• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The mitochondria-localized protein OsNDB2 negatively regulates grain size and weight in rice

    2022-12-02 01:01:30MingxinGuoJiajiaLiuLinlinHouSunaZhaoNanaZhangLiliLuXushengZhao
    The Crop Journal 2022年6期

    Mingxin Guo,Jiajia Liu,Linlin Hou,Suna Zhao,Nana Zhang,Lili Lu,Xusheng Zhao

    College of Life Sciences,Luoyang Normal University,Luoyang 471934,Henan,China

    Keywords:Rice OsNDB2 Type II NAD(P)H dehydrogenase Allelic mutants Grain size

    ABSTRACT Grain size is a determinant of rice grain yield.In plants,mitochondria supply energy for cellular metabolism via the mitochondrial electron transport chain.Here we report that OsNDB2,which encodes a putative rotenone-insensitive type II NAD(P)H dehydrogenase(ND),negatively regulates grain size and weight in rice.Six ND members representing three major types of rice were identified,and the predicted OsNDB2 protein was localized to mitochondria.Contents of OsNDB2 transcripts were higher in young panicles and leaf blades.OsNDB2 overexpression reduced grain length,grain width,and 1000-grain weight and moderately influenced plant height,while knockout of OsNDB2 increased grain size and 1000-grain weight.Allelic mutations of OsNDB2 were associated with diverse grain appearances.Cellular observations revealed that variations in grain size of transgenic lines were caused by change in cell expansion but not cell proliferation in spikelet hulls.Our study sheds light on OsNDB2 function and provides a new potential breeding approach for increasing rice grain size and weight.

    1.Introduction

    The plant mitochondrial electron transport chain(mtETC)is located in the inner mitochondrial membrane and is composed of four multi-subunit complexes:complex I(NADH dehydrogenase),complex II(succinate dehydrogenase),complex III(cytochrome c reductase),and complex IV(cytochrome c oxidase).Plant mitochondria also possess an alternative respiratory pathway(AP)that can bypass the classical electron transport(ETC)pathway from complexes I or II to complex IV.This bypass requires rotenoneinsensitive type II NAD(P)H dehydrogenases(NDs),ubiquinone,and alternative oxidase(AOX)[1].NDs are encoded by a small gene family divided into three subgroups in plants:NDA,NDB,and NDC.NDA and NDC are located on the internal surfaces of the mitochondrial inner membrane,while NDB is external[2].

    In Arabidopsis,NDs include two NDA members(AtNDA1 and AtNDA2),four NDB members(AtNDB1-AtNDB4),and an NDC member(AtNDC1)[3].All ND members have a FAD/NAD-binding domain.NDB members also harbor an EF hand-containing domain that directly mediates Ca2+activation of Arabidopsis NDB1[4-6].Suppression of both AtNDA1 and AtNDA2 affects metabolism and plant growth[7].Knockdown of AtNDB1 affects central metabolism and vegetative growth but increases tolerance to ammonium toxicity[8,9].AtNDB2 functions in external NADH oxidation in isolated mitochondria and drought stress[3].Given the low expression levels of AtNDB3 in most tissues,little is known about its function in Arabidopsis[4,10].Knockdown of AtNDB4 confers increased tolerance to salinity stress,and knockout of AtNDB4 by T-DNA insertion leads to changes in growth rate,root:shoot ratios and leaf area[11].AtNDC1 regulates the biosynthesis of vitamin K1in Synechocystis and Arabidopsis by performing the penultimate step[12].

    This study identified the ND members in rice,and phylogenetic analysis indicated that the OsNDs could be divided into three subgroups.To date,no studies have been published reporting the biological functions of ND members in rice.In this study,we focused on OsNDB2 and investigated its functions using transgenic experiments.OsNDB2 overexpression reduced grain size,while knockout of OsNDB2 using the CRISPR/Cas9 system increased grain size.Allelic mutants generated by CRISPR/Cas9 showed diverse grain phenotypes.

    2.Materials and methods

    2.1.Vector construction and transgenic experiments

    For an overexpression experiment,the full-length coding sequence of OsNDB2 was cloned from a geng(japonica)variety,Kongyu 131(KY131)cDNA library and ligated into the binary vector pZH2Bi.For the CRISPR/Cas9 system,a guide RNA was designed to target the fifth exon and the plant expression vector was constructed as previously described[13].All plant transformation vectors were introduced into KY131 by Agrobacterium tumefaciensmediated transformation.Primers used for vector construction are listed in Table S1.

    2.2.RNA extraction and quantitative RT-PCR analysis

    Total RNA was extracted using a TaKaRa MiniBEST Plant RNA Extraction Kit(TaKaRa,Dalian,China).For reverse transcription,1μg RNA and oligo(dT)primers were used to synthesize firststrand cDNA in a 20-μL reaction using a TaKaRa PrimeScript II 1st Strand cDNA Synthesis Kit(TaKaRa).Quantitative RT-PCR(qPCR)was performed using TaKaRa SYBR Premix Ex Taq II(TaKaRa)with a Bio-Rad CFX96 machine(Bio-Rad,Hercules,CA,USA).Three repeats were performed for each gene.The OsActin gene was used as an internal control for normalization.Primers used for qPCR are listed in Table S1.

    2.3.Protein subcellular localization

    The OsNDB2 coding sequence was cloned in frame with GFP under the CaMV 35S promoter,and OsNDB2-GFP was transiently expressed in rice protoplasts.For confocal microscopy,the localization pattern of OsNDB2-GFP was examined under a confocal laser scanning microscope Leica TCS SP5(Leica,Weztlar,Germany).GFP was excited at a wavelength of 488 nm,and the emission filters were 500-530 nm.Primers used to construct the OsNDB2-GFP vector are listed in Table S1.

    2.4.Scanning electron microscopy(SEM)

    Outer spikelet hull surfaces were observed and imaged by SEM Phenom Pro(Phenom,Eindhoven,the Netherlands).The cell length and width of outer epidermal cell of lemmas were measured using the accompanying software.

    2.5.Statistical analysis

    Excel 2010 software was used for all statistical tests.Differences between the KY131 and transgenic lines were tested with Student’s two-tailed t-test.

    2.6.Accession numbers

    Fig.1.Phylogenetic analysis of type II NAD(P)H dehydrogenases(NDs)from rice and Arabidopsis and subcellular localization of OsNDB2.(A)Domain annotations of six NDs members in rice.(B)Phylogenetic tree of AtNDs and OsNDs.(C)Empty vector 35S::GFP and the 35S::OsNDB2-GFP fusion were transiently expressed in rice protoplasts.A mitochondrial tracker indicated that the OsNDB2-GFP fusion protein was expressed specifically in mitochondria.

    The genes used in this study are available in RAP-DB(https://rapdb.dna.affrc.go.jp/)and TAIR(https://www.arabidopsis.org/)databases under accession numbers:OsNDA1(Os01g0830100),OsNDA2(Os07g0564500),OsNDB1(Os06g0684000),OsNDB2(Os05g0331200),OsNDB3(Os08g0141400),OsNDC1(Os06g0214 900),AtNDA1(At1g07180),AtNDA2(At2g29990),AtNDB1(At4g282 20),AtNDB2(At4g05020),AtNDB3(At4g21490),AtNDB4(At2g208 00),AtNDC1(At5g08740).

    3.Results

    3.1.Identification,domain analysis,and phylogenetic tree of OsNDs

    BLASTP searches were conducted against the RAP-DB database,and six ND members were identified.To verify the initial results,domain searches of OsNDs were conducted to confirm the presence of the conserved domain using the InterPro database(https://www.ebi.ac.uk/interpro/).All six candidate members harbored the FAD/NAD-binding domain(Fig.1A).In addition to this conserved domain,OsNDB1and OsNDB2 were found to carry the EFHand domain(Fig.1A).To clarify the classification of the OsND genes and better understand the potential biological functions of OsNDs from well-studied NDs in Arabidopsis,13 ND proteins comprising seven proteins from Arabidopsis and six from rice were used to construct a phylogenetic tree(Fig.1B).OsND members could be divided into three subgroups:a(OsNDA1 and OsNDA2),b(OsNDB1,OsNDB2,and OsNDB3),and c(OsNDC1)(Fig.1B).

    3.2.Subcellular localization of OsNDB2

    To identify the subcellular location of OsNDB2,a 35S::OsNDB2-GFP vector was introduced into rice protoplasts.Given that OsNDs are components of the alternative respiratory pathway in plant mitochondria,we expected that OsNDB2 would be located in mitochondria.The OsNDB2-GFP and a mitochondrial tracker were coexpressed in rice protoplasts by transient transformation.OsNDB2-GFP was localized in mitochondria,whereas GFP on its own was localized in the cytoplasm(Fig.1C).Thus,OsNDB2 is a mitochondria-localized protein.

    3.3.Overexpression of OsNDB2 reduced grain size and weight in rice

    To characterize the expression pattern of OsNDB2,quantitative RT-PCR was performed with tissues from root,stem,leaf blade,leaf sheath,and young panicle.OsNDB2 expression was the highest in leaf blades and young panicles(Fig.2A).To investigate the biological functions of OsNDB2,we generated OsNDB2 overexpression(OE)lines in the KY131 background.Three OE lines were chosen and characterized in detail(Fig.2B).The plant heights of OE lines were moderately less than that of KY131 at the three-leaf and grain-filling stages(Figs.2C and D,S2).OsNDB2 overexpression significantly reduced grain size,including length and width(Fig.2EG).Compared with KY131,the grain lengths of three OE lines decreased by 10.1%,10.8%,and 11.8%,respectively.The grain widths of the three OE lines decreased by 8.6%,10.9%,and 10.9%,respectively.Similarly,the 1000-grain weights of three OE lines also decreased(Fig.2G)by 10.7%,18.7%,and 29.0%,respectively.

    3.4.Knockout of OsNDB2 increases grain size and weight in rice

    To further investigate how OsNDB2 affects grain size,we generated knockout mutants with the CRISPR/Cas9 system(CRI).Three CRI mutant lines were chosen for subsequent analyses.One carried a 15-bp deletion and the other two had an A or T insertion in the fifth exon(Fig.3A).The mutant protein ndb2-1 still harbored two domains,whereas the FAD/NAD-binding domain lacked five amino acid residues from Ile331 to Met335 compared with the wild-type(WT)protein(Fig.3B).For the ndb2-2 and ndb2-3 proteins,a one-base insertion at 3100 bp in the genomic region resulted in a frameshift leading to a truncated protein(348 aa),and the mutant proteins lacked an EF-Hand domain and retained a truncated FAD/NAD-binding domain(Fig.3B).In contrast to the OE lines,the CRI mutants showed no significant changes in plant height at the seedling and grain-filling stages(Figs.S1,S2).However,OsNDB2 mutations affected grain size in different ways.The CRI-1 showed no change in grain length,but the grain width increased by 10.9%(Fig.3C-E).In CRI-2 and CRI-3 mutants,the grain lengths increased significantly by 10.6% and 11.0%,respectively,but the grain widths showed no change compared with KY131(Fig.3C-E).The 1000-grain weights of the three CRI lines increased by 9.6%,7.8%,and 8.8%(Fig.3E).

    3.5.OsNDB2 regulates cell expansion in spikelet hulls

    To dissect the cellular mechanism underlying the phenotypic variation in grain size between transgenic and KY131 plants,we investigated spikelet hull cells of KY131,OE-2 and CRI-3.In line OE-2,the outer epidermal cells in lemmas were shorter and thinner than those of KY131 lemmas(Fig.4A-C).In line CRI-3,the outer epidermal cells in lemmas were longer than those of KY131 lemmas but showed similar width to KY131 lemmas(Fig.4A-C).The cell numbers in lemmas of transgenic lines(OE-2 and CRI-3)were similar to that in KY131 lemmas in both longitudinal and transverse directions(Fig.4D,E).These results indicate that OsNDB2 regulates grain size by affecting cell expansion in spikelet hulls.

    Fig.3.Knockout of OsNDB2 with CRISPR/Cas9(CRI)system increases grain size and weight in rice.(A)Gene structure of OsNDB2 and sequences at target sites in T1 plants produced by CRISPR/Cas9 system.(B)Domain annotations of NDB2 and the three mutant proteins ndb2-1,ndb2-2,and ndb2-3.(C,D)Grain morphology of KY131 and three CRI lines.Scale bars,1 cm.(E)Statistics of grain length,grain width,and 1000-grain weight in KY131 and three CRI lines.Values are means±SD,n=10 for grain length and width and n=3 for 1000-grain weight.Differences between KY131 and CRI lines were tested with Student’s two-tailed t-test.

    Fig.4.OsNDB2 regulates grain size by affecting cell expansion in spikelet hulls.(A)Scanning electron microscopy images of the outer surfaces of KY131,OE-2 and CRI-3.(B,C)Mean cell length(B)and width(C)of outer epidermal cells in KY131,OE-2 and CRI-3,lemmas.(D,E)Outer epidermal cell number in longitudinal(D)and transverse(E)directions in KY131,OE-2 and CRI-3.Scale bars in(A),100μm.Values in(B)and(C)are means±SE,n=300 cells.Values in(D)and(E)are means±SD,n=10 spikelets.Differences between the KY131 and transgenic lines were tested with Student’s two-tailed t-test.

    4.Discussion

    This study performed genome-wide identification and characterization of ND members in rice.Six OsND genes representing three major types(OsNDA,OsNDB,OsNDC)were identified,and the subgroup b member OsNDB2 was functionally characterized in detail.Our results indicate that OsNDB2 negatively regulates grain size in rice.OsNDB2 encodes external rotenone-insensitive NADPH dehydrogenase,a core component of the alternative respiratory pathway in plant mitochondria.In plants,mitochondria are the main organelles that produce ATP for cellular metabolism via respiratory oxidation of organic acids and transfer of electrons to O2via the mtETC[14].Manipulating core components in the mitochondrial electron transport system could change the energy supply and cellular metabolism and alter plant growth and development.A recent review[15]summarized that several signaling pathways control seed size through maternal tissues and zygotic tissues,including or involving the ubiquitin-proteasome pathway,G-protein signaling,mitogen-activated protein kinase(MAPK)signaling,phytohormone perception and homeostasis,transcriptional regulators,and the HAIKU(IKU)pathway.Our study provides a new method of increasing crop seed size by CRISPR/Cas9-mediated genome editing that targets core components of the mtETC in plants.

    Allelic mutants of OsNDB2 generated by gene editing showed distinct grain appearances(Fig.3C,D).The allelic mutant CRI-1 with deletion of five amino acid residues in the FAD/NADbinding domain had wider grains but similar grain length compared to KY131.The other two allelic mutants(CRI-2 and CRI-3),each with a one-base-pair insertion in the fifth exon,retained only a truncated FAD/NAD-binding domain and showed longer grains but similar grain width compared to KY131(Fig.3C,D).Similarly,four OsGS3 alleles conferred different grain sizes,including long,medium,and short[16].Loss of function of OsMAPK6 resulting from a single-nucleotide deletion in the sixth exon reduced grain size[17],but a gain-of-function mutant of OsMAPK6 resulting from a G-to-A mutation in the fourth exon formed long grains[18].A new OsGS2 allele generated by gene editing targeted the miR396 recognition site and produced larger grains than the wild-type OsGS2 allele[19].Thus,alleles may confer different phenotypes for one trait.Rapid advances in genomeediting systems enable researchers to generate allelic mutants,which can be used in breeding programs.The simultaneous gene editing of OsNDB2 and other negative regulators mediating grain size will likely generate larger grain.Alternatively,allelic mutants of OsNDB2 crossed with other mutants with wide or long grain in KY131 could likely generate wider or longer grain than a single mutant.Thus,this study clarifies the functions of OsNDB2 and provides a potential breeding approach for increasing rice grain size.

    CRediT authorship contribution statement

    Mingxin Guo:Conceptualization,Methodology,Investigation,Writing-Original Draft,Writing-review & editing.Jiajia Liu:Investigation,Data curation.Linlin Hou:Investigation,Data curation.Suna Zhao:Investigation,Data curation.Nana Zhang:Investigation,Data curation.Lili Lu:Investigation,Data curation.Xusheng Zhao:Funding acquisition,Supervision.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by Luoyang Key Science and Technology Innovation Program(2101016A).

    Appendix A.Supplementary data

    Supplementary data for this article can be found online at https://doi.org/10.1016/j.cj.2022.07.016.

    国内精品宾馆在线| 少妇高潮的动态图| 九九爱精品视频在线观看| 亚洲欧美清纯卡通| 色哟哟·www| 亚洲av成人精品一二三区| 寂寞人妻少妇视频99o| 另类亚洲欧美激情| 中文字幕制服av| 亚洲国产色片| 久久韩国三级中文字幕| 2018国产大陆天天弄谢| 97人妻精品一区二区三区麻豆| 国产精品久久久久久久电影| 国产在线男女| 中文在线观看免费www的网站| 日韩一区二区三区影片| 日韩欧美精品免费久久| 少妇的逼好多水| 国产一区二区在线观看日韩| 欧美三级亚洲精品| 中国美白少妇内射xxxbb| 国产色爽女视频免费观看| 国产乱来视频区| 丰满少妇做爰视频| 舔av片在线| 日日撸夜夜添| 黄色怎么调成土黄色| 国产精品一及| 亚洲欧美精品专区久久| 国产精品一区二区在线观看99| 国产在线男女| 国产色婷婷99| 亚洲国产成人一精品久久久| 水蜜桃什么品种好| 女人十人毛片免费观看3o分钟| 亚洲av福利一区| 亚洲精品成人久久久久久| 成人毛片a级毛片在线播放| 精品酒店卫生间| 亚洲精品一二三| 成人综合一区亚洲| 中文字幕亚洲精品专区| 最近2019中文字幕mv第一页| 日韩免费高清中文字幕av| 在线观看国产h片| 大码成人一级视频| 国产一区二区在线观看日韩| 两个人的视频大全免费| 岛国毛片在线播放| 久热这里只有精品99| 老女人水多毛片| 热re99久久精品国产66热6| av女优亚洲男人天堂| 毛片一级片免费看久久久久| 搡老乐熟女国产| 丰满人妻一区二区三区视频av| 午夜激情久久久久久久| 听说在线观看完整版免费高清| 亚洲伊人久久精品综合| 2021天堂中文幕一二区在线观| 高清午夜精品一区二区三区| 国产成人freesex在线| 国产淫语在线视频| 丝袜喷水一区| 别揉我奶头 嗯啊视频| 三级国产精品片| 99久国产av精品国产电影| av女优亚洲男人天堂| 美女cb高潮喷水在线观看| 国产精品久久久久久av不卡| 日韩成人av中文字幕在线观看| 综合色丁香网| 欧美另类一区| 亚洲精品色激情综合| 99久久中文字幕三级久久日本| 又大又黄又爽视频免费| 国产精品成人在线| 国产精品国产三级专区第一集| 男的添女的下面高潮视频| 欧美日韩一区二区视频在线观看视频在线 | 免费大片18禁| 中文乱码字字幕精品一区二区三区| 成人亚洲精品av一区二区| 99热全是精品| 国产精品久久久久久精品电影小说 | av在线蜜桃| 美女脱内裤让男人舔精品视频| 久久久久国产网址| 国产成人一区二区在线| av在线亚洲专区| 久久这里有精品视频免费| 成人美女网站在线观看视频| av黄色大香蕉| 亚洲av在线观看美女高潮| 国产精品久久久久久久久免| 久久久久性生活片| 人妻系列 视频| 国产精品99久久99久久久不卡 | 精品一区二区免费观看| 国产成人91sexporn| 一级片'在线观看视频| 欧美性感艳星| 午夜亚洲福利在线播放| 国产精品久久久久久av不卡| 一本一本综合久久| 五月天丁香电影| 久久人人爽人人片av| 国产精品久久久久久精品古装| 女的被弄到高潮叫床怎么办| 国产爽快片一区二区三区| 国产乱人偷精品视频| av在线老鸭窝| 夜夜爽夜夜爽视频| 久久这里有精品视频免费| 91狼人影院| 十八禁网站网址无遮挡 | 一级毛片aaaaaa免费看小| 欧美97在线视频| 国产又色又爽无遮挡免| 一个人看视频在线观看www免费| 国产一区二区三区综合在线观看 | 丝袜脚勾引网站| 日韩一区二区三区影片| 免费看日本二区| 亚洲精品乱码久久久v下载方式| 欧美高清性xxxxhd video| 久久精品国产鲁丝片午夜精品| 国产久久久一区二区三区| 在线观看人妻少妇| 亚洲丝袜综合中文字幕| 欧美变态另类bdsm刘玥| 少妇的逼水好多| 亚洲性久久影院| 看免费成人av毛片| 欧美日韩综合久久久久久| 亚洲第一区二区三区不卡| 日本黄大片高清| 亚洲av欧美aⅴ国产| av网站免费在线观看视频| 久久久亚洲精品成人影院| 汤姆久久久久久久影院中文字幕| 欧美日韩视频精品一区| 视频区图区小说| 亚洲自偷自拍三级| 久久精品综合一区二区三区| 一级毛片我不卡| 免费黄色在线免费观看| 超碰97精品在线观看| 国产一级毛片在线| videos熟女内射| 国产淫语在线视频| 在线精品无人区一区二区三 | 欧美+日韩+精品| 国产成人freesex在线| 成人亚洲欧美一区二区av| 欧美精品一区二区大全| 久久99精品国语久久久| 亚洲成人中文字幕在线播放| 免费电影在线观看免费观看| 2018国产大陆天天弄谢| 欧美另类一区| 日本av手机在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 一个人观看的视频www高清免费观看| 一级毛片我不卡| 男人爽女人下面视频在线观看| 中文乱码字字幕精品一区二区三区| 精品人妻熟女av久视频| 国产精品国产三级国产专区5o| 美女视频免费永久观看网站| 丝瓜视频免费看黄片| 免费黄频网站在线观看国产| a级一级毛片免费在线观看| 伊人久久精品亚洲午夜| 国产精品一区二区在线观看99| 国产精品久久久久久久电影| 午夜福利网站1000一区二区三区| 亚洲av国产av综合av卡| 国产 一区精品| 在线观看一区二区三区| 国产精品一及| 高清av免费在线| 舔av片在线| 91精品伊人久久大香线蕉| 男插女下体视频免费在线播放| 亚洲精品成人av观看孕妇| 国产久久久一区二区三区| 国产色婷婷99| 日韩成人伦理影院| 亚洲成色77777| 日本黄大片高清| 日产精品乱码卡一卡2卡三| 久久精品国产自在天天线| 99热网站在线观看| 一级片'在线观看视频| 视频中文字幕在线观看| 午夜亚洲福利在线播放| 亚洲国产最新在线播放| 国产 精品1| 91精品国产九色| 日韩视频在线欧美| 国产毛片在线视频| 精品国产一区二区三区久久久樱花 | 一本色道久久久久久精品综合| 成人特级av手机在线观看| 午夜免费鲁丝| 亚洲综合精品二区| 国产黄色视频一区二区在线观看| 如何舔出高潮| 丝袜喷水一区| 日日摸夜夜添夜夜添av毛片| av福利片在线观看| 亚洲精品自拍成人| 精品国产三级普通话版| 久久精品综合一区二区三区| 一个人观看的视频www高清免费观看| 国产男人的电影天堂91| 久久人人爽av亚洲精品天堂 | 狂野欧美激情性xxxx在线观看| 毛片一级片免费看久久久久| av女优亚洲男人天堂| 国产精品久久久久久久久免| av在线老鸭窝| 国产精品99久久久久久久久| 美女脱内裤让男人舔精品视频| 日韩av不卡免费在线播放| 街头女战士在线观看网站| 亚洲伊人久久精品综合| 亚洲精品国产成人久久av| 精品久久久久久久末码| 人妻少妇偷人精品九色| 熟妇人妻不卡中文字幕| 国产探花在线观看一区二区| 国产探花极品一区二区| 欧美日韩一区二区视频在线观看视频在线 | 亚洲色图av天堂| 久久热精品热| 日韩制服骚丝袜av| 精品一区在线观看国产| 亚洲精品影视一区二区三区av| 国产美女午夜福利| 免费黄网站久久成人精品| 国产成人精品一,二区| 麻豆成人av视频| 一级毛片黄色毛片免费观看视频| 免费观看a级毛片全部| 国产欧美另类精品又又久久亚洲欧美| 日本猛色少妇xxxxx猛交久久| 国产成人a∨麻豆精品| 99热这里只有是精品在线观看| kizo精华| 久久久久国产网址| 中文天堂在线官网| 日本午夜av视频| 少妇的逼好多水| 六月丁香七月| 国产视频内射| 国产欧美日韩精品一区二区| 国产精品.久久久| 91aial.com中文字幕在线观看| 久久久久久久午夜电影| 好男人视频免费观看在线| 免费在线观看成人毛片| 国产成人精品一,二区| 伦理电影大哥的女人| av在线观看视频网站免费| 五月玫瑰六月丁香| 国语对白做爰xxxⅹ性视频网站| 在线亚洲精品国产二区图片欧美 | 久久久久国产网址| 久久99蜜桃精品久久| 高清av免费在线| 丰满少妇做爰视频| 国产成人精品一,二区| 国产永久视频网站| 亚洲最大成人av| 青春草国产在线视频| 99re6热这里在线精品视频| 国产黄色免费在线视频| 久久久国产一区二区| 2021少妇久久久久久久久久久| 狠狠精品人妻久久久久久综合| 国产精品一区二区在线观看99| 18禁裸乳无遮挡动漫免费视频 | 中文天堂在线官网| 国产精品女同一区二区软件| 亚洲图色成人| 久久热精品热| 久久精品久久精品一区二区三区| 中文字幕免费在线视频6| 内射极品少妇av片p| 精品人妻视频免费看| 狂野欧美激情性xxxx在线观看| 国产精品嫩草影院av在线观看| av线在线观看网站| www.av在线官网国产| 汤姆久久久久久久影院中文字幕| 久久精品综合一区二区三区| 2021少妇久久久久久久久久久| 乱码一卡2卡4卡精品| 中文天堂在线官网| 国产亚洲午夜精品一区二区久久 | 成人亚洲欧美一区二区av| 97超视频在线观看视频| 2021少妇久久久久久久久久久| videos熟女内射| 天堂中文最新版在线下载 | 一二三四中文在线观看免费高清| 欧美 日韩 精品 国产| 99re6热这里在线精品视频| 国产爱豆传媒在线观看| 国产国拍精品亚洲av在线观看| 国语对白做爰xxxⅹ性视频网站| 久久精品国产鲁丝片午夜精品| 欧美最新免费一区二区三区| 亚洲伊人久久精品综合| 成人无遮挡网站| 国产91av在线免费观看| 亚洲经典国产精华液单| 亚洲精品乱久久久久久| 一级毛片我不卡| 国产色爽女视频免费观看| av天堂中文字幕网| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲va在线va天堂va国产| 九九爱精品视频在线观看| 国产黄片美女视频| 最新中文字幕久久久久| 一区二区三区四区激情视频| 别揉我奶头 嗯啊视频| 一级毛片黄色毛片免费观看视频| 日韩制服骚丝袜av| 深夜a级毛片| 欧美zozozo另类| 干丝袜人妻中文字幕| 国产成人一区二区在线| av国产免费在线观看| 亚洲av一区综合| 欧美3d第一页| 亚洲性久久影院| 亚洲欧美日韩无卡精品| 色视频在线一区二区三区| 国产69精品久久久久777片| 成人午夜精彩视频在线观看| 免费观看av网站的网址| 亚洲国产欧美在线一区| 国产老妇伦熟女老妇高清| 亚洲在线观看片| 国产午夜福利久久久久久| 啦啦啦在线观看免费高清www| 日韩亚洲欧美综合| 欧美潮喷喷水| 男女边摸边吃奶| 亚洲av电影在线观看一区二区三区 | 少妇 在线观看| 精品久久久久久久人妻蜜臀av| 我的老师免费观看完整版| 青春草亚洲视频在线观看| 在线观看人妻少妇| 在线观看av片永久免费下载| 久久综合国产亚洲精品| 国产69精品久久久久777片| 在线精品无人区一区二区三 | 精品人妻偷拍中文字幕| a级毛片免费高清观看在线播放| 99热全是精品| 伦理电影大哥的女人| 99热国产这里只有精品6| 97热精品久久久久久| 日本一本二区三区精品| 午夜福利网站1000一区二区三区| 99久久中文字幕三级久久日本| 简卡轻食公司| 国产精品.久久久| 国产一区亚洲一区在线观看| 啦啦啦啦在线视频资源| www.av在线官网国产| 九九久久精品国产亚洲av麻豆| 亚洲va在线va天堂va国产| 国产午夜精品一二区理论片| 中文欧美无线码| 日韩成人av中文字幕在线观看| 极品教师在线视频| 黄色配什么色好看| 日韩伦理黄色片| 春色校园在线视频观看| 日本一本二区三区精品| 成人毛片60女人毛片免费| 亚洲精品国产色婷婷电影| 建设人人有责人人尽责人人享有的 | 少妇丰满av| 大片免费播放器 马上看| 久久久久久久亚洲中文字幕| 边亲边吃奶的免费视频| 欧美少妇被猛烈插入视频| 麻豆乱淫一区二区| 国产成人freesex在线| 美女国产视频在线观看| 国产淫片久久久久久久久| 国产精品人妻久久久久久| 国产一区二区三区av在线| 亚洲精品影视一区二区三区av| 国产成人a区在线观看| 久久久亚洲精品成人影院| 一二三四中文在线观看免费高清| 一级爰片在线观看| 日本与韩国留学比较| 18禁在线无遮挡免费观看视频| 久久久a久久爽久久v久久| 汤姆久久久久久久影院中文字幕| 69人妻影院| 午夜免费观看性视频| 亚洲精品日韩av片在线观看| 18禁在线无遮挡免费观看视频| av线在线观看网站| 天堂中文最新版在线下载 | 人妻少妇偷人精品九色| 亚洲,欧美,日韩| 菩萨蛮人人尽说江南好唐韦庄| 日韩亚洲欧美综合| 国产伦在线观看视频一区| av又黄又爽大尺度在线免费看| 三级国产精品片| 插逼视频在线观看| 狂野欧美激情性xxxx在线观看| 国产v大片淫在线免费观看| 色网站视频免费| 搡老乐熟女国产| 欧美变态另类bdsm刘玥| 777米奇影视久久| 直男gayav资源| 亚洲欧洲国产日韩| 婷婷色av中文字幕| 亚洲欧美精品专区久久| 国产中年淑女户外野战色| 欧美精品一区二区大全| 国产老妇伦熟女老妇高清| 熟女电影av网| 王馨瑶露胸无遮挡在线观看| 成人高潮视频无遮挡免费网站| 精品一区在线观看国产| 国产探花在线观看一区二区| 久久久成人免费电影| 美女视频免费永久观看网站| 三级国产精品欧美在线观看| 国产高清国产精品国产三级 | 卡戴珊不雅视频在线播放| 老女人水多毛片| 久久热精品热| videossex国产| 在线精品无人区一区二区三 | 黄色一级大片看看| 女人被狂操c到高潮| 免费观看av网站的网址| 久久精品综合一区二区三区| 国产久久久一区二区三区| 久久热精品热| 亚洲高清免费不卡视频| 国产在线男女| 日韩制服骚丝袜av| 乱系列少妇在线播放| 人妻制服诱惑在线中文字幕| xxx大片免费视频| 国产欧美日韩一区二区三区在线 | 国内精品美女久久久久久| 久久久久久伊人网av| 日韩一区二区三区影片| 三级经典国产精品| 一级a做视频免费观看| 亚洲国产成人一精品久久久| 交换朋友夫妻互换小说| 久久综合国产亚洲精品| 精品人妻一区二区三区麻豆| 神马国产精品三级电影在线观看| 大码成人一级视频| 又爽又黄无遮挡网站| 亚洲欧美精品自产自拍| 日本av手机在线免费观看| 国产日韩欧美在线精品| 深夜a级毛片| 99久国产av精品国产电影| 色综合色国产| 听说在线观看完整版免费高清| 精品久久久噜噜| 最新中文字幕久久久久| 99热6这里只有精品| 国产男女超爽视频在线观看| 成人特级av手机在线观看| 蜜桃久久精品国产亚洲av| 亚洲真实伦在线观看| 久久精品夜色国产| 久久久久国产网址| 国产免费视频播放在线视频| 亚洲无线观看免费| 麻豆国产97在线/欧美| 新久久久久国产一级毛片| 国产精品一及| 久久久久久久亚洲中文字幕| 又粗又硬又长又爽又黄的视频| 成人一区二区视频在线观看| xxx大片免费视频| 一级毛片aaaaaa免费看小| 男女国产视频网站| 国产午夜精品一二区理论片| 久久久精品94久久精品| tube8黄色片| 日韩伦理黄色片| 一级黄片播放器| 成年女人看的毛片在线观看| 亚洲,一卡二卡三卡| 国产午夜精品一二区理论片| 中国三级夫妇交换| 中文字幕制服av| 国产黄色免费在线视频| 亚洲四区av| h日本视频在线播放| av在线天堂中文字幕| 大又大粗又爽又黄少妇毛片口| 亚洲综合色惰| 亚洲久久久久久中文字幕| 日韩欧美精品v在线| 秋霞在线观看毛片| 永久免费av网站大全| 亚洲精品国产av成人精品| 黄色配什么色好看| 久久综合国产亚洲精品| 80岁老熟妇乱子伦牲交| 黑人高潮一二区| 观看免费一级毛片| 亚洲伊人久久精品综合| 特大巨黑吊av在线直播| 91aial.com中文字幕在线观看| a级毛色黄片| 亚洲av国产av综合av卡| 日韩亚洲欧美综合| 亚洲国产高清在线一区二区三| 亚洲色图综合在线观看| 免费av观看视频| 亚洲av福利一区| 高清毛片免费看| 哪个播放器可以免费观看大片| 麻豆乱淫一区二区| 国产爱豆传媒在线观看| 亚洲四区av| 在线天堂最新版资源| 亚洲精品影视一区二区三区av| 欧美人与善性xxx| 久久影院123| 看黄色毛片网站| 国产男女内射视频| 男人添女人高潮全过程视频| 国产男人的电影天堂91| 中文字幕久久专区| 亚洲国产欧美人成| 午夜免费男女啪啪视频观看| 97在线视频观看| 小蜜桃在线观看免费完整版高清| 国国产精品蜜臀av免费| 99久久精品一区二区三区| 精品午夜福利在线看| tube8黄色片| 欧美精品国产亚洲| 国产成人精品一,二区| 国产一区亚洲一区在线观看| 乱码一卡2卡4卡精品| 久久久久久久久大av| 高清毛片免费看| 99久久精品热视频| 别揉我奶头 嗯啊视频| 美女国产视频在线观看| 日本一本二区三区精品| 自拍欧美九色日韩亚洲蝌蚪91 | 精品国产乱码久久久久久小说| 特大巨黑吊av在线直播| 婷婷色综合大香蕉| 香蕉精品网在线| 日本wwww免费看| 最近最新中文字幕大全电影3| 高清日韩中文字幕在线| 精品人妻一区二区三区麻豆| 亚洲伊人久久精品综合| 国产综合懂色| 国产一区亚洲一区在线观看| 午夜精品一区二区三区免费看| 自拍欧美九色日韩亚洲蝌蚪91 | 国产成人福利小说| 国产一区有黄有色的免费视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久久久国产电影| 欧美bdsm另类| 高清在线视频一区二区三区| 国产成人91sexporn| 国产在线一区二区三区精| 国产成人91sexporn| 精品人妻一区二区三区麻豆| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产欧美日韩精品一区二区| 日本猛色少妇xxxxx猛交久久| 精品一区二区三卡| 午夜激情久久久久久久| a级一级毛片免费在线观看| 亚洲精品国产成人久久av| 日韩在线高清观看一区二区三区| 深爱激情五月婷婷| 欧美激情久久久久久爽电影| 能在线免费看毛片的网站| 精品熟女少妇av免费看| 在现免费观看毛片| 国产爱豆传媒在线观看| 亚洲精品第二区| 只有这里有精品99| 日本-黄色视频高清免费观看| 亚洲av免费高清在线观看| 欧美精品一区二区大全|