• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of a stable major QTL for fresh-seed germination on chromosome Arahy.04 in cultivated peanut(Arachis hypogaea L.)

    2022-12-02 01:01:16MoningZhngQingZngHuLiuFiynQiZiqiSunLijunMioXionLiChnyuLiDbingLiuJunjiGuoMngyunZhngJingXuLiShiMngiTinWnzhoDongBingynHungXinyouZhng
    The Crop Journal 2022年6期

    Moning Zhng,Qing Zng,Hu Liu,Fiyn Qi,Ziqi Sun,Lijun Mio,Xion Li,Chnyu Li,Dbing Liu,Junji Guo,Mngyun Zhng,Jing Xu,Li Shi,Mngi Tin,Wnzho Dong,Bingyn Hung,*,Xinyou Zhng,*

    a Innovation Base of Zhengzhou University,Henan Academy of Agricultural Sciences/Henan Academy of Crop Molecular Breeding/State Industrial Innovation Center of Biological Breeding/Key Laboratory of Oil Crops in Huang-Huai-Hai Plains,Ministry of Agriculture/Henan Provincial Key Laboratory for Oil Crops Improvement,Zhengzhou 450002,Henan,China

    b School of Agricultural Sciences,Zhengzhou University,Zhengzhou 450002,Henan,China

    c State Key Laboratory of Cotton Biology,Institute of Cotton Research,Chinese Academy of Agricultural Sciences,Anyang 455000,Henan,China

    d College of Applied Science and Technology of Hainan University,Danzhou 571737,Hainan,China

    e College of Agriculture,Henan University of Science and Technology,Luoyang 471023,Henan,China

    Keywords:Peanut QTL mapping Fresh-seed germination(FSG)Dynamic germination KASP

    ABSTRACT Fresh-seed germination(FSG)impairs peanut production,especially in areas where the peanut harvest season coincides with rainy weather.Developing FSG-resistant cultivars by molecular breeding is expected to mitigate yield loss and quality impairment caused by FSG.However,the genetic control of FSG awaits elucidation.In this study,FSG at 1,3,5,7,and 9 days post-imbibition in three environments were tested,and quantitative-trait loci(QTL)associated with FSG were mapped in a peanut recombinant inbred line population by leveraging existing high-density peanut genetic maps.Of 24 QTL identified in 13 linkage groups,qFSGA04 was a stable major QTL on linkage group 04(LG04).It was consistently detected in five germination stages and three environments.By designing and validating DNA markers in the confidence interval of qFSGA04,we identified one single-nucleotide polymorphism and one InDel closely associated with FSG that could be used as linked markers for FSG resistance in peanut breeding.

    1.Introduction

    Peanut(Arachis hypogaea L.),a source of edible oil and protein,is native to South America and naturalized throughout the temperate region of the world[1-4].Owing to extensive selection for high yield and improvement in quality traits during the domestication of wild peanut and the development of modern commercial cultivars,an undesirable trait of fresh seed germination(FSG)prior to harvest has become a growing problem,especially in regions where the harvest season coincides with wet weather[5,6].It is estimated[5]that FSG can cause up to 50% yield reduction and severely impair nut quality.FSG-affected peanut seeds are susceptible to pathogen infection,which renders them vulnerable for seed contamination by aflatoxin or other mycotoxins detrimental to human health[7].

    Studies of traits associated with FSG,including seed dormancy,preharvest sprouting(PHS),and in situ germination,have been conducted but have focused mainly on grain crops.Construction of recombinant inbred line(RIL)populations using parents with contrasting values for agronomic traits,coupled with map-based cloning,has been commonly used to study the molecular mechanisms underlying PHS in cereal crops,as exemplified by the successful cloning of several causal genes of PHS,such as AlaAT of Qsd1[8,9]and MKK3 of Qsd2-AK[10]in barley,TaPHS1 of Qphs.pseru-3AS[11-13],and MKK3 of Phs1[14,15]in wheat.Despite its economic significance to the peanut industry,FSG research on peanuts has lagged,owing mainly to a lack of genetic variation and suitable DNA markers,in addition to the peculiarity of underground peanut fruit maturation,which makes it difficult to observe and characterize FSG.

    The rapid development of molecular breeding methods and recent advent of deep-sequencing technologies have greatly facilitated precision breeding and trait improvement in peanut.Wholegenome sequences of multiple peanut types,including cultivated tetraploid species and their progenitor species,are now publicly available[1,3,4],enabling genome-wide molecular breeding for peanut traits[16-18].Exploiting genome sequence data,singlenucleotide polymorphism(SNP)markers have been widely used in the development of high-density genetic maps owing to their abundance,rich polymorphism,and wide distribution in the genome,facilitating quantitative-trait loci(QTL)mapping for complex peanut traits such as yield[19,20],quality[21,22],and disease resistance[23,24].

    Two peanut QTL,qfsd-1 and qfsd-2,associated with FSG have been reported[5]from QTL-mapping studies in an F2population derived from two Spanish-type parents with contrasting FSG.The first was located on chromosome A05,and the second on chromosome B06.Advancing the F2to a RIL population led to the discovery of two additional QTL located on B05 and A09 with marker intervals spanning 2.4 Mb and 0.74 Mb,respectively[6].The parents in these studies were all Spanish types,and the genetic influence of botanic type on FSG remains unknown.FSG is a dynamic process best observed over a period of time,and environmental factors strongly influence the severity of FSG.

    In the present study,QTL for FSG were identified in a RIL population of 521 lines derived from a cross between a Spanish-type cultivar and a runner-type cultivar in five germination stages of three growth environments.The objectives of this study were(1)to identify the differences of peanut fresh seed germination between parents and within RIL population;(2)to conduct QTL mapping of peanut fresh seed germination;(3)to develop KASP(kompetitive allele-specific PCR)markers for QTL with stable major genetic effects.

    2.Materials and methods

    2.1.Plant materials

    A RIL population of 521 lines was developed by single-seed descent from a cross between female parent Yuanza 9102(YZ9102)and male parent wt09-0023.YZ9102 is a Spanish-type cultivar released in 2002 by Henan Academy of Agricultural Science,and is high-yielding but susceptible to FSG,with FSG up to 85%[25].wt09-0023 is a runner-type high-oleic and FSG-resistant cultivar with FSG less than 10%,provided by Dr.Kim Moore(AgResearch Consultants Inc.,Tifton,GA,USA).F2:9-F2:11plants of the RIL were used for phenotyping.To validate diagnostic markers,a panel of 96 cultivars(Table S1)randomly selected from four botanical types was combined into a verification group[26].

    2.2.Field trials and phenotyping

    The RIL population and its parents were planted in Zhengzhou(Henan province),Ledong(Hainan province),and Xinxiang(Henan province),in May 2020,November 2020,and May 2021,respectively.These trials are referred to here as Zhengzhou 2020,Ledong 2020,and Xinxiang 2021.All field experiments were conducted in a randomized complete block design with two replicates.Each line was planted in a plot with two rows,each row with 20 seeds 20 cm apart,and a row spacing of 30 cm.Field-trial management followed standard agricultural practice[27].

    At harvest,mature pods from each line were immediately shelled and 90 mature kernels with intact seed coats and uniform size were selected,washed with sterile water,and placed on filter papers in a Petri dish.Each treatment consisted of three dishes containing 30 seeds with three replications.Approximately 50 mL of sterile water was added to each dish to maintain a moist germination environment.The dishes were maintained in a chamber with constant temperature of 28±2°C in the dark.The number of germinated seeds was recorded at 1,3,5,7,and 9 days postimbibition(DPI).

    Fresh peanut pods harvested in Ledong 2020 were also immediately collected for whole-shell germination testing.One hundred mature pods with intact shells were harvested from each line and immediately immersed in water.Germinated seeds were counted at 3 DPI.

    2.3.Statistical analysis of phenotypic data

    Statistical parameters,distribution of phenotypic data,and error distributions were estimated with QTL IciMapping software[28].Broad-sense heritability across three environments for FSG in each investigation stage was calculated as.

    where e represents the number of environments and r the number of replicates.FSG rate was recorded as:number of fresh seeds with radicle protruding through the seed coat/total number of fresh seeds×100%.

    2.4.QTL mapping

    Based on our previous study[29],a linkage map containing 5120 SNPs in 20 linkage groups was used for QTL mapping.Genotyping was conducted by digesting genomic DNA with EcoRI and DNA sequencing on an Illumina HiSeq 4000(Illumina,Inc.,San Diego,CA,USA)platform.The sequencing depths for the parents and RILs were approximately 25×and 5×,respectively.The genetic map covered 3179 cM with a mean marker interval of 0.6 cM.QTL for FSG in each environment and stage were detected based on the replication mean using QTL IciMapping[28,30],setting the mapping step size as 1 cM and the logarithm of odds(LOD)threshold as 3.0.The QTL region of linkage group 04(LG04)was drawn with MapChart 2.3[31].QTL were named as:q+the abbreviated trait name+linkage group number,or named as q+the abbreviated trait name+linkage group number.+a number designating one of multiple QTL in a single linkage group,following the International Rules of Genetic Nomenclature[11].

    2.5.KASP marker development and validation

    Using the sequences of the flanking markers,detected QTL were mapped to the reference genomes of A.hypogaea cv.Tifrunner(https://www.peanutbase.org/).SNPs polymorphic between the parents in the region of the putative QTL were converted to KASP markers[32].One hundred RILs with lowest and 100 RILs with highest FSG scores were selected for marker validation.The other verification group comprised 96 cultivars.The 200 RILs and 96 cultivars were then genotyped with the KASP markers and classified by their genotype similarity to YZ9102 or wt09-0023.

    3.Results

    3.1.Phenotypic analysis of FSG in RIL population

    FSG did not follow a normal distribution in the RILs,but errors appeared to be normally distributed(Table 1;Fig.S1).The FSG rate of YZ9102 was higher than that of wt09-0023 in all three environments(Table 1).The FSG rate ranged from 0 to 100%.The coefficient of variation(CV)of FSG ranged from 0.51% to 1.14%among the three environments,and the broad-sense heritability(H2)from 0.83 to 0.84.Significant environmental effects on FSG were observed:the mean FSG was significantly higher in Ledong 2020 than in the other two environments(Table 1).

    Table 1Phenotypic variation of FSG in parents and RIL population across five germination periods in three environments.

    3.2.Identification of QTL for FSG

    A total of 24 QTL for FSG with LOD score above 3.0 were mapped during five germination periods under three growth environments(Table S2).These QTL had phenotypic variation explained(PVE)of 0.82%-15.83%,and LOD values of 3.0-51.4.They were located on 13 LGs,i.e.,LG01 and LG11,LG02 and LG12,LG04 and LG14,LG05,LG06 and LG16,LG07 and LG17,LG10 and LG20.

    Among the 24 QTL,qFSGA04 on LG04,with PVE of 8.0%-14.9%and LOD of 16.2-30.1,was consistently detected(Fig.1;Table S2). Flanked by markers A04.100806014 and A04.101505919,qFSGA04 was assigned to a 0.70-Mb(100.806-10 1.506 Mb)genomic region of pseudomolecule A04 of Tifrunner.The confidence interval of qFSGA04 was 50.5-51.5 cM with the left flanking marker A04.100070836 and right marker A04.102865415(Fig.2).

    3.3.Gene annotation in the qFSGA04 confidence interval

    The confidence interval of qFSGA04 contained 54 genes(Table S3).In this interval 415 SNPs and 41 InDels were found,of which one SNP and one InDel were located in the exons of Arahy.N8MLZ0 and Arahy.ISSF38,respectively(Tables 2,S4).The SNP in Arahy.04:101089930 was located in an exon of an unknown gene(Arahy.ISSF38).The InDel in Arahy.04:100184540 was located in an exon of a gene(Arahy.N8MLZ0)encoding ribosomal RNA small subunit methyltransferase,NEP1(Tables 2,S3).

    Fig.1.QTL mapped on LG04.LOD curves of FSG across the whole genome under five germination periods in three environments.ZZ,LD,and XX represent respectively Zhengzhou 2020,Ledong 2020,and Xinxiang 2021.D1,D3,D5,D7,and D9 represent the recording date at 1,3,5,7,and 9 days post-imbibition.

    Table 2Nucleotide types of SNPs located in candidate genes.

    3.4.Marker validation for FSG

    KASP markers were designed to identify missense mutations associated with the identified SNP and InDel,and validated in the verification groups(Fig.3).Among all the validation materials,one SNP in Arahy.04:101089930 and one InDel in Arahy.04:100184540 were found to be associated with FSG.T:T(YZ9102 type)and G:G(wt09-0023 type)represented the genotype at Arahy.04:101089930,while T:T(YZ9102 type)and/:/(wt09-0023 type)represent the InDel at Arahy.04:100184540.In both indoor and field germination tests,the mean FSGs of T:T were significantly higher than those of G:G at Arahy.04:100184540,and the mean FSGs of T insertion were significantly higher than those of the wild type(without the T insertion)at Arahy.04:100184540(Fig.3A-D;Table 2).The same trend was observed in the indoor germination test of the verification group(Fig.3E;Table 2).The corresponding nucleotide in the low-FSG parent wt09-0023 at Arahy.04:101089930 changed from T to G,resulting in the alteration of the putatively encoded amino acid residue from asparagine(N)to lysine(K)(Table 2).The T insertion in the YZ9102 type at Arahy.04:100184540 resulted in a frame shift without premature termination of translation.

    Fig.3.KASP marker validation of SNP(Arahy.04:101089930)and InDel(Arahy.04:100184540).(A-C)Phenotypic difference between two base types at the SNP and InDel loci in the 200 RILs in Zhengzhou 2020,Ledong 2020,and Xinxiang 2021 respectively.(D)Phenotypic difference between two base types at the SNP and InDel loci in the 200 RILs in the field germination experiment.(E)Phenotypic difference between two base types at the SNP and InDel loci in the 96 cultivars of the verification group.

    4.Discussion

    This study was performed by leveraging an existing highdensity linkage genetic map recently constructed in our laboratory from the peanut RIL population that has 5120 markers spanning 3184 cM and a mean marker interval size of 0.6 cM[29].The population of 521 RILs is larger than those used in previous studies[5,6,19-24].Given that germination of fresh peanut seeds depends on a moist and warm environment[5,6],the germination tests conducted in this study under both laboratory and field conditions enabled a comprehensive analysis and quantification of FSG.

    In the present study,24 QTL associated with peanut FSG have been detected at different germination stages in multiple environments.Except for qFSGA05 on A05,the other 22 QTL were all located on both A and B sub-genomes(Table S2),for example,A01 and A11,A02 and A12,A04 and A14,A06 andA16,A07 and A17,A10 and A20.This represents a new advance following two previous studies on peanuts that revealed four putative QTL intervals for fresh-seed dormancy using a F2and its derived RILs populations[5,6],and in cereals such as wheat[8],barley[12],and rice[13]where multiple QTL have also been found to be associated with PHS and seed dormancy traits.Consistent with these previous studies,our present study shows that the fresh-seed dormancy,in situ germination,and FSG traits are quantitative traits that are regulated by multiple genes.

    In our study,a stable major QTL interval was located on Arahy.04.This is despite the previous findings in Spanish-type peanut that two QTL were mapped onto A05 and B06 in an F2population[5]while two other QTL were detected on A09 and B05 in its derived RIL population[6].Recently[33],a QTL mapping study of peanut seed dormancy revealed two major QTL on A04 and A05 in a RIL population of 164 lines.The location of this major QTL on A04 is similar to our findings in the present study.Herein we have further designed two KASP markers based on one SNP and one InDel in candidate genes associated with FSG,which were subsequently validated as highly correlated with FSG in both the RIL population and verification group,indicating their potential for use in marker-assisted breeding for FSG amelioration in peanuts.

    The regulation of FSG is a complex process with many influencing factors.Numerous studies[34]have shown that the germination of fresh seeds during harvest is affected by intrinsic factors such as seed phytohormones,carbohydrates,reactive oxygen species(ROS),and nitric oxide(NO),as well as exogenous factors such as environmental humidity,temperature,and oxygen concentration.In the present study,KASP markers designed for two candidate genes,Arahy.N8MLZ0 and Arahy.ISSF38,were validated.The gene Arahy.ISSF38 has not been annotated with a function and the other gene,Arahy.N8MLZ0,has been annotated as encoding a ribosomal RNA small subunit methyltransferase NEP1 that is involved in ribosome biogenesis by directly or indirectly interfering with methylation reactions in the early steps of pre-rRNA processing necessary for the generation of 40S ribosomal subunits[35].The connection of NEP1 with FSG invites further study.

    5.Conclusions

    A major stable QTL qFSG04 for peanut FSG was identified.Within its confidence interval,one SNP and one InDel were identified in candidate genes,and their association with FSG was validated using KASP markers.These markers could be applied to genetic improvement of peanut FSG resistance.The candidate genes could be used for genetic engineering to improve seed germination traits.

    CRediT authorship contribution statement

    Maoning Zhang:Investigation,Formal analysis,Validation,Visualization,Writing-Original Draft.Qing Zeng:Investigation,Writing-Review & Editing.Hua Liu:Resources,Software,Data Curation.Feiyan Qi:Resources,Software,Data Curation.Ziqi Sun:Resources,Software,Data Curation.Debing Liu:Investigation.Lijuan Miao:Investigation.Xiaona Li:Investigation.Chenyu Li:Investigation.Junjia Guo:Investigation.Mengyuan Zhang:Investigation.Lei Shi:Investigation.Mengdi Tian:Investigation.Jing Xu:Resources.Wenzhao Dong:Resources.Bingyan Huang:Conceptualization,Methodology,Writing-Review & Editing,Supervision,Project administration,Funding acquisition.Xinyou Zhang:Conceptualization,Methodology,Writing-Review &Editing,Supervision,Project administration,Funding acquisition.

    Declaration of competing interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by China Agriculture Research System(CARS-13),Henan Provincial Agriculture Research System,China(S2012-5),Major Science and Technology Projects of Henan Province(201300111000),and the Henan Provincial R&D Projects of Interregional Cooperation for Local Scientific and Technological Development Guided by Central Government(YDZX20214100004191).

    Appendix A.Supplementary data

    Supplementary data for this article can be found online at https://doi.org/10.1016/j.cj.2022.03.012.

    国产精品 国内视频| 九色亚洲精品在线播放| 深夜精品福利| 伦理电影免费视频| 久热这里只有精品99| 中文精品一卡2卡3卡4更新| 午夜免费观看性视频| 我的亚洲天堂| 国产欧美亚洲国产| 黄色怎么调成土黄色| 国产深夜福利视频在线观看| 亚洲成国产人片在线观看| 高清欧美精品videossex| 久久久久久久大尺度免费视频| 99久久精品国产亚洲精品| 啦啦啦 在线观看视频| 免费黄色在线免费观看| 日韩人妻精品一区2区三区| 亚洲av成人不卡在线观看播放网 | 欧美激情极品国产一区二区三区| 国产精品三级大全| 国产成人午夜福利电影在线观看| 一级毛片我不卡| 亚洲精品自拍成人| 丝袜喷水一区| 欧美国产精品一级二级三级| 欧美黑人精品巨大| 高清欧美精品videossex| 国产精品无大码| 少妇精品久久久久久久| 狂野欧美激情性bbbbbb| www.精华液| 97精品久久久久久久久久精品| 成人亚洲精品一区在线观看| www.熟女人妻精品国产| 国产免费现黄频在线看| 黄网站色视频无遮挡免费观看| 色综合欧美亚洲国产小说| 国产一区二区激情短视频 | 精品免费久久久久久久清纯 | 国产精品嫩草影院av在线观看| 国产精品.久久久| 欧美人与性动交α欧美软件| 别揉我奶头~嗯~啊~动态视频 | 啦啦啦在线免费观看视频4| 男女之事视频高清在线观看 | 国产毛片在线视频| 免费日韩欧美在线观看| 少妇的丰满在线观看| 中文字幕人妻丝袜制服| 卡戴珊不雅视频在线播放| 男女边摸边吃奶| 亚洲三区欧美一区| 亚洲国产中文字幕在线视频| 女人高潮潮喷娇喘18禁视频| 丰满迷人的少妇在线观看| 精品免费久久久久久久清纯 | 丝袜喷水一区| 亚洲一卡2卡3卡4卡5卡精品中文| 97在线人人人人妻| 午夜av观看不卡| 蜜桃在线观看..| 97人妻天天添夜夜摸| 在线观看免费午夜福利视频| 成年人免费黄色播放视频| 最近中文字幕高清免费大全6| 久久99一区二区三区| 午夜免费观看性视频| av卡一久久| 只有这里有精品99| 人人妻人人爽人人添夜夜欢视频| 欧美 亚洲 国产 日韩一| 国产 一区精品| 蜜桃在线观看..| 97人妻天天添夜夜摸| 中文精品一卡2卡3卡4更新| 美女大奶头黄色视频| 日本欧美视频一区| 免费在线观看视频国产中文字幕亚洲 | 国产亚洲一区二区精品| 亚洲国产精品一区三区| 精品免费久久久久久久清纯 | 亚洲欧美中文字幕日韩二区| 欧美日韩一区二区视频在线观看视频在线| 97精品久久久久久久久久精品| 日韩av免费高清视频| 亚洲国产毛片av蜜桃av| 久久综合国产亚洲精品| 纵有疾风起免费观看全集完整版| 免费黄网站久久成人精品| av一本久久久久| 纵有疾风起免费观看全集完整版| 精品第一国产精品| 亚洲视频免费观看视频| 咕卡用的链子| 免费在线观看黄色视频的| 伦理电影大哥的女人| 亚洲三区欧美一区| 欧美少妇被猛烈插入视频| 成人手机av| 九草在线视频观看| 老熟女久久久| 日本欧美国产在线视频| 国产男人的电影天堂91| 国产精品国产三级专区第一集| 国产一卡二卡三卡精品 | 亚洲精品av麻豆狂野| 成人亚洲精品一区在线观看| 久久 成人 亚洲| 免费在线观看黄色视频的| 久久久久久久大尺度免费视频| 综合色丁香网| 欧美激情高清一区二区三区 | 成年动漫av网址| 卡戴珊不雅视频在线播放| 十分钟在线观看高清视频www| 亚洲精品,欧美精品| 国产欧美亚洲国产| 亚洲专区中文字幕在线 | 一级片'在线观看视频| 亚洲国产成人一精品久久久| 久久久久久久精品精品| 欧美日韩视频精品一区| 国产成人精品福利久久| 精品一品国产午夜福利视频| 丝袜在线中文字幕| 久久久久网色| 高清av免费在线| 亚洲欧洲国产日韩| 在线观看一区二区三区激情| 2021少妇久久久久久久久久久| 精品国产一区二区久久| 国产精品av久久久久免费| 一级爰片在线观看| 一级黄片播放器| 日日摸夜夜添夜夜爱| 国产一区亚洲一区在线观看| 波野结衣二区三区在线| 黄网站色视频无遮挡免费观看| 久久 成人 亚洲| 操出白浆在线播放| 人妻一区二区av| 亚洲精品国产av成人精品| 欧美日韩成人在线一区二区| 黄片小视频在线播放| 亚洲国产成人一精品久久久| 久久综合国产亚洲精品| 亚洲av中文av极速乱| 最近中文字幕2019免费版| 老汉色∧v一级毛片| 中文字幕最新亚洲高清| 午夜福利视频在线观看免费| 国产亚洲欧美精品永久| 午夜日本视频在线| 免费高清在线观看日韩| 一边摸一边做爽爽视频免费| 久久综合国产亚洲精品| 亚洲美女黄色视频免费看| 日本欧美视频一区| 在现免费观看毛片| 亚洲精品日本国产第一区| 久久人人爽av亚洲精品天堂| h视频一区二区三区| www日本在线高清视频| 中文欧美无线码| 搡老岳熟女国产| 午夜91福利影院| 麻豆av在线久日| 久久婷婷青草| 国产人伦9x9x在线观看| 男女床上黄色一级片免费看| 老司机深夜福利视频在线观看 | 一级a爱视频在线免费观看| 日韩精品免费视频一区二区三区| 久久人人97超碰香蕉20202| 最新在线观看一区二区三区 | 亚洲精品,欧美精品| 黄片小视频在线播放| 伊人久久大香线蕉亚洲五| 久久久久人妻精品一区果冻| 肉色欧美久久久久久久蜜桃| 午夜福利,免费看| 涩涩av久久男人的天堂| 免费在线观看视频国产中文字幕亚洲 | 嫩草影院入口| 日本黄色日本黄色录像| 如何舔出高潮| 色婷婷av一区二区三区视频| 看免费成人av毛片| 亚洲精品第二区| 成人三级做爰电影| 一区二区三区精品91| 最近中文字幕2019免费版| 美女视频免费永久观看网站| 91精品伊人久久大香线蕉| 一区二区三区精品91| 99国产精品免费福利视频| 国产色婷婷99| 国产爽快片一区二区三区| 精品少妇一区二区三区视频日本电影 | 十八禁高潮呻吟视频| 亚洲欧美激情在线| 国产精品久久久久久精品电影小说| 男男h啪啪无遮挡| 国产成人啪精品午夜网站| 精品国产乱码久久久久久小说| 国产高清不卡午夜福利| 欧美老熟妇乱子伦牲交| 日韩精品免费视频一区二区三区| 成年av动漫网址| 国产黄色视频一区二区在线观看| 国产老妇伦熟女老妇高清| 91精品国产国语对白视频| 亚洲国产欧美网| 人人澡人人妻人| 男女边吃奶边做爰视频| 极品人妻少妇av视频| 国产av一区二区精品久久| 久久久国产欧美日韩av| 少妇精品久久久久久久| 晚上一个人看的免费电影| 天天躁夜夜躁狠狠躁躁| 久久精品久久久久久久性| 国产欧美日韩一区二区三区在线| 日韩中文字幕欧美一区二区 | 两性夫妻黄色片| 亚洲成色77777| 亚洲中文av在线| 99国产精品免费福利视频| 久热这里只有精品99| 国产日韩欧美亚洲二区| 亚洲精品国产av蜜桃| 欧美亚洲日本最大视频资源| 免费黄色在线免费观看| av女优亚洲男人天堂| 精品卡一卡二卡四卡免费| 一二三四中文在线观看免费高清| 久久久久人妻精品一区果冻| 大片电影免费在线观看免费| 免费在线观看黄色视频的| 一本一本久久a久久精品综合妖精| 久久天堂一区二区三区四区| 80岁老熟妇乱子伦牲交| 精品一品国产午夜福利视频| 波多野结衣av一区二区av| 国产深夜福利视频在线观看| 国产精品久久久久久久久免| 国产精品免费视频内射| 亚洲欧美清纯卡通| 国产在视频线精品| 我要看黄色一级片免费的| 啦啦啦中文免费视频观看日本| 中国国产av一级| 日韩av免费高清视频| 国产精品一区二区在线不卡| 欧美国产精品一级二级三级| 中文字幕色久视频| e午夜精品久久久久久久| 超色免费av| 丝袜人妻中文字幕| 丝袜人妻中文字幕| 麻豆av在线久日| 日韩av不卡免费在线播放| 香蕉丝袜av| 99国产综合亚洲精品| 久久久久精品人妻al黑| 大香蕉久久网| 国产探花极品一区二区| 考比视频在线观看| 蜜桃在线观看..| 精品一品国产午夜福利视频| 97精品久久久久久久久久精品| 黄网站色视频无遮挡免费观看| 久久久久久免费高清国产稀缺| 亚洲国产欧美日韩在线播放| 久久精品亚洲熟妇少妇任你| av女优亚洲男人天堂| 欧美日韩精品网址| 欧美精品av麻豆av| 国产成人av激情在线播放| 中国国产av一级| 久久久久久久久免费视频了| 久久青草综合色| 国产1区2区3区精品| 最近手机中文字幕大全| 国产精品一区二区在线不卡| svipshipincom国产片| 亚洲国产欧美网| 热re99久久国产66热| 亚洲欧美一区二区三区久久| 超碰成人久久| 国产精品99久久99久久久不卡 | 亚洲国产成人一精品久久久| 悠悠久久av| 丝瓜视频免费看黄片| 少妇被粗大的猛进出69影院| 人人妻人人爽人人添夜夜欢视频| 成年人免费黄色播放视频| 久久国产精品大桥未久av| 成人亚洲欧美一区二区av| 精品国产乱码久久久久久男人| 亚洲七黄色美女视频| 大话2 男鬼变身卡| 国产av码专区亚洲av| 最近中文字幕2019免费版| 在线观看免费午夜福利视频| 最黄视频免费看| 别揉我奶头~嗯~啊~动态视频 | 伊人亚洲综合成人网| 精品福利永久在线观看| 国产精品久久久人人做人人爽| 日韩精品免费视频一区二区三区| 亚洲欧美成人精品一区二区| 日韩,欧美,国产一区二区三区| 午夜福利免费观看在线| 大陆偷拍与自拍| 欧美人与性动交α欧美精品济南到| av福利片在线| 国产成人免费观看mmmm| 亚洲综合色网址| 国产高清国产精品国产三级| 国精品久久久久久国模美| 亚洲精品在线美女| 悠悠久久av| 国产日韩欧美亚洲二区| 欧美黑人精品巨大| 国产成人一区二区在线| 九草在线视频观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品视频女| 国产精品国产三级专区第一集| 欧美精品一区二区免费开放| 久久久久久久久久久免费av| 在线观看免费日韩欧美大片| 亚洲欧美成人综合另类久久久| 精品久久久久久电影网| 高清av免费在线| 精品一区二区三区av网在线观看 | 久久午夜综合久久蜜桃| 天堂8中文在线网| av电影中文网址| 丝袜脚勾引网站| 久久久久久免费高清国产稀缺| 丁香六月天网| 国产又爽黄色视频| 久久天堂一区二区三区四区| 国产av精品麻豆| 性少妇av在线| 国产亚洲最大av| 午夜日韩欧美国产| 亚洲欧美激情在线| 丝瓜视频免费看黄片| 亚洲精华国产精华液的使用体验| 午夜福利乱码中文字幕| 国产一区二区激情短视频 | 午夜福利在线免费观看网站| 看非洲黑人一级黄片| 欧美日韩亚洲国产一区二区在线观看 | av不卡在线播放| 嫩草影院入口| 久久久久国产精品人妻一区二区| 精品一品国产午夜福利视频| 欧美激情 高清一区二区三区| 亚洲中文av在线| 欧美精品人与动牲交sv欧美| 国产一区二区三区av在线| 久久精品久久久久久噜噜老黄| 午夜久久久在线观看| 久久青草综合色| 久久精品亚洲熟妇少妇任你| 日韩中文字幕欧美一区二区 | 久久青草综合色| 国产免费视频播放在线视频| 亚洲一区中文字幕在线| 免费黄网站久久成人精品| h视频一区二区三区| 国产成人精品在线电影| 久久久久久久久久久久大奶| 啦啦啦在线观看免费高清www| 看免费av毛片| 五月天丁香电影| 黑人巨大精品欧美一区二区蜜桃| 亚洲视频免费观看视频| 大陆偷拍与自拍| 免费高清在线观看视频在线观看| 黑人猛操日本美女一级片| 久久久久久久精品精品| av不卡在线播放| 悠悠久久av| 两个人免费观看高清视频| 成人亚洲精品一区在线观看| 天堂中文最新版在线下载| 亚洲国产日韩一区二区| 一二三四在线观看免费中文在| 一级毛片 在线播放| 午夜免费观看性视频| 免费日韩欧美在线观看| 国产99久久九九免费精品| av网站在线播放免费| 亚洲国产精品一区三区| 国产成人a∨麻豆精品| 亚洲欧美精品综合一区二区三区| 亚洲伊人色综图| 久久久久久久久久久免费av| 日韩伦理黄色片| 免费av中文字幕在线| 精品一区在线观看国产| 亚洲,一卡二卡三卡| 日本欧美视频一区| 亚洲欧美日韩另类电影网站| 国产99久久九九免费精品| 中文精品一卡2卡3卡4更新| 校园人妻丝袜中文字幕| 国产深夜福利视频在线观看| 久久av网站| 成人毛片60女人毛片免费| 亚洲欧洲国产日韩| 两个人看的免费小视频| 男人爽女人下面视频在线观看| 晚上一个人看的免费电影| 欧美97在线视频| 成人亚洲欧美一区二区av| 天天躁夜夜躁狠狠久久av| 观看av在线不卡| 亚洲精品国产一区二区精华液| 一级黄片播放器| 欧美黑人精品巨大| 黄频高清免费视频| 少妇人妻 视频| 久久精品久久精品一区二区三区| 在线免费观看不下载黄p国产| 一级爰片在线观看| 中文字幕人妻丝袜一区二区 | 最黄视频免费看| av天堂久久9| 毛片一级片免费看久久久久| 麻豆乱淫一区二区| 国产在线免费精品| 汤姆久久久久久久影院中文字幕| 少妇的丰满在线观看| 大片免费播放器 马上看| 亚洲三区欧美一区| 在线观看人妻少妇| 免费高清在线观看日韩| 制服诱惑二区| 国产精品欧美亚洲77777| 亚洲成人手机| 精品国产超薄肉色丝袜足j| 国产在线免费精品| 大香蕉久久成人网| 国产人伦9x9x在线观看| a级毛片黄视频| 国产精品久久久av美女十八| 色精品久久人妻99蜜桃| 夫妻性生交免费视频一级片| 亚洲av日韩在线播放| 欧美日韩成人在线一区二区| svipshipincom国产片| 老司机亚洲免费影院| 免费黄色在线免费观看| 一个人免费看片子| 中文字幕人妻丝袜一区二区 | 黄片无遮挡物在线观看| 精品午夜福利在线看| 99久久综合免费| 在线观看www视频免费| 久久国产精品男人的天堂亚洲| 精品人妻熟女毛片av久久网站| 51午夜福利影视在线观看| 99热国产这里只有精品6| 青春草亚洲视频在线观看| 国产 精品1| 波多野结衣av一区二区av| 大香蕉久久网| 亚洲精品,欧美精品| www.精华液| 水蜜桃什么品种好| 尾随美女入室| 亚洲国产精品一区二区三区在线| 国产精品亚洲av一区麻豆 | 丝袜喷水一区| 美女中出高潮动态图| 久久人妻熟女aⅴ| 女人精品久久久久毛片| 水蜜桃什么品种好| 在线观看人妻少妇| 人人妻人人澡人人爽人人夜夜| 大香蕉久久成人网| 国产精品 欧美亚洲| 99久国产av精品国产电影| 亚洲熟女毛片儿| 秋霞伦理黄片| 99香蕉大伊视频| 天堂8中文在线网| 侵犯人妻中文字幕一二三四区| av在线老鸭窝| 亚洲av日韩精品久久久久久密 | 天美传媒精品一区二区| 中文乱码字字幕精品一区二区三区| 丝袜喷水一区| 99国产综合亚洲精品| 免费观看a级毛片全部| 制服人妻中文乱码| 国产又爽黄色视频| 国产黄色免费在线视频| 成人三级做爰电影| 欧美 亚洲 国产 日韩一| tube8黄色片| 伦理电影大哥的女人| 在线天堂最新版资源| 国产国语露脸激情在线看| svipshipincom国产片| 热99国产精品久久久久久7| 九九爱精品视频在线观看| 午夜福利,免费看| 日韩av不卡免费在线播放| 日本猛色少妇xxxxx猛交久久| 韩国高清视频一区二区三区| 1024香蕉在线观看| 老鸭窝网址在线观看| 欧美日韩亚洲国产一区二区在线观看 | 日日撸夜夜添| 丁香六月欧美| 亚洲av综合色区一区| 国产不卡av网站在线观看| 电影成人av| 一级毛片电影观看| 国产精品免费视频内射| 国产野战对白在线观看| 精品国产一区二区三区久久久樱花| 亚洲欧美成人综合另类久久久| svipshipincom国产片| 中文字幕av电影在线播放| 中文字幕亚洲精品专区| 黄片小视频在线播放| 午夜老司机福利片| 99久久99久久久精品蜜桃| videos熟女内射| 精品国产露脸久久av麻豆| 亚洲国产欧美在线一区| 一区二区三区乱码不卡18| 午夜免费男女啪啪视频观看| 日韩av免费高清视频| 精品人妻一区二区三区麻豆| 香蕉国产在线看| 免费黄色在线免费观看| 波野结衣二区三区在线| 9色porny在线观看| 久久精品熟女亚洲av麻豆精品| 99热国产这里只有精品6| 最近的中文字幕免费完整| 成年美女黄网站色视频大全免费| xxxhd国产人妻xxx| 国产成人午夜福利电影在线观看| 国产男女内射视频| 一级爰片在线观看| 七月丁香在线播放| www.自偷自拍.com| 91aial.com中文字幕在线观看| 亚洲五月色婷婷综合| 高清黄色对白视频在线免费看| 亚洲成人手机| 欧美黄色片欧美黄色片| 啦啦啦在线观看免费高清www| 9热在线视频观看99| 精品亚洲成a人片在线观看| 伊人亚洲综合成人网| 老司机亚洲免费影院| 国产伦理片在线播放av一区| 日韩不卡一区二区三区视频在线| 中文字幕精品免费在线观看视频| 日韩欧美一区视频在线观看| 日日撸夜夜添| 亚洲三区欧美一区| 90打野战视频偷拍视频| 亚洲av福利一区| 久久精品久久久久久久性| 男女无遮挡免费网站观看| 国产成人欧美在线观看 | 十八禁人妻一区二区| 少妇 在线观看| 99精国产麻豆久久婷婷| 国产片内射在线| 国产乱人偷精品视频| 国产成人精品久久久久久| 一本大道久久a久久精品| 宅男免费午夜| 精品一区二区三区四区五区乱码 | 欧美在线黄色| 制服诱惑二区| 色婷婷久久久亚洲欧美| 欧美黑人精品巨大| 中文字幕人妻熟女乱码| 免费日韩欧美在线观看| 久久久久精品人妻al黑| 一本色道久久久久久精品综合| 久热爱精品视频在线9| 国产成人精品在线电影| 精品久久蜜臀av无| 久久精品久久久久久久性| 久久女婷五月综合色啪小说| 久久韩国三级中文字幕| h视频一区二区三区| 精品国产一区二区久久| 一级a爱视频在线免费观看| 国产伦理片在线播放av一区| 最黄视频免费看| 国产精品99久久99久久久不卡 | 色精品久久人妻99蜜桃| 少妇猛男粗大的猛烈进出视频| 国产淫语在线视频| 又大又爽又粗| 天天躁日日躁夜夜躁夜夜| 欧美人与善性xxx| 国产 一区精品|