• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The mitochondria-localized protein OsNDB2 negatively regulates grain size and weight in rice

    2022-12-02 01:01:30MingxinGuoJiajiaLiuLinlinHouSunaZhaoNanaZhangLiliLuXushengZhao
    The Crop Journal 2022年6期

    Mingxin Guo,Jiajia Liu,Linlin Hou,Suna Zhao,Nana Zhang,Lili Lu,Xusheng Zhao

    College of Life Sciences,Luoyang Normal University,Luoyang 471934,Henan,China

    Keywords:Rice OsNDB2 Type II NAD(P)H dehydrogenase Allelic mutants Grain size

    ABSTRACT Grain size is a determinant of rice grain yield.In plants,mitochondria supply energy for cellular metabolism via the mitochondrial electron transport chain.Here we report that OsNDB2,which encodes a putative rotenone-insensitive type II NAD(P)H dehydrogenase(ND),negatively regulates grain size and weight in rice.Six ND members representing three major types of rice were identified,and the predicted OsNDB2 protein was localized to mitochondria.Contents of OsNDB2 transcripts were higher in young panicles and leaf blades.OsNDB2 overexpression reduced grain length,grain width,and 1000-grain weight and moderately influenced plant height,while knockout of OsNDB2 increased grain size and 1000-grain weight.Allelic mutations of OsNDB2 were associated with diverse grain appearances.Cellular observations revealed that variations in grain size of transgenic lines were caused by change in cell expansion but not cell proliferation in spikelet hulls.Our study sheds light on OsNDB2 function and provides a new potential breeding approach for increasing rice grain size and weight.

    1.Introduction

    The plant mitochondrial electron transport chain(mtETC)is located in the inner mitochondrial membrane and is composed of four multi-subunit complexes:complex I(NADH dehydrogenase),complex II(succinate dehydrogenase),complex III(cytochrome c reductase),and complex IV(cytochrome c oxidase).Plant mitochondria also possess an alternative respiratory pathway(AP)that can bypass the classical electron transport(ETC)pathway from complexes I or II to complex IV.This bypass requires rotenoneinsensitive type II NAD(P)H dehydrogenases(NDs),ubiquinone,and alternative oxidase(AOX)[1].NDs are encoded by a small gene family divided into three subgroups in plants:NDA,NDB,and NDC.NDA and NDC are located on the internal surfaces of the mitochondrial inner membrane,while NDB is external[2].

    In Arabidopsis,NDs include two NDA members(AtNDA1 and AtNDA2),four NDB members(AtNDB1-AtNDB4),and an NDC member(AtNDC1)[3].All ND members have a FAD/NAD-binding domain.NDB members also harbor an EF hand-containing domain that directly mediates Ca2+activation of Arabidopsis NDB1[4-6].Suppression of both AtNDA1 and AtNDA2 affects metabolism and plant growth[7].Knockdown of AtNDB1 affects central metabolism and vegetative growth but increases tolerance to ammonium toxicity[8,9].AtNDB2 functions in external NADH oxidation in isolated mitochondria and drought stress[3].Given the low expression levels of AtNDB3 in most tissues,little is known about its function in Arabidopsis[4,10].Knockdown of AtNDB4 confers increased tolerance to salinity stress,and knockout of AtNDB4 by T-DNA insertion leads to changes in growth rate,root:shoot ratios and leaf area[11].AtNDC1 regulates the biosynthesis of vitamin K1in Synechocystis and Arabidopsis by performing the penultimate step[12].

    This study identified the ND members in rice,and phylogenetic analysis indicated that the OsNDs could be divided into three subgroups.To date,no studies have been published reporting the biological functions of ND members in rice.In this study,we focused on OsNDB2 and investigated its functions using transgenic experiments.OsNDB2 overexpression reduced grain size,while knockout of OsNDB2 using the CRISPR/Cas9 system increased grain size.Allelic mutants generated by CRISPR/Cas9 showed diverse grain phenotypes.

    2.Materials and methods

    2.1.Vector construction and transgenic experiments

    For an overexpression experiment,the full-length coding sequence of OsNDB2 was cloned from a geng(japonica)variety,Kongyu 131(KY131)cDNA library and ligated into the binary vector pZH2Bi.For the CRISPR/Cas9 system,a guide RNA was designed to target the fifth exon and the plant expression vector was constructed as previously described[13].All plant transformation vectors were introduced into KY131 by Agrobacterium tumefaciensmediated transformation.Primers used for vector construction are listed in Table S1.

    2.2.RNA extraction and quantitative RT-PCR analysis

    Total RNA was extracted using a TaKaRa MiniBEST Plant RNA Extraction Kit(TaKaRa,Dalian,China).For reverse transcription,1μg RNA and oligo(dT)primers were used to synthesize firststrand cDNA in a 20-μL reaction using a TaKaRa PrimeScript II 1st Strand cDNA Synthesis Kit(TaKaRa).Quantitative RT-PCR(qPCR)was performed using TaKaRa SYBR Premix Ex Taq II(TaKaRa)with a Bio-Rad CFX96 machine(Bio-Rad,Hercules,CA,USA).Three repeats were performed for each gene.The OsActin gene was used as an internal control for normalization.Primers used for qPCR are listed in Table S1.

    2.3.Protein subcellular localization

    The OsNDB2 coding sequence was cloned in frame with GFP under the CaMV 35S promoter,and OsNDB2-GFP was transiently expressed in rice protoplasts.For confocal microscopy,the localization pattern of OsNDB2-GFP was examined under a confocal laser scanning microscope Leica TCS SP5(Leica,Weztlar,Germany).GFP was excited at a wavelength of 488 nm,and the emission filters were 500-530 nm.Primers used to construct the OsNDB2-GFP vector are listed in Table S1.

    2.4.Scanning electron microscopy(SEM)

    Outer spikelet hull surfaces were observed and imaged by SEM Phenom Pro(Phenom,Eindhoven,the Netherlands).The cell length and width of outer epidermal cell of lemmas were measured using the accompanying software.

    2.5.Statistical analysis

    Excel 2010 software was used for all statistical tests.Differences between the KY131 and transgenic lines were tested with Student’s two-tailed t-test.

    2.6.Accession numbers

    Fig.1.Phylogenetic analysis of type II NAD(P)H dehydrogenases(NDs)from rice and Arabidopsis and subcellular localization of OsNDB2.(A)Domain annotations of six NDs members in rice.(B)Phylogenetic tree of AtNDs and OsNDs.(C)Empty vector 35S::GFP and the 35S::OsNDB2-GFP fusion were transiently expressed in rice protoplasts.A mitochondrial tracker indicated that the OsNDB2-GFP fusion protein was expressed specifically in mitochondria.

    The genes used in this study are available in RAP-DB(https://rapdb.dna.affrc.go.jp/)and TAIR(https://www.arabidopsis.org/)databases under accession numbers:OsNDA1(Os01g0830100),OsNDA2(Os07g0564500),OsNDB1(Os06g0684000),OsNDB2(Os05g0331200),OsNDB3(Os08g0141400),OsNDC1(Os06g0214 900),AtNDA1(At1g07180),AtNDA2(At2g29990),AtNDB1(At4g282 20),AtNDB2(At4g05020),AtNDB3(At4g21490),AtNDB4(At2g208 00),AtNDC1(At5g08740).

    3.Results

    3.1.Identification,domain analysis,and phylogenetic tree of OsNDs

    BLASTP searches were conducted against the RAP-DB database,and six ND members were identified.To verify the initial results,domain searches of OsNDs were conducted to confirm the presence of the conserved domain using the InterPro database(https://www.ebi.ac.uk/interpro/).All six candidate members harbored the FAD/NAD-binding domain(Fig.1A).In addition to this conserved domain,OsNDB1and OsNDB2 were found to carry the EFHand domain(Fig.1A).To clarify the classification of the OsND genes and better understand the potential biological functions of OsNDs from well-studied NDs in Arabidopsis,13 ND proteins comprising seven proteins from Arabidopsis and six from rice were used to construct a phylogenetic tree(Fig.1B).OsND members could be divided into three subgroups:a(OsNDA1 and OsNDA2),b(OsNDB1,OsNDB2,and OsNDB3),and c(OsNDC1)(Fig.1B).

    3.2.Subcellular localization of OsNDB2

    To identify the subcellular location of OsNDB2,a 35S::OsNDB2-GFP vector was introduced into rice protoplasts.Given that OsNDs are components of the alternative respiratory pathway in plant mitochondria,we expected that OsNDB2 would be located in mitochondria.The OsNDB2-GFP and a mitochondrial tracker were coexpressed in rice protoplasts by transient transformation.OsNDB2-GFP was localized in mitochondria,whereas GFP on its own was localized in the cytoplasm(Fig.1C).Thus,OsNDB2 is a mitochondria-localized protein.

    3.3.Overexpression of OsNDB2 reduced grain size and weight in rice

    To characterize the expression pattern of OsNDB2,quantitative RT-PCR was performed with tissues from root,stem,leaf blade,leaf sheath,and young panicle.OsNDB2 expression was the highest in leaf blades and young panicles(Fig.2A).To investigate the biological functions of OsNDB2,we generated OsNDB2 overexpression(OE)lines in the KY131 background.Three OE lines were chosen and characterized in detail(Fig.2B).The plant heights of OE lines were moderately less than that of KY131 at the three-leaf and grain-filling stages(Figs.2C and D,S2).OsNDB2 overexpression significantly reduced grain size,including length and width(Fig.2EG).Compared with KY131,the grain lengths of three OE lines decreased by 10.1%,10.8%,and 11.8%,respectively.The grain widths of the three OE lines decreased by 8.6%,10.9%,and 10.9%,respectively.Similarly,the 1000-grain weights of three OE lines also decreased(Fig.2G)by 10.7%,18.7%,and 29.0%,respectively.

    3.4.Knockout of OsNDB2 increases grain size and weight in rice

    To further investigate how OsNDB2 affects grain size,we generated knockout mutants with the CRISPR/Cas9 system(CRI).Three CRI mutant lines were chosen for subsequent analyses.One carried a 15-bp deletion and the other two had an A or T insertion in the fifth exon(Fig.3A).The mutant protein ndb2-1 still harbored two domains,whereas the FAD/NAD-binding domain lacked five amino acid residues from Ile331 to Met335 compared with the wild-type(WT)protein(Fig.3B).For the ndb2-2 and ndb2-3 proteins,a one-base insertion at 3100 bp in the genomic region resulted in a frameshift leading to a truncated protein(348 aa),and the mutant proteins lacked an EF-Hand domain and retained a truncated FAD/NAD-binding domain(Fig.3B).In contrast to the OE lines,the CRI mutants showed no significant changes in plant height at the seedling and grain-filling stages(Figs.S1,S2).However,OsNDB2 mutations affected grain size in different ways.The CRI-1 showed no change in grain length,but the grain width increased by 10.9%(Fig.3C-E).In CRI-2 and CRI-3 mutants,the grain lengths increased significantly by 10.6% and 11.0%,respectively,but the grain widths showed no change compared with KY131(Fig.3C-E).The 1000-grain weights of the three CRI lines increased by 9.6%,7.8%,and 8.8%(Fig.3E).

    3.5.OsNDB2 regulates cell expansion in spikelet hulls

    To dissect the cellular mechanism underlying the phenotypic variation in grain size between transgenic and KY131 plants,we investigated spikelet hull cells of KY131,OE-2 and CRI-3.In line OE-2,the outer epidermal cells in lemmas were shorter and thinner than those of KY131 lemmas(Fig.4A-C).In line CRI-3,the outer epidermal cells in lemmas were longer than those of KY131 lemmas but showed similar width to KY131 lemmas(Fig.4A-C).The cell numbers in lemmas of transgenic lines(OE-2 and CRI-3)were similar to that in KY131 lemmas in both longitudinal and transverse directions(Fig.4D,E).These results indicate that OsNDB2 regulates grain size by affecting cell expansion in spikelet hulls.

    Fig.3.Knockout of OsNDB2 with CRISPR/Cas9(CRI)system increases grain size and weight in rice.(A)Gene structure of OsNDB2 and sequences at target sites in T1 plants produced by CRISPR/Cas9 system.(B)Domain annotations of NDB2 and the three mutant proteins ndb2-1,ndb2-2,and ndb2-3.(C,D)Grain morphology of KY131 and three CRI lines.Scale bars,1 cm.(E)Statistics of grain length,grain width,and 1000-grain weight in KY131 and three CRI lines.Values are means±SD,n=10 for grain length and width and n=3 for 1000-grain weight.Differences between KY131 and CRI lines were tested with Student’s two-tailed t-test.

    Fig.4.OsNDB2 regulates grain size by affecting cell expansion in spikelet hulls.(A)Scanning electron microscopy images of the outer surfaces of KY131,OE-2 and CRI-3.(B,C)Mean cell length(B)and width(C)of outer epidermal cells in KY131,OE-2 and CRI-3,lemmas.(D,E)Outer epidermal cell number in longitudinal(D)and transverse(E)directions in KY131,OE-2 and CRI-3.Scale bars in(A),100μm.Values in(B)and(C)are means±SE,n=300 cells.Values in(D)and(E)are means±SD,n=10 spikelets.Differences between the KY131 and transgenic lines were tested with Student’s two-tailed t-test.

    4.Discussion

    This study performed genome-wide identification and characterization of ND members in rice.Six OsND genes representing three major types(OsNDA,OsNDB,OsNDC)were identified,and the subgroup b member OsNDB2 was functionally characterized in detail.Our results indicate that OsNDB2 negatively regulates grain size in rice.OsNDB2 encodes external rotenone-insensitive NADPH dehydrogenase,a core component of the alternative respiratory pathway in plant mitochondria.In plants,mitochondria are the main organelles that produce ATP for cellular metabolism via respiratory oxidation of organic acids and transfer of electrons to O2via the mtETC[14].Manipulating core components in the mitochondrial electron transport system could change the energy supply and cellular metabolism and alter plant growth and development.A recent review[15]summarized that several signaling pathways control seed size through maternal tissues and zygotic tissues,including or involving the ubiquitin-proteasome pathway,G-protein signaling,mitogen-activated protein kinase(MAPK)signaling,phytohormone perception and homeostasis,transcriptional regulators,and the HAIKU(IKU)pathway.Our study provides a new method of increasing crop seed size by CRISPR/Cas9-mediated genome editing that targets core components of the mtETC in plants.

    Allelic mutants of OsNDB2 generated by gene editing showed distinct grain appearances(Fig.3C,D).The allelic mutant CRI-1 with deletion of five amino acid residues in the FAD/NADbinding domain had wider grains but similar grain length compared to KY131.The other two allelic mutants(CRI-2 and CRI-3),each with a one-base-pair insertion in the fifth exon,retained only a truncated FAD/NAD-binding domain and showed longer grains but similar grain width compared to KY131(Fig.3C,D).Similarly,four OsGS3 alleles conferred different grain sizes,including long,medium,and short[16].Loss of function of OsMAPK6 resulting from a single-nucleotide deletion in the sixth exon reduced grain size[17],but a gain-of-function mutant of OsMAPK6 resulting from a G-to-A mutation in the fourth exon formed long grains[18].A new OsGS2 allele generated by gene editing targeted the miR396 recognition site and produced larger grains than the wild-type OsGS2 allele[19].Thus,alleles may confer different phenotypes for one trait.Rapid advances in genomeediting systems enable researchers to generate allelic mutants,which can be used in breeding programs.The simultaneous gene editing of OsNDB2 and other negative regulators mediating grain size will likely generate larger grain.Alternatively,allelic mutants of OsNDB2 crossed with other mutants with wide or long grain in KY131 could likely generate wider or longer grain than a single mutant.Thus,this study clarifies the functions of OsNDB2 and provides a potential breeding approach for increasing rice grain size.

    CRediT authorship contribution statement

    Mingxin Guo:Conceptualization,Methodology,Investigation,Writing-Original Draft,Writing-review & editing.Jiajia Liu:Investigation,Data curation.Linlin Hou:Investigation,Data curation.Suna Zhao:Investigation,Data curation.Nana Zhang:Investigation,Data curation.Lili Lu:Investigation,Data curation.Xusheng Zhao:Funding acquisition,Supervision.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by Luoyang Key Science and Technology Innovation Program(2101016A).

    Appendix A.Supplementary data

    Supplementary data for this article can be found online at https://doi.org/10.1016/j.cj.2022.07.016.

    久久精品久久久久久久性| 亚洲欧洲国产日韩| 伊人亚洲综合成人网| 你懂的网址亚洲精品在线观看| 色5月婷婷丁香| 男女无遮挡免费网站观看| 97在线人人人人妻| 欧美亚洲日本最大视频资源| 丰满饥渴人妻一区二区三| 男人爽女人下面视频在线观看| 在现免费观看毛片| av卡一久久| 亚洲国产精品一区三区| 欧美国产精品一级二级三级| 18禁裸乳无遮挡动漫免费视频| 亚洲欧美成人综合另类久久久| 18在线观看网站| 汤姆久久久久久久影院中文字幕| av播播在线观看一区| 日韩av在线免费看完整版不卡| 中文天堂在线官网| 高清黄色对白视频在线免费看| 国产成人精品无人区| 国产成人精品无人区| 国产永久视频网站| 久久久亚洲精品成人影院| 纵有疾风起免费观看全集完整版| 一级毛片黄色毛片免费观看视频| 美女脱内裤让男人舔精品视频| 国产av精品麻豆| 亚洲欧美一区二区三区黑人 | 精品午夜福利在线看| 一边亲一边摸免费视频| 97在线视频观看| 多毛熟女@视频| 欧美另类一区| 国产综合精华液| 啦啦啦视频在线资源免费观看| 热re99久久国产66热| videossex国产| 一级毛片我不卡| 大香蕉97超碰在线| 曰老女人黄片| 简卡轻食公司| 国产黄色视频一区二区在线观看| 人妻少妇偷人精品九色| 国产 精品1| 一边摸一边做爽爽视频免费| 亚洲精品456在线播放app| 亚洲av综合色区一区| 美女视频免费永久观看网站| av线在线观看网站| 欧美精品高潮呻吟av久久| av专区在线播放| 亚洲在久久综合| 岛国毛片在线播放| 午夜福利在线观看免费完整高清在| 亚洲欧美精品自产自拍| 一级,二级,三级黄色视频| 日本av免费视频播放| 国产一区二区在线观看日韩| 久久精品国产自在天天线| 欧美另类一区| 国产欧美另类精品又又久久亚洲欧美| 一级片'在线观看视频| 一级毛片电影观看| 天美传媒精品一区二区| 啦啦啦视频在线资源免费观看| 久久青草综合色| 大片免费播放器 马上看| 亚洲综合精品二区| 男人爽女人下面视频在线观看| 久久精品久久久久久久性| 老熟女久久久| 日本91视频免费播放| 国产淫语在线视频| 久久毛片免费看一区二区三区| 午夜免费男女啪啪视频观看| 一级爰片在线观看| 日韩视频在线欧美| 中文字幕久久专区| 久久这里有精品视频免费| 亚洲性久久影院| 99国产精品免费福利视频| 国产在线免费精品| 国产精品一区二区在线观看99| 22中文网久久字幕| 亚洲激情五月婷婷啪啪| 亚洲精品乱码久久久久久按摩| 成人手机av| 国产午夜精品久久久久久一区二区三区| 亚洲色图 男人天堂 中文字幕 | 久久久欧美国产精品| 日日摸夜夜添夜夜添av毛片| 岛国毛片在线播放| 成人亚洲欧美一区二区av| 99精国产麻豆久久婷婷| 免费高清在线观看日韩| 狠狠婷婷综合久久久久久88av| 永久网站在线| 国产极品天堂在线| 久久精品久久久久久噜噜老黄| 精品一区二区免费观看| 国产欧美另类精品又又久久亚洲欧美| 少妇的逼好多水| 国产亚洲最大av| 黄色怎么调成土黄色| 天堂8中文在线网| 啦啦啦视频在线资源免费观看| 久久 成人 亚洲| 大香蕉97超碰在线| 老司机影院成人| 亚洲欧美日韩另类电影网站| 免费看av在线观看网站| 晚上一个人看的免费电影| 美女视频免费永久观看网站| 在线观看人妻少妇| 久久毛片免费看一区二区三区| 日韩成人伦理影院| 日本黄色日本黄色录像| 成人亚洲精品一区在线观看| 午夜福利网站1000一区二区三区| 一级,二级,三级黄色视频| 日本色播在线视频| 国产伦精品一区二区三区视频9| 亚洲av福利一区| 亚洲欧洲精品一区二区精品久久久 | 国产精品久久久久久精品电影小说| 亚洲精品中文字幕在线视频| 成年av动漫网址| 亚洲三级黄色毛片| 日韩在线高清观看一区二区三区| 日韩熟女老妇一区二区性免费视频| 少妇高潮的动态图| 边亲边吃奶的免费视频| 日本午夜av视频| 国产精品国产三级国产av玫瑰| a级毛片免费高清观看在线播放| 久久人人爽av亚洲精品天堂| 男男h啪啪无遮挡| 一本久久精品| 韩国高清视频一区二区三区| 国产色爽女视频免费观看| 在线播放无遮挡| 成人亚洲精品一区在线观看| 亚洲精品aⅴ在线观看| 亚洲精品日韩av片在线观看| 99久久中文字幕三级久久日本| √禁漫天堂资源中文www| 免费观看性生交大片5| 日本欧美国产在线视频| 韩国高清视频一区二区三区| 免费黄频网站在线观看国产| 久久亚洲国产成人精品v| 色94色欧美一区二区| 91久久精品电影网| 五月伊人婷婷丁香| 亚洲综合色网址| 欧美日韩视频高清一区二区三区二| 美女cb高潮喷水在线观看| 亚洲av电影在线观看一区二区三区| 亚洲精品久久午夜乱码| 国产国拍精品亚洲av在线观看| 精品少妇久久久久久888优播| 春色校园在线视频观看| 丝袜喷水一区| 赤兔流量卡办理| 欧美最新免费一区二区三区| 国产黄色免费在线视频| 精品国产一区二区久久| 一级a做视频免费观看| 一二三四中文在线观看免费高清| a级毛片黄视频| 国产爽快片一区二区三区| 精品人妻在线不人妻| 国产精品一区二区三区四区免费观看| 男女免费视频国产| 亚洲熟女精品中文字幕| 午夜激情久久久久久久| 亚洲色图综合在线观看| 亚洲欧美中文字幕日韩二区| 免费看av在线观看网站| 国产一区有黄有色的免费视频| 91精品一卡2卡3卡4卡| 久久人妻熟女aⅴ| 99热国产这里只有精品6| 91久久精品国产一区二区三区| 亚洲精品av麻豆狂野| 国产成人aa在线观看| 黑人巨大精品欧美一区二区蜜桃 | 另类亚洲欧美激情| 插逼视频在线观看| 久久99蜜桃精品久久| 午夜激情久久久久久久| 91精品国产国语对白视频| 三级国产精品片| 国产高清三级在线| 久久久久国产网址| 午夜日本视频在线| 亚洲综合色惰| 黄色怎么调成土黄色| 亚洲欧美日韩另类电影网站| 少妇精品久久久久久久| 亚洲在久久综合| 一级,二级,三级黄色视频| www.色视频.com| 校园人妻丝袜中文字幕| 国产亚洲精品久久久com| 欧美日韩亚洲高清精品| 精品久久久噜噜| 看十八女毛片水多多多| 国产精品成人在线| 成人影院久久| 国产老妇伦熟女老妇高清| av黄色大香蕉| 亚洲国产日韩一区二区| 男女啪啪激烈高潮av片| 亚洲国产精品专区欧美| av国产精品久久久久影院| 午夜激情福利司机影院| 免费黄频网站在线观看国产| 久久久久国产网址| 汤姆久久久久久久影院中文字幕| 亚洲国产欧美在线一区| 亚洲精品av麻豆狂野| 国产日韩欧美视频二区| 成人综合一区亚洲| 色94色欧美一区二区| 亚洲美女黄色视频免费看| 免费久久久久久久精品成人欧美视频 | 欧美老熟妇乱子伦牲交| 我的老师免费观看完整版| 亚洲国产av新网站| 精品少妇久久久久久888优播| 欧美xxxx性猛交bbbb| 老女人水多毛片| .国产精品久久| 国产熟女午夜一区二区三区 | av专区在线播放| 亚洲国产精品一区二区三区在线| 极品人妻少妇av视频| 黄片播放在线免费| 麻豆精品久久久久久蜜桃| 免费黄频网站在线观看国产| 日韩,欧美,国产一区二区三区| a级毛片在线看网站| 国产一区亚洲一区在线观看| 亚洲婷婷狠狠爱综合网| 在线观看www视频免费| 国产又色又爽无遮挡免| 高清黄色对白视频在线免费看| 亚洲伊人久久精品综合| 一二三四中文在线观看免费高清| 欧美3d第一页| 91精品一卡2卡3卡4卡| 久久久午夜欧美精品| 精品久久国产蜜桃| 久久国内精品自在自线图片| 日日啪夜夜爽| 亚洲人成77777在线视频| 在线观看免费日韩欧美大片 | 99久久精品一区二区三区| 成人毛片60女人毛片免费| 大码成人一级视频| 亚洲综合精品二区| 亚洲少妇的诱惑av| 伊人久久精品亚洲午夜| 国产午夜精品久久久久久一区二区三区| 欧美国产精品一级二级三级| 午夜激情av网站| 男人添女人高潮全过程视频| 大话2 男鬼变身卡| 五月玫瑰六月丁香| 一区二区三区乱码不卡18| 精品亚洲成a人片在线观看| 亚洲人成77777在线视频| 菩萨蛮人人尽说江南好唐韦庄| 一区二区三区免费毛片| 国产深夜福利视频在线观看| 人妻一区二区av| 只有这里有精品99| 亚洲国产精品一区三区| 丝袜脚勾引网站| 免费人成在线观看视频色| 午夜免费观看性视频| 母亲3免费完整高清在线观看 | 我要看黄色一级片免费的| 久久久久久久亚洲中文字幕| 国产高清不卡午夜福利| 中国三级夫妇交换| 中文字幕精品免费在线观看视频 | 高清在线视频一区二区三区| 国产白丝娇喘喷水9色精品| 精品国产乱码久久久久久小说| 视频中文字幕在线观看| 国产亚洲一区二区精品| 看免费成人av毛片| 最新中文字幕久久久久| 亚洲成人手机| 97在线人人人人妻| 中文字幕人妻丝袜制服| 久久久久视频综合| av女优亚洲男人天堂| 赤兔流量卡办理| 免费人妻精品一区二区三区视频| 国产日韩一区二区三区精品不卡 | 人妻 亚洲 视频| 欧美日韩成人在线一区二区| 伦理电影免费视频| 曰老女人黄片| 熟女av电影| 成人黄色视频免费在线看| 亚洲欧美日韩卡通动漫| 亚洲国产精品国产精品| 夜夜看夜夜爽夜夜摸| 777米奇影视久久| 国产黄色视频一区二区在线观看| 男人添女人高潮全过程视频| 视频在线观看一区二区三区| 人人妻人人添人人爽欧美一区卜| 如何舔出高潮| 亚洲av二区三区四区| 高清av免费在线| 男人爽女人下面视频在线观看| 国产伦理片在线播放av一区| 一区在线观看完整版| 精品卡一卡二卡四卡免费| 久久久久久久亚洲中文字幕| 边亲边吃奶的免费视频| 久久午夜综合久久蜜桃| 蜜桃国产av成人99| 亚洲中文av在线| 亚洲精品色激情综合| 人妻少妇偷人精品九色| 亚洲人成网站在线观看播放| 亚洲天堂av无毛| 亚洲国产最新在线播放| 午夜影院在线不卡| 亚洲精品日韩在线中文字幕| 精品一区二区免费观看| 欧美日韩成人在线一区二区| 成人午夜精彩视频在线观看| 免费黄色在线免费观看| 欧美中文综合在线视频| 成人手机av| 日本一区二区免费在线视频| 久久久久久久久免费视频了| 少妇粗大呻吟视频| 国产精品一区二区在线观看99| 国产成人欧美在线观看 | 91九色精品人成在线观看| 久久国产精品男人的天堂亚洲| 中国美女看黄片| 50天的宝宝边吃奶边哭怎么回事| 老熟妇仑乱视频hdxx| 欧美激情高清一区二区三区| 久久ye,这里只有精品| 国产日韩欧美视频二区| 男女床上黄色一级片免费看| bbb黄色大片| 欧美性长视频在线观看| 国产精品久久久人人做人人爽| 国产欧美日韩一区二区精品| 人人妻人人添人人爽欧美一区卜| 男人舔女人的私密视频| 久久中文字幕人妻熟女| 午夜激情久久久久久久| 天堂俺去俺来也www色官网| 欧美激情极品国产一区二区三区| 首页视频小说图片口味搜索| 国产精品99久久99久久久不卡| kizo精华| 99久久国产精品久久久| 老司机亚洲免费影院| 久久久欧美国产精品| 精品熟女少妇八av免费久了| 亚洲自偷自拍图片 自拍| 国产精品久久久人人做人人爽| 免费观看a级毛片全部| 女人爽到高潮嗷嗷叫在线视频| 男女无遮挡免费网站观看| 久久性视频一级片| 欧美日韩国产mv在线观看视频| 亚洲欧美色中文字幕在线| 国产成人影院久久av| 热re99久久国产66热| 国产精品香港三级国产av潘金莲| 国产色视频综合| 一本久久精品| 久久精品国产亚洲av香蕉五月 | 国产不卡一卡二| 国产福利在线免费观看视频| 久久国产精品人妻蜜桃| 久久久久久久国产电影| 亚洲国产精品一区二区三区在线| 亚洲情色 制服丝袜| 新久久久久国产一级毛片| 亚洲国产欧美一区二区综合| 国产免费视频播放在线视频| 日韩精品免费视频一区二区三区| 国产精品成人在线| 一本久久精品| kizo精华| 最黄视频免费看| 亚洲一区中文字幕在线| 国产精品九九99| √禁漫天堂资源中文www| 国产激情久久老熟女| a级毛片黄视频| 亚洲精品美女久久久久99蜜臀| 成人国产av品久久久| av欧美777| 国产精品美女特级片免费视频播放器 | 国产xxxxx性猛交| 亚洲av国产av综合av卡| 女人爽到高潮嗷嗷叫在线视频| 国产精品免费一区二区三区在线 | 国产精品.久久久| 亚洲国产中文字幕在线视频| 欧美 日韩 精品 国产| 少妇裸体淫交视频免费看高清 | 麻豆国产av国片精品| 不卡av一区二区三区| 日本黄色日本黄色录像| 亚洲免费av在线视频| 国产老妇伦熟女老妇高清| 国产一区二区三区综合在线观看| 国产单亲对白刺激| 成人国产一区最新在线观看| 狠狠狠狠99中文字幕| 国产精品一区二区免费欧美| 亚洲精品在线观看二区| 丝袜人妻中文字幕| 久久青草综合色| 亚洲精品久久成人aⅴ小说| bbb黄色大片| 国产精品亚洲一级av第二区| 亚洲人成77777在线视频| 亚洲国产中文字幕在线视频| 久久久久久人人人人人| av网站免费在线观看视频| 性高湖久久久久久久久免费观看| 男女边摸边吃奶| 香蕉久久夜色| 十八禁网站网址无遮挡| 国产激情久久老熟女| 男女午夜视频在线观看| 久久精品亚洲av国产电影网| 国产在视频线精品| 国产精品二区激情视频| 国产精品免费大片| 999久久久国产精品视频| a级毛片在线看网站| 一本大道久久a久久精品| 欧美激情极品国产一区二区三区| 国产亚洲午夜精品一区二区久久| 久久久久久久大尺度免费视频| 免费观看av网站的网址| 亚洲 欧美一区二区三区| 国产免费av片在线观看野外av| 久久久久久亚洲精品国产蜜桃av| 999精品在线视频| 国产精品久久久久久人妻精品电影 | 亚洲一区中文字幕在线| 久久久水蜜桃国产精品网| 伦理电影免费视频| 日韩成人在线观看一区二区三区| 香蕉国产在线看| 丝袜美足系列| 欧美黑人欧美精品刺激| 成年女人毛片免费观看观看9 | 看免费av毛片| av欧美777| 99热网站在线观看| 中文字幕制服av| 中文欧美无线码| 一级a爱视频在线免费观看| 免费观看av网站的网址| 国产1区2区3区精品| 亚洲av美国av| 亚洲欧洲日产国产| 欧美在线黄色| 日本撒尿小便嘘嘘汇集6| 午夜视频精品福利| 国产黄频视频在线观看| 手机成人av网站| 丝袜美腿诱惑在线| 国产成人免费无遮挡视频| 蜜桃在线观看..| 亚洲国产中文字幕在线视频| 在线观看人妻少妇| 亚洲人成伊人成综合网2020| 国产成人欧美| 中文欧美无线码| 亚洲欧美精品综合一区二区三区| 日本a在线网址| 夜夜骑夜夜射夜夜干| 91成年电影在线观看| 啦啦啦中文免费视频观看日本| 中文字幕人妻丝袜一区二区| 中文字幕最新亚洲高清| 精品一品国产午夜福利视频| 亚洲精品乱久久久久久| 午夜免费成人在线视频| 中文字幕人妻熟女乱码| 999精品在线视频| 欧美精品一区二区免费开放| 亚洲精品一卡2卡三卡4卡5卡| 久久亚洲真实| 久热爱精品视频在线9| 最近最新中文字幕大全免费视频| 色综合婷婷激情| 成人亚洲精品一区在线观看| 国产精品久久电影中文字幕 | 夜夜骑夜夜射夜夜干| 午夜福利在线免费观看网站| 黄色毛片三级朝国网站| 中文字幕人妻丝袜一区二区| 丰满迷人的少妇在线观看| 考比视频在线观看| 久久久国产一区二区| 色在线成人网| e午夜精品久久久久久久| 国产精品影院久久| 国产欧美日韩综合在线一区二区| 国产无遮挡羞羞视频在线观看| 中亚洲国语对白在线视频| a级毛片黄视频| 久久99一区二区三区| 中文字幕精品免费在线观看视频| 久久中文字幕人妻熟女| 亚洲国产欧美网| av有码第一页| 精品高清国产在线一区| 19禁男女啪啪无遮挡网站| 看免费av毛片| 中文字幕人妻丝袜一区二区| 久久ye,这里只有精品| 国产精品免费一区二区三区在线 | 这个男人来自地球电影免费观看| 成年人午夜在线观看视频| 国产成人精品久久二区二区91| 五月天丁香电影| cao死你这个sao货| 欧美激情久久久久久爽电影 | 1024视频免费在线观看| 美女国产高潮福利片在线看| 亚洲欧美一区二区三区黑人| 精品久久久精品久久久| 午夜福利在线免费观看网站| 王馨瑶露胸无遮挡在线观看| 亚洲性夜色夜夜综合| 午夜91福利影院| 黄频高清免费视频| 成年人午夜在线观看视频| 亚洲av欧美aⅴ国产| 一二三四在线观看免费中文在| 一级片免费观看大全| www日本在线高清视频| 最近最新中文字幕大全免费视频| 成人永久免费在线观看视频 | 色播在线永久视频| 大陆偷拍与自拍| 女人爽到高潮嗷嗷叫在线视频| 中文字幕人妻丝袜制服| 色婷婷久久久亚洲欧美| 少妇裸体淫交视频免费看高清 | 中文字幕精品免费在线观看视频| 丝袜美腿诱惑在线| 国产精品久久久久成人av| 国产成人精品久久二区二区91| 精品福利观看| 亚洲黑人精品在线| 亚洲欧美激情在线| 久久精品成人免费网站| 激情视频va一区二区三区| 高清毛片免费观看视频网站 | 日韩视频一区二区在线观看| 中文字幕精品免费在线观看视频| 免费女性裸体啪啪无遮挡网站| 757午夜福利合集在线观看| 69av精品久久久久久 | 亚洲国产欧美一区二区综合| 久久国产精品影院| 中文欧美无线码| 日韩免费av在线播放| 久久久精品国产亚洲av高清涩受| 女人高潮潮喷娇喘18禁视频| 亚洲第一欧美日韩一区二区三区 | 日韩欧美免费精品| 免费日韩欧美在线观看| 国产精品 国内视频| 曰老女人黄片| 一级,二级,三级黄色视频| 亚洲三区欧美一区| 日本av免费视频播放| 久久久久久久大尺度免费视频| 午夜老司机福利片| 日本五十路高清| 亚洲第一欧美日韩一区二区三区 | 国产成人精品无人区| 久久国产精品影院| 午夜精品久久久久久毛片777| 999久久久国产精品视频| aaaaa片日本免费| 日本欧美视频一区| 丰满人妻熟妇乱又伦精品不卡| 久久精品国产亚洲av香蕉五月 | 国产成人免费无遮挡视频| 国产有黄有色有爽视频| 在线 av 中文字幕| 黄片大片在线免费观看| 亚洲色图av天堂| 成年人黄色毛片网站| 99久久人妻综合|