505030039),and Science and Technology Program of Guangzhou, China (Grant No.:202102020729).

    Appendix A.Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.jpha.2022.05.008.

    97在线视频观看| 国产真实伦视频高清在线观看| 欧美亚洲 丝袜 人妻 在线| 欧美人与善性xxx| 亚洲在久久综合| 午夜亚洲福利在线播放| 伊人久久精品亚洲午夜| 别揉我奶头 嗯啊视频| 内地一区二区视频在线| 国产v大片淫在线免费观看| 国产男女内射视频| av播播在线观看一区| 人妻制服诱惑在线中文字幕| 午夜视频国产福利| 亚洲国产精品国产精品| 成年免费大片在线观看| 日本欧美国产在线视频| 日本一二三区视频观看| 欧美成人a在线观看| 超碰av人人做人人爽久久| 国产男女内射视频| 中国三级夫妇交换| www.色视频.com| 精华霜和精华液先用哪个| 日韩一本色道免费dvd| 特级一级黄色大片| 国产欧美日韩精品一区二区| 又黄又爽又刺激的免费视频.| 狠狠精品人妻久久久久久综合| 国产成人aa在线观看| 春色校园在线视频观看| 亚洲精品影视一区二区三区av| av在线天堂中文字幕| 日韩强制内射视频| 高清日韩中文字幕在线| 日本wwww免费看| 搡女人真爽免费视频火全软件| 日韩欧美精品v在线| 中文欧美无线码| 欧美日韩在线观看h| 亚洲精品乱码久久久久久按摩| 永久免费av网站大全| 交换朋友夫妻互换小说| 九草在线视频观看| 99视频精品全部免费 在线| 久久亚洲国产成人精品v| 国产精品不卡视频一区二区| 看黄色毛片网站| 亚洲国产日韩一区二区| 国产精品.久久久| 精品酒店卫生间| 你懂的网址亚洲精品在线观看| 亚洲国产高清在线一区二区三| 在线观看av片永久免费下载| tube8黄色片| 中文字幕亚洲精品专区| 中文字幕亚洲精品专区| 九九爱精品视频在线观看| 丝瓜视频免费看黄片| 国产 一区 欧美 日韩| 又黄又爽又刺激的免费视频.| tube8黄色片| 日韩在线高清观看一区二区三区| 亚洲国产日韩一区二区| 老司机影院毛片| 欧美xxⅹ黑人| 中文欧美无线码| 国产精品一及| 夫妻午夜视频| 综合色丁香网| 国语对白做爰xxxⅹ性视频网站| 最近手机中文字幕大全| 久久6这里有精品| 亚洲精品久久午夜乱码| 男女国产视频网站| 欧美激情在线99| av.在线天堂| 免费黄频网站在线观看国产| 在线观看一区二区三区激情| 免费人成在线观看视频色| 国产精品国产av在线观看| 黄色配什么色好看| 一个人看的www免费观看视频| 老司机影院毛片| 欧美精品一区二区大全| 欧美日韩在线观看h| 免费不卡的大黄色大毛片视频在线观看| 中文精品一卡2卡3卡4更新| 91久久精品国产一区二区三区| 色视频在线一区二区三区| 久久6这里有精品| 99久久精品国产国产毛片| 性插视频无遮挡在线免费观看| 久久国内精品自在自线图片| 麻豆乱淫一区二区| a级毛色黄片| 欧美成人午夜免费资源| 可以在线观看毛片的网站| 99re6热这里在线精品视频| 三级经典国产精品| 在线天堂最新版资源| 欧美三级亚洲精品| 日韩人妻高清精品专区| 久久久午夜欧美精品| 亚洲天堂av无毛| 99热网站在线观看| 欧美另类一区| 欧美日韩视频高清一区二区三区二| 国模一区二区三区四区视频| 在线 av 中文字幕| 99热全是精品| 下体分泌物呈黄色| 国产精品蜜桃在线观看| 国产日韩欧美在线精品| 人人妻人人看人人澡| 久久精品国产亚洲av涩爱| 国产高清不卡午夜福利| 成年女人看的毛片在线观看| 日韩av不卡免费在线播放| 菩萨蛮人人尽说江南好唐韦庄| 黑人高潮一二区| av一本久久久久| 18禁在线无遮挡免费观看视频| 亚洲国产精品成人久久小说| 香蕉精品网在线| 人人妻人人看人人澡| 伊人久久精品亚洲午夜| 免费av不卡在线播放| 精品人妻偷拍中文字幕| av国产免费在线观看| 久久久久久久久大av| 激情五月婷婷亚洲| 性插视频无遮挡在线免费观看| 乱系列少妇在线播放| 国产久久久一区二区三区| 中文字幕久久专区| 内射极品少妇av片p| 99视频精品全部免费 在线| 日日啪夜夜撸| 菩萨蛮人人尽说江南好唐韦庄| 亚洲欧洲日产国产| 一个人观看的视频www高清免费观看| 婷婷色综合www| 超碰97精品在线观看| 久久久久久久亚洲中文字幕| 天堂网av新在线| 高清视频免费观看一区二区| 国产精品一区二区在线观看99| 国产毛片a区久久久久| 制服丝袜香蕉在线| 国内揄拍国产精品人妻在线| xxx大片免费视频| 欧美zozozo另类| 国产亚洲av嫩草精品影院| 婷婷色av中文字幕| 久久精品国产鲁丝片午夜精品| 成人欧美大片| 国产探花极品一区二区| 精品国产露脸久久av麻豆| 简卡轻食公司| 国产乱来视频区| 丝瓜视频免费看黄片| 国产在线男女| 国产成人freesex在线| 寂寞人妻少妇视频99o| 深夜a级毛片| 国产精品一及| 青春草亚洲视频在线观看| 午夜福利视频1000在线观看| 嘟嘟电影网在线观看| 观看免费一级毛片| 少妇的逼水好多| 99久久九九国产精品国产免费| 日韩欧美 国产精品| 国产伦精品一区二区三区视频9| 一级a做视频免费观看| 91精品伊人久久大香线蕉| 熟女人妻精品中文字幕| 午夜精品国产一区二区电影 | 久久精品国产鲁丝片午夜精品| 18+在线观看网站| 精品国产露脸久久av麻豆| 国产 一区精品| xxx大片免费视频| 国产成人免费无遮挡视频| 麻豆成人午夜福利视频| 涩涩av久久男人的天堂| 欧美变态另类bdsm刘玥| 大陆偷拍与自拍| 免费观看a级毛片全部| av一本久久久久| 99久国产av精品国产电影| 免费黄网站久久成人精品| 日韩在线高清观看一区二区三区| 熟女电影av网| eeuss影院久久| 少妇的逼好多水| 免费观看无遮挡的男女| 免费看av在线观看网站| 人妻 亚洲 视频| av天堂中文字幕网| 亚洲真实伦在线观看| 日韩三级伦理在线观看| 卡戴珊不雅视频在线播放| 欧美xxxx性猛交bbbb| 在线观看一区二区三区激情| 欧美日韩综合久久久久久| 国产精品国产三级专区第一集| 亚洲国产精品专区欧美| av在线播放精品| 国产片特级美女逼逼视频| 中文字幕免费在线视频6| 免费av观看视频| 人妻夜夜爽99麻豆av| 26uuu在线亚洲综合色| 狂野欧美激情性xxxx在线观看| 99久国产av精品国产电影| 99久久人妻综合| 午夜免费男女啪啪视频观看| 你懂的网址亚洲精品在线观看| 少妇被粗大猛烈的视频| 国产综合精华液| 国产乱来视频区| 国产色婷婷99| 亚洲成色77777| 最新中文字幕久久久久| 在线观看美女被高潮喷水网站| 人妻少妇偷人精品九色| 又黄又爽又刺激的免费视频.| 国产一区二区三区综合在线观看 | 一级av片app| 亚洲精品一二三| 欧美精品一区二区大全| 最近最新中文字幕免费大全7| 一级二级三级毛片免费看| 亚洲欧美一区二区三区国产| 国产成人精品一,二区| 免费av不卡在线播放| 婷婷色综合大香蕉| 成人特级av手机在线观看| 熟女人妻精品中文字幕| 免费少妇av软件| 老司机影院毛片| 亚洲欧美成人综合另类久久久| 日本av手机在线免费观看| 亚洲人与动物交配视频| 秋霞伦理黄片| 日本-黄色视频高清免费观看| 免费电影在线观看免费观看| av国产精品久久久久影院| 免费看av在线观看网站| 赤兔流量卡办理| 永久免费av网站大全| 精品久久久久久久久av| 国产人妻一区二区三区在| 国产色婷婷99| 国产成人精品久久久久久| 日韩精品有码人妻一区| 久久影院123| 青春草国产在线视频| 免费av观看视频| 国产女主播在线喷水免费视频网站| 国产成人91sexporn| 69人妻影院| 美女视频免费永久观看网站| 在线精品无人区一区二区三 | 黄片无遮挡物在线观看| 91久久精品国产一区二区三区| 国产精品一区www在线观看| 午夜免费男女啪啪视频观看| 男女啪啪激烈高潮av片| 欧美国产精品一级二级三级 | 神马国产精品三级电影在线观看| 久久精品综合一区二区三区| 日韩一区二区视频免费看| 男的添女的下面高潮视频| 啦啦啦在线观看免费高清www| 国产亚洲av嫩草精品影院| 亚洲人成网站高清观看| 亚洲av日韩在线播放| 欧美精品国产亚洲| 久久精品夜色国产| 亚洲精华国产精华液的使用体验| 亚洲一区二区三区欧美精品 | 一级毛片aaaaaa免费看小| 国产高潮美女av| 91久久精品国产一区二区三区| 秋霞在线观看毛片| 日日摸夜夜添夜夜添av毛片| 久久99蜜桃精品久久| 日韩成人av中文字幕在线观看| 色视频www国产| 不卡视频在线观看欧美| 3wmmmm亚洲av在线观看| 亚洲国产精品成人综合色| 精品亚洲乱码少妇综合久久| 国产av码专区亚洲av| 99久久精品热视频| 大片免费播放器 马上看| 久久久久久久国产电影| 一级毛片黄色毛片免费观看视频| 久久人人爽人人爽人人片va| 黄色视频在线播放观看不卡| 亚洲欧美成人精品一区二区| 精品久久久久久久久亚洲| 天天躁日日操中文字幕| 亚洲国产成人一精品久久久| 国产成人freesex在线| 精品一区二区免费观看| 在线 av 中文字幕| 欧美高清成人免费视频www| 久久国产乱子免费精品| 一二三四中文在线观看免费高清| 干丝袜人妻中文字幕| 亚洲,欧美,日韩| 街头女战士在线观看网站| 嫩草影院新地址| 晚上一个人看的免费电影| www.av在线官网国产| 一区二区av电影网| 日韩免费高清中文字幕av| 大又大粗又爽又黄少妇毛片口| 天天躁夜夜躁狠狠久久av| av一本久久久久| 国产精品久久久久久久久免| 国产成人freesex在线| 国产精品av视频在线免费观看| 午夜福利视频精品| 真实男女啪啪啪动态图| 亚洲精品乱码久久久久久按摩| 免费大片18禁| 成年av动漫网址| 你懂的网址亚洲精品在线观看| 大码成人一级视频| 久久久久性生活片| 国产一区二区三区综合在线观看 | 国产精品麻豆人妻色哟哟久久| 欧美三级亚洲精品| 国产精品三级大全| 三级国产精品片| 国产精品一区二区三区四区免费观看| 在线观看一区二区三区| 一本久久精品| 小蜜桃在线观看免费完整版高清| 免费高清在线观看视频在线观看| 色视频在线一区二区三区| 欧美高清性xxxxhd video| 亚洲经典国产精华液单| 少妇人妻久久综合中文| 亚洲综合精品二区| 日韩一区二区视频免费看| 国产黄频视频在线观看| 亚洲精品久久午夜乱码| 一级av片app| 久久女婷五月综合色啪小说 | 国产精品熟女久久久久浪| 午夜视频国产福利| 欧美bdsm另类| 国产在视频线精品| 看黄色毛片网站| 精品久久久久久久久亚洲| 婷婷色综合www| 久久久欧美国产精品| 精品久久久久久久久亚洲| 禁无遮挡网站| 免费人成在线观看视频色| 男女下面进入的视频免费午夜| 国产片特级美女逼逼视频| av在线亚洲专区| 久久久久精品久久久久真实原创| 国语对白做爰xxxⅹ性视频网站| 国产成人午夜福利电影在线观看| 国内揄拍国产精品人妻在线| 春色校园在线视频观看| 熟女av电影| 久久国产乱子免费精品| 好男人视频免费观看在线| 观看免费一级毛片| 日产精品乱码卡一卡2卡三| 毛片一级片免费看久久久久| 青春草视频在线免费观看| 国产亚洲5aaaaa淫片| 久久韩国三级中文字幕| 亚洲av成人精品一区久久| 免费播放大片免费观看视频在线观看| 久久久久网色| 三级男女做爰猛烈吃奶摸视频| 国产视频首页在线观看| 国产乱人偷精品视频| 国产真实伦视频高清在线观看| 禁无遮挡网站| 亚洲av二区三区四区| 超碰av人人做人人爽久久| 成人午夜精彩视频在线观看| 亚洲av男天堂| 青春草国产在线视频| 在线天堂最新版资源| 嫩草影院精品99| 亚洲美女搞黄在线观看| 亚洲av中文av极速乱| 亚洲婷婷狠狠爱综合网| 成年女人在线观看亚洲视频 | 国产69精品久久久久777片| 国产精品一区二区在线观看99| 久久精品综合一区二区三区| 蜜桃久久精品国产亚洲av| 日韩欧美 国产精品| 欧美性猛交╳xxx乱大交人| 伊人久久国产一区二区| 在线天堂最新版资源| 我要看日韩黄色一级片| 国产大屁股一区二区在线视频| 欧美日韩在线观看h| 直男gayav资源| 国产乱人视频| 校园人妻丝袜中文字幕| 国产亚洲av片在线观看秒播厂| 日日啪夜夜撸| 日韩欧美精品免费久久| 一个人看视频在线观看www免费| 国产成年人精品一区二区| 成人二区视频| 亚洲欧美一区二区三区黑人 | 在线免费十八禁| 国产精品一区二区三区四区免费观看| 国产一区亚洲一区在线观看| 免费看av在线观看网站| 免费观看av网站的网址| 亚洲精品久久午夜乱码| 精品一区二区三卡| 国产伦精品一区二区三区视频9| 久久精品国产亚洲网站| 在线a可以看的网站| 久久人人爽av亚洲精品天堂 | 国产精品麻豆人妻色哟哟久久| 精华霜和精华液先用哪个| av女优亚洲男人天堂| 内射极品少妇av片p| 91久久精品国产一区二区三区| 久久精品国产鲁丝片午夜精品| 国产精品无大码| 久久久久精品性色| 插逼视频在线观看| 国产av国产精品国产| 美女被艹到高潮喷水动态| 少妇丰满av| 建设人人有责人人尽责人人享有的 | 国产男女内射视频| 国产久久久一区二区三区| 精品人妻偷拍中文字幕| 一级毛片久久久久久久久女| av卡一久久| 亚洲精品日本国产第一区| 国产精品久久久久久av不卡| av播播在线观看一区| 男女国产视频网站| 国产综合懂色| 日本色播在线视频| 亚洲欧美一区二区三区国产| 99精国产麻豆久久婷婷| 亚洲精品久久午夜乱码| 国产精品国产av在线观看| 国产精品一及| 蜜桃亚洲精品一区二区三区| 1000部很黄的大片| 毛片一级片免费看久久久久| 免费av观看视频| 中文精品一卡2卡3卡4更新| 别揉我奶头 嗯啊视频| 国产午夜精品久久久久久一区二区三区| 日韩免费高清中文字幕av| 久久久久国产网址| 精品一区在线观看国产| 在线观看一区二区三区激情| 日韩不卡一区二区三区视频在线| 亚洲精品第二区| 一个人看的www免费观看视频| 亚洲综合色惰| 成人鲁丝片一二三区免费| 色网站视频免费| 久久久国产一区二区| 亚洲人成网站在线播| 亚洲精品,欧美精品| 亚洲欧美中文字幕日韩二区| 美女脱内裤让男人舔精品视频| 久久久久久久精品精品| 秋霞伦理黄片| 亚洲av免费在线观看| 国产乱人偷精品视频| 亚洲精品日韩av片在线观看| 国产人妻一区二区三区在| 大话2 男鬼变身卡| av国产久精品久网站免费入址| 特级一级黄色大片| 成人特级av手机在线观看| 免费黄频网站在线观看国产| 日韩不卡一区二区三区视频在线| 一级av片app| 自拍偷自拍亚洲精品老妇| 熟女人妻精品中文字幕| 国产精品久久久久久久电影| 午夜老司机福利剧场| 伦理电影大哥的女人| 97在线视频观看| 午夜精品一区二区三区免费看| 亚洲伊人久久精品综合| 国产精品久久久久久久久免| 亚洲精品日韩av片在线观看| 国产精品久久久久久精品古装| 久久精品人妻少妇| av女优亚洲男人天堂| 国内精品美女久久久久久| 久久久久九九精品影院| 网址你懂的国产日韩在线| 亚洲国产精品成人综合色| 久久鲁丝午夜福利片| 久久99热这里只频精品6学生| av在线亚洲专区| 成人漫画全彩无遮挡| 人妻 亚洲 视频| 有码 亚洲区| 精品视频人人做人人爽| 一级片'在线观看视频| 国产成人精品一,二区| 一本色道久久久久久精品综合| 亚洲av在线观看美女高潮| 搡女人真爽免费视频火全软件| 美女视频免费永久观看网站| 国产一区二区三区av在线| 99热这里只有是精品在线观看| 久久精品人妻少妇| 精品人妻熟女av久视频| 免费观看av网站的网址| 亚洲va在线va天堂va国产| av福利片在线观看| 一区二区三区免费毛片| 免费av不卡在线播放| 一个人观看的视频www高清免费观看| 欧美激情久久久久久爽电影| 视频中文字幕在线观看| 久久久久久久久久成人| 国产综合精华液| 国产精品不卡视频一区二区| 午夜激情久久久久久久| 免费少妇av软件| 午夜激情久久久久久久| 天堂网av新在线| 777米奇影视久久| 日韩电影二区| 一级毛片电影观看| 人人妻人人看人人澡| 欧美性猛交╳xxx乱大交人| 亚洲在久久综合| 最近中文字幕高清免费大全6| 特级一级黄色大片| 免费大片18禁| 国产欧美亚洲国产| 观看美女的网站| 搞女人的毛片| 欧美性猛交╳xxx乱大交人| 久久亚洲国产成人精品v| 日韩人妻高清精品专区| 亚洲人与动物交配视频| 午夜日本视频在线| 免费黄色在线免费观看| 亚洲一区二区三区欧美精品 | 国内少妇人妻偷人精品xxx网站| 在线免费观看不下载黄p国产| 国产真实伦视频高清在线观看| 高清毛片免费看| 免费电影在线观看免费观看| 免费少妇av软件| 一边亲一边摸免费视频| 看黄色毛片网站| 久久影院123| 国产成人精品福利久久| 毛片一级片免费看久久久久| 成人亚洲欧美一区二区av| 成人亚洲欧美一区二区av| 啦啦啦中文免费视频观看日本| 国产欧美亚洲国产| 成人无遮挡网站| 在线看a的网站| 男人爽女人下面视频在线观看| 亚洲精品乱码久久久久久按摩| 国产视频内射| 哪个播放器可以免费观看大片| 久久久久久久国产电影| 精品久久久久久电影网| 国产大屁股一区二区在线视频| 国产精品人妻久久久影院| 日韩电影二区| 亚洲国产欧美人成| 免费看不卡的av| 亚洲精品久久午夜乱码| 五月开心婷婷网| 一区二区三区乱码不卡18| 国内精品美女久久久久久| 黄色视频在线播放观看不卡| av在线观看视频网站免费| 99热这里只有是精品在线观看| 哪个播放器可以免费观看大片| 中文字幕免费在线视频6| 国产成人免费观看mmmm| 国产成人a区在线观看| 亚洲国产欧美人成| 欧美老熟妇乱子伦牲交| 91在线精品国自产拍蜜月| 免费av不卡在线播放| 五月天丁香电影| 免费看a级黄色片| 欧美日韩亚洲高清精品| 高清日韩中文字幕在线| 国产成人精品一,二区| 一级a做视频免费观看|