• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A multi-view K-multiple-means clustering method

    2021-12-21 14:09:16ZHANGNiniGEHongwei

    ZHANG Nini, GE Hongwei

    (1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China;2. Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence,Jiangnan University, Wuxi 214122, China)

    Abstract: The K-multiple-means (KMM) retains the simple and efficient advantages of the K-means algorithm by setting multiple subclasses, and improves its effect on non-convex data sets. And aiming at the problem that it cannot be applied to the Internet on a multi-view data set, a multi-view K-multiple-means (MKMM) clustering method is proposed in this paper. The new algorithm introduces view weight parameter, reserves the design of setting multiple subclasses, makes the number of clusters as constraint and obtains clusters by solving optimization problem. The new algorithm is compared with some popular multi-view clustering algorithms. The effectiveness of the new algorithm is proved through the analysis of the experimental results.

    Key words: K-multiple-means (KMM) clustering; weight parameters; multi-view K-multiple-means (MKMM) method

    0 Introduction

    Clustering is a common technology for pattern recognition and is widely applied to machine learning task such as image segmentation and user portrait. K-means[1]is the most classical method among a large number of existing clustering algorithms. And it is widely used due to its high efficiency and intuitive principle. However, the K-means algorithm does not perform well on non-spherical datasets. In order to improve the defect of K-means, many variants algorithm of K-means algorithm have been proposed[2-5]. Setting multiple subclasses for a class is a strategy to improve the K-means algorithm. This design is more in line with the practical application scenarios, and performs better on non-convex datasets. K-multiple-means (KMM), a multiple-means clustering method with specified K[6]proposed by Nie et al. at ACM SIGKDD in 2019, is a typical example. KMM algorithm is concerned because of its excellent performance[5-7].

    KMM is a traditional clustering method to study samples through a set of characteristics. When the samples has multiple groups of features, multi-view clustering can divide the samples by integrating and processing multiple groups of features. In the era of big data, data with multiple sets of characteristics is very common in real scenarios[7]. For example, in the problem of understanding multimedia content, multimedia content contains both the video signal from the camera and the audio signal from the microphone. In some image recognition tasks, image features include colour feature, textures feature and shape feature. The proliferation of multi-view data makes many scholars have a strong interest in multi-view learning. The data on different views of multi-view data is heterogeneous but potentially related. In other word, in multi-view data, each individual view has a specific attribute for a specific knowledge discovery task, but the different views often contain complementary information. Therefore, how to use this information to reveal the potential value of multi-perspective data is very important in big data research. In terms of unsupervised learning, the clustering method based on single view can not solve problems by using multi-view information as effectively as the multi-view clustering in many cases. Multi-view clustering needs to judge relationship among samples in each view respectively and completes clustering task by using the complementary and consensus information of multiple views. It is difficult to obtain good result by integrating different views to a single view and then using the advanced traditional clustering algorithm to cluster. Because each view has its specific attributes, in the process of feature fusion, a particular view may have higher weight than other views, resulting in clustering relies on only one of the views.

    Although KMM algorithm has excellent performance in traditional clustering, similar to other single-view clustering methods, it cannot use multiple groups of feature in multi-view data to complete the clustering task effectively. In this paper, a multi-view K-multiple-means (MKMM) clustering method is proposed. In the new algorithm, weight parameters of view are introduced, a new objective function is proposed, and the optimum allocation of weight parameters and clustering results of data are obtained through alternating optimization strategy.

    For a better clustering performance on multi-view data, it’s an effective strategy that modify good traditional clustering method to adapt to multi-view datasets. Recently, KMM and MKMM has excellent performance on traditional data sets. This paper proposed a new multi-view clustering based on KMM and revisited KMM in this section.

    The key idea of KMM algorithm is to set multiple prototypes for each cluster and make the location of clustering prototype and the partitioning of data to prototype an optimization problem.

    s.t.S≥0,S1=1,S∈Ω.

    (1)

    The position of prototypes will change asSchanges. WhenSupdated, each prototype can be relocated. This process can be iteratively performed by

    s.t.S≥0,S1=1,S∈Ω,A∈Rm×d.

    (2)

    The clustering result can be obtained by solving problem (2).

    KMM performs well in traditional clustering, so the multi-view clustering based on KMM has a good foundation for multi-view data clustering.

    1 Proposed method

    1.1 Design of objective function

    As mentioned above, KMM sets multiple prototypes in each class for better performance (Fig.1), and solving problem (1) can obtain the assignment of data to neighboring prototypes. Supposing that the data set hasnvviews, this paper integrates information from all views by introducing weight parametersW=[w1,w2,…,wnv] to extend KMM algorithm to multi-view data. Then, problem (1) becomes

    Fig.1 Integration of multi-view schematic

    s.t.S≥0,S1=1,

    (3)

    Similar to the single view, the task assigned to a similar prototype for each data sample are independent of the other data samples in the multi-view. However, when data is partitioned into similar prototypes, the information of different views will influence each other and jointly determine the partition of sample.Therefore, the assignment of each samplexiis presented as

    (4)

    After the matrixSis updated, each prototype will be relocated according to the average of new subclass. This process is performed iteratively until the partition of sample is no longer changed which can be expressed as

    s.t.S≥0,S1=1,A∈Rm×d.

    (5)

    As with single-view clustering, in most cases, connecting samples to prototypes belonging to the same cluster will result in a connected graph. In order to make the partition of samples more reasonable, considering that the matrixSshould havekconnected components, MKMM introduces a new constraintS∈Ω to the objective function (5) to form a new objective, that is

    s.t.S≥0,S1=1,S∈Ω,A∈Rm×d.

    (6)

    In order to get the best view weight parameters distribution, the view may initially be assigned a weight average. When the partition between the prototype and the samples is updated again, the view weights will be updated and changed accordingly to obtain the best weight. Eq.(6) should be turned as

    s.t.S≥0,S1=1,S∈Ω,A∈Rm×d,

    W≥0,W1=1.

    (7)

    1.2 Optimization strategy

    A∈Rm×d,W≥0,W1=1.

    (8)

    In order to solve the problem (8), relax the restriction in problem (8) and turn the problem (8) into

    F∈R(n+m)×k,FTF=I,W≥0,W1=1.

    (9)

    Eq.(9) can be solved by updateA,S,F,Witeratively. FixAfirstly, then updateS,F,W. Problem (9) can be turned into

    F∈R(n+m)×k,FTF=I,W≥0,W1=1.

    (10)

    For solving problem (10), fixS,Wand updateF.

    WhenFis fixed, fixW, updateSand change the problem (10) as

    (11)

    (12)

    s.t.S≥0,S1=1.

    (13)

    (14)

    The solution of problem (14) is similar to that of problem (4).

    WhenS,Ffixed, it needs to updateW, which is used to solve the problem (14), expressed as

    s.t.W≥0,W1=1.

    (15)

    (16)

    DenoteY∈Rnv×nv, problem (16) can be regarded as

    (17)

    Removing the constraintW≥0, the Lagrange function of Eq.(17) can be expressed as

    L(w,η)=WTYW-η(WT1-1),

    (18)

    (19)

    (20)

    1.3 MKMM algorithm steps

    In summary, the main steps of the MKMM algorithm are described as:

    Input: multi-view data setXnv={X(1),X(2),…,X(nv)}, number of clustersk, number of subclassm, parameterγ,λ.

    Output: clustering resultsC={C1,C2,…,Ck}.

    Step 1: calculate matrixS;

    Step 3: solving problem (14) to update matrixS.

    Step 4: update weight parameterWaccording to Eq.(20). Repeat steps 2, 3, 4 until converge.

    Step 5: calculate the position of each prototype and update the matrixAuntil the position of the prototype no longer changes according to the matrixS;

    Step 6: thekclusters are obtained according to the bipartite graph composed of samples and prototypes.

    1.4 Computational complexity

    In summary, supposing thatAis updatedt2times, and the total time complexity of the KMM algorithm is

    O(((nmk+nmc+m2n+nv)t1+nmd)t2+nlogn+nd).

    2 Experiments

    2.1 Clustering metrics

    The measure of clustering generally uses one or more evaluation indicators as judgment criteria to evaluate and analyze the clustering results, so as to determine the quality of the clustering algorithm. This article evaluates the algorithm throughAccuracy,NormalizedMutualInformation(NMI)[11]andPuritymetrics. The three metrics are introduced, respectively.

    SupposingCis the real label of dataset,Wis the label obtained by the algorithm. The definition ofAccuracyis

    (21)

    where map is the best mapping function, which can transform the label obtained by the algorithm and the real label into one to one mapping relationship.δis the indicator function.

    The definition ofNMIis

    (22)

    whereIrepresents mutual information;Hrepresents information entropy.

    Purityis defined as

    (23)

    The larger the values of theAccuracy,NMIandPurityare, the better the clustering performance. The value range of the metrics is [0,1].

    2.2 Datasets

    The Caltech101-7 in Table1 is a dataset of 7 classes extracted from Caltech101. The Caltech101 is a dataset containing 101 classes of images created by the California University in 2003. Each class contains 40 to 80 pictures, each with assize of 300×200 pixels. The seven classes extracted by Caltech101-7 are human faces, motorcycles, dollar, garfield, snoopy, stop signs and Windsor chairs. Caltech101-7 extracted six features from the above seven classes images containing gabor, wavelet cenhist, hog, gist and lbp.

    The Caltech101-20 in Table 1 is a dataset of 20 classes extracted from the Caltech101. The 20 classes are human face, leopard, motorcycle, binoculars, brain, camera, car sidewall, dollar, ferry, garfield, hedgehog, pagoda, rhino, snoopy, stapler, parking indicator, water lily, Windsor chair, wrench, and yinyang. The six features extracted from the images by Caltech101-20 are the same as Caltech101-20.

    Table 1 Real benchmark dataset

    The Yale32 in Table 1 is a face dataset of Yale University.There are 15 people in the dataset. Each person has 11 pictures with different poses, expressions and lighting. There are 165 pictures in total, and the pixels of the pictures are 32×32 pixels.

    The Wikipedia Articles in Table 1 is some documents collected from the featured article in Wikipedia. This is a continuously growing data set. This article uses a dataset composed of 2 669 articles in 29 classes collected in October 2009. Because some of the classes are sparse, only 10 classes are retained, and dataset are pruned to retain 693 samples. The dataset has two sets of features, one set is taken from the text information in the document and the other set is taken from the text.

    2.3 Competitors

    In order to evaluate the MKMM algorithm proposed in this paper, some algorithms are selected.

    Liu et al. proposed MKKM-MR[12]algorithm. This algorithm designed a novel, effective matrix-induced regularization to reduce such redundancy and enhance the diversity of the selected kernels. The algorithm needed to set the regularization parameters in advance when the algorithm was executed. According to the recommendations in the article, this article sets the parameter range from -15 to 20, sets the step size as 1 for comparison experiments, and takes the average of 26 results of algorithm.

    Zhao et al. proposed SCMK1[13]algorithm. This algorithm learned similarity information from data and integrated three subtask of traditional spectral clustering into a unified framework. The parameters were tuned as suggested[13].

    Zhao et al. proposed SCMK2[14]algorithm. This algorithm proposed a model to simultaneously learn cluster indicator matrix and similarity information in kernel spaces in a principles way.

    Wang et al. proposed MVC_LFA[15]algorithm. This algorithm proposed to maximally align the consensus partition with the weighted base partitions. According to the recommendations, the balance parameters were set according to the values in set {2-15,2-14,…,215}, and the average value of 31 experiments was displayed.

    2.4 Performance

    Results of the MKMM algorithm and the competitors on the four multi-view datasets were evaluated byAccuracy,NMIandPuritymetric, which was shown in Tables 2-4.

    Table 2 Accuracy values of five algorithms

    Table 3 NMI values of five algorithms

    Table 4 Purity values of five algorithms

    In order to eliminate the influence of the initial prototypes selection of the MKMM algorithm, the average value of 30 experiments performed by the algorithm on the dataset is used for display. From the Tables 2-4, it can be seen that the MKMM algorithm has outstanding performance in some datasets compared with other popular multi-view clustering algorithms. Although the MKMM algorithm performs not the best on other datasets, it still achieves a good clustering effect. MKMM performs particularly well on Yale32, probably because the same person in different facial expressions can be taken as in distinct subclasses. MKMM may be more advantageous on similar datasets to Yale32.

    3 Conclusions

    Considering that the KMM algorithm cannot solve the problem of multi-view clustering, this paper proposes MKMM algorithm. The algorithm introduces view weight parameter, designs a new objective function and effectively uses multiple features to achieve better clustering results. However, affected by the initial point selection like the KMM algorithm, so that the clustering results of the MKMM algorithm are unstable. Therefore, how to make the MKMM algorithm select prototypes on the multi-view dataset scientifically and improve the clustering effect while stabilizing the clustering performance will be the next research work.

    国产精品乱码一区二三区的特点| 亚洲中文字幕日韩| 日本色播在线视频| 一区二区三区四区激情视频 | 亚洲欧美中文字幕日韩二区| 精品久久久久久久久久久久久| 亚洲最大成人中文| 亚洲国产精品sss在线观看| 露出奶头的视频| 免费观看的影片在线观看| 亚洲人成网站在线播| 熟妇人妻久久中文字幕3abv| 久久人人精品亚洲av| 久久人人爽人人爽人人片va| 成人性生交大片免费视频hd| 啦啦啦观看免费观看视频高清| 免费观看在线日韩| 男女下面进入的视频免费午夜| 亚洲av一区综合| 久久久久性生活片| 内射极品少妇av片p| 久久欧美精品欧美久久欧美| 嫩草影院精品99| 午夜激情欧美在线| 久久亚洲国产成人精品v| 国内少妇人妻偷人精品xxx网站| 天堂动漫精品| 午夜精品在线福利| 可以在线观看毛片的网站| 亚洲电影在线观看av| 国产真实伦视频高清在线观看| 嫩草影院精品99| 少妇熟女欧美另类| 国产精品亚洲美女久久久| 亚洲精品一区av在线观看| 欧美一区二区国产精品久久精品| 国产美女午夜福利| 精品国内亚洲2022精品成人| 久久久久久九九精品二区国产| 深夜精品福利| 三级毛片av免费| 一级毛片aaaaaa免费看小| 人妻夜夜爽99麻豆av| 97超视频在线观看视频| 亚洲精品国产av成人精品 | 国产国拍精品亚洲av在线观看| 毛片女人毛片| 免费人成在线观看视频色| 寂寞人妻少妇视频99o| 美女黄网站色视频| 好男人在线观看高清免费视频| 亚洲丝袜综合中文字幕| 日韩在线高清观看一区二区三区| 久久久久国产网址| 两个人的视频大全免费| 日本色播在线视频| 天堂动漫精品| 亚洲七黄色美女视频| 亚洲国产色片| 精品日产1卡2卡| 黄色欧美视频在线观看| 伦精品一区二区三区| 在线观看66精品国产| av在线蜜桃| 国产亚洲91精品色在线| 国产精品一二三区在线看| 欧美日本视频| 少妇丰满av| 日日摸夜夜添夜夜爱| 成年av动漫网址| 成年版毛片免费区| 91麻豆精品激情在线观看国产| 一区二区三区免费毛片| 人妻丰满熟妇av一区二区三区| 午夜福利在线观看免费完整高清在 | 亚洲真实伦在线观看| 国产精品爽爽va在线观看网站| 午夜激情欧美在线| 国产毛片a区久久久久| 久久精品国产自在天天线| 日日摸夜夜添夜夜爱| 亚洲久久久久久中文字幕| 一个人看的www免费观看视频| 久久婷婷人人爽人人干人人爱| 亚洲五月天丁香| 久久精品国产鲁丝片午夜精品| 变态另类成人亚洲欧美熟女| 亚洲国产欧美人成| 国产精品伦人一区二区| 久久久久国产网址| 日韩制服骚丝袜av| 禁无遮挡网站| 小蜜桃在线观看免费完整版高清| 欧美日韩精品成人综合77777| 成人午夜高清在线视频| 最近最新中文字幕大全电影3| 成年女人看的毛片在线观看| 天堂动漫精品| 女人被狂操c到高潮| 天天一区二区日本电影三级| 国产精品av视频在线免费观看| 久久久久国内视频| 日日摸夜夜添夜夜添小说| 婷婷精品国产亚洲av在线| 国产精品精品国产色婷婷| 国产69精品久久久久777片| 伦精品一区二区三区| 国产不卡一卡二| 精品久久久久久久末码| 99热这里只有是精品50| 成人毛片a级毛片在线播放| 女生性感内裤真人,穿戴方法视频| 久久精品夜色国产| 99久久九九国产精品国产免费| 免费av毛片视频| 国产亚洲精品久久久com| 青春草视频在线免费观看| 日韩人妻高清精品专区| av卡一久久| 日本一本二区三区精品| 国产男靠女视频免费网站| 国产黄色小视频在线观看| 亚洲美女搞黄在线观看 | 午夜激情欧美在线| 亚洲精品一卡2卡三卡4卡5卡| 免费电影在线观看免费观看| 夜夜夜夜夜久久久久| 国产免费男女视频| 精品午夜福利在线看| 熟女人妻精品中文字幕| 久久久久国产精品人妻aⅴ院| 久久99热这里只有精品18| 亚洲av免费高清在线观看| 日韩一区二区视频免费看| 色在线成人网| 国产亚洲精品久久久com| 看片在线看免费视频| 色在线成人网| 国内精品宾馆在线| 欧美人与善性xxx| 国内揄拍国产精品人妻在线| 久99久视频精品免费| 97超碰精品成人国产| 蜜臀久久99精品久久宅男| 亚洲av第一区精品v没综合| 国产久久久一区二区三区| 寂寞人妻少妇视频99o| 露出奶头的视频| 人妻久久中文字幕网| 女同久久另类99精品国产91| 亚洲熟妇中文字幕五十中出| 男人狂女人下面高潮的视频| .国产精品久久| 亚洲自偷自拍三级| 亚洲一区高清亚洲精品| 国产精品久久久久久久电影| 噜噜噜噜噜久久久久久91| 午夜精品国产一区二区电影 | 自拍偷自拍亚洲精品老妇| 夜夜爽天天搞| 小蜜桃在线观看免费完整版高清| 99久久精品热视频| 中文字幕精品亚洲无线码一区| 免费看光身美女| 国产精品免费一区二区三区在线| 国产亚洲欧美98| 国语自产精品视频在线第100页| 国产精品人妻久久久影院| 午夜激情欧美在线| 亚洲人成网站在线播放欧美日韩| 偷拍熟女少妇极品色| 国产久久久一区二区三区| 12—13女人毛片做爰片一| 综合色丁香网| 国内精品久久久久精免费| 国产精品福利在线免费观看| 男人和女人高潮做爰伦理| 国产伦在线观看视频一区| 男女做爰动态图高潮gif福利片| 国产精品嫩草影院av在线观看| 国产亚洲精品av在线| 久久婷婷人人爽人人干人人爱| 简卡轻食公司| 黄色日韩在线| 噜噜噜噜噜久久久久久91| 九九爱精品视频在线观看| 亚洲一区二区三区色噜噜| 欧美性猛交╳xxx乱大交人| 校园春色视频在线观看| 日韩人妻高清精品专区| 亚洲精品久久国产高清桃花| 成人精品一区二区免费| 草草在线视频免费看| 成人av在线播放网站| 内射极品少妇av片p| 丰满人妻一区二区三区视频av| 国产麻豆成人av免费视频| 人妻制服诱惑在线中文字幕| 色哟哟·www| 成熟少妇高潮喷水视频| 精品人妻偷拍中文字幕| 久久久久国内视频| 国内精品一区二区在线观看| 成人特级av手机在线观看| 色av中文字幕| 国产精品综合久久久久久久免费| 六月丁香七月| 日韩国内少妇激情av| 国产私拍福利视频在线观看| 精品日产1卡2卡| 成人av一区二区三区在线看| av视频在线观看入口| 青春草视频在线免费观看| eeuss影院久久| 久久久色成人| 人人妻人人澡人人爽人人夜夜 | av在线老鸭窝| 日韩中字成人| 欧美xxxx性猛交bbbb| 国内精品一区二区在线观看| 我要看日韩黄色一级片| 国内精品久久久久精免费| 美女免费视频网站| 午夜爱爱视频在线播放| 国产精品一区二区三区四区免费观看 | 国产v大片淫在线免费观看| 寂寞人妻少妇视频99o| 狠狠狠狠99中文字幕| 淫妇啪啪啪对白视频| 国产精品无大码| 久久国内精品自在自线图片| h日本视频在线播放| 国产一区二区激情短视频| 欧洲精品卡2卡3卡4卡5卡区| 日本与韩国留学比较| 亚洲va在线va天堂va国产| 成人永久免费在线观看视频| 丰满乱子伦码专区| 淫妇啪啪啪对白视频| 日韩中字成人| 性欧美人与动物交配| 成年女人看的毛片在线观看| 一个人观看的视频www高清免费观看| 可以在线观看毛片的网站| 草草在线视频免费看| 少妇人妻精品综合一区二区 | 国产一级毛片七仙女欲春2| 超碰av人人做人人爽久久| 精品久久久久久久久久免费视频| 久久精品久久久久久噜噜老黄 | 亚洲精品国产av成人精品 | 18禁裸乳无遮挡免费网站照片| 亚洲丝袜综合中文字幕| 日韩欧美三级三区| 国产v大片淫在线免费观看| 悠悠久久av| 色播亚洲综合网| 精品久久久久久久人妻蜜臀av| 国产精品av视频在线免费观看| 国产日本99.免费观看| 国产成人精品久久久久久| 狠狠狠狠99中文字幕| 少妇的逼水好多| 国产精品,欧美在线| 91精品国产九色| 男女啪啪激烈高潮av片| 一边摸一边抽搐一进一小说| 婷婷亚洲欧美| 最近中文字幕高清免费大全6| 天堂av国产一区二区熟女人妻| 亚洲综合色惰| 亚洲不卡免费看| 大型黄色视频在线免费观看| 麻豆国产av国片精品| 国产毛片a区久久久久| 97在线视频观看| 国产在视频线在精品| 国产真实伦视频高清在线观看| av女优亚洲男人天堂| 一个人看的www免费观看视频| 国产精品女同一区二区软件| 看片在线看免费视频| 国产精品一及| 亚洲图色成人| 久久精品久久久久久噜噜老黄 | 精品欧美国产一区二区三| 成年版毛片免费区| 欧美在线一区亚洲| 国产探花极品一区二区| 国产一区二区亚洲精品在线观看| 可以在线观看毛片的网站| 我的女老师完整版在线观看| 久久精品国产亚洲av天美| 自拍偷自拍亚洲精品老妇| 能在线免费观看的黄片| 国内精品美女久久久久久| 日本a在线网址| 小蜜桃在线观看免费完整版高清| 女生性感内裤真人,穿戴方法视频| 国产 一区 欧美 日韩| 看非洲黑人一级黄片| 一级黄片播放器| 身体一侧抽搐| 男人和女人高潮做爰伦理| 三级男女做爰猛烈吃奶摸视频| 两个人视频免费观看高清| 国产亚洲精品av在线| 国产一区二区在线av高清观看| 国产久久久一区二区三区| 美女免费视频网站| 99久国产av精品| 国产三级在线视频| 韩国av在线不卡| 免费在线观看影片大全网站| 久久九九热精品免费| 精品不卡国产一区二区三区| 最后的刺客免费高清国语| 黄色一级大片看看| 亚洲av熟女| 国产免费男女视频| 亚洲av第一区精品v没综合| 在线播放无遮挡| 国产精品日韩av在线免费观看| 亚洲欧美日韩高清在线视频| 亚洲av美国av| 精品久久久久久久久久免费视频| 免费av毛片视频| 亚洲美女搞黄在线观看 | 久久久精品大字幕| 国产一区亚洲一区在线观看| 午夜精品一区二区三区免费看| 久久久成人免费电影| 国产91av在线免费观看| 亚洲欧美成人综合另类久久久 | 精品无人区乱码1区二区| 欧美一区二区精品小视频在线| 午夜精品在线福利| 国产女主播在线喷水免费视频网站 | 成人永久免费在线观看视频| 欧美日韩乱码在线| 久久鲁丝午夜福利片| 免费大片18禁| 亚洲无线观看免费| 久久综合国产亚洲精品| 久久精品国产亚洲av涩爱 | 久久精品国产99精品国产亚洲性色| 婷婷精品国产亚洲av在线| 久久精品夜色国产| 婷婷精品国产亚洲av在线| 久久精品夜色国产| 国产aⅴ精品一区二区三区波| 搡女人真爽免费视频火全软件 | 国产精品福利在线免费观看| 国产单亲对白刺激| 欧美日韩精品成人综合77777| 久久草成人影院| 精品人妻视频免费看| 成人鲁丝片一二三区免费| 亚洲精品一区av在线观看| 韩国av在线不卡| 国产精品久久久久久亚洲av鲁大| 少妇熟女欧美另类| 国产一区二区三区av在线 | 国产精品乱码一区二三区的特点| 女人十人毛片免费观看3o分钟| 两性午夜刺激爽爽歪歪视频在线观看| 日韩欧美免费精品| 欧美激情久久久久久爽电影| 免费搜索国产男女视频| 女同久久另类99精品国产91| 毛片女人毛片| 成人毛片a级毛片在线播放| 亚洲欧美中文字幕日韩二区| 一区二区三区高清视频在线| 51国产日韩欧美| 男人舔奶头视频| 精品无人区乱码1区二区| 久久久午夜欧美精品| 国产精品美女特级片免费视频播放器| 国产精品久久久久久亚洲av鲁大| 欧美丝袜亚洲另类| 日产精品乱码卡一卡2卡三| 久久人人爽人人片av| av天堂在线播放| 色视频www国产| 国产一区二区三区av在线 | 国产毛片a区久久久久| 丝袜美腿在线中文| 在线观看66精品国产| 久久久久国内视频| 欧美三级亚洲精品| 久久久国产成人免费| 亚洲成人久久性| 能在线免费观看的黄片| 色哟哟哟哟哟哟| 国产淫片久久久久久久久| 三级国产精品欧美在线观看| 一进一出抽搐动态| 亚洲成人精品中文字幕电影| 老司机福利观看| 午夜a级毛片| 久久精品国产鲁丝片午夜精品| 日日撸夜夜添| 99精品在免费线老司机午夜| 狂野欧美激情性xxxx在线观看| 中文资源天堂在线| 亚洲av熟女| 亚洲av二区三区四区| 97热精品久久久久久| 成人特级黄色片久久久久久久| 一本一本综合久久| 久久精品人妻少妇| 色视频www国产| av国产免费在线观看| 人妻久久中文字幕网| 男女做爰动态图高潮gif福利片| 国产在视频线在精品| 深夜精品福利| 看黄色毛片网站| 最近视频中文字幕2019在线8| 国产伦在线观看视频一区| а√天堂www在线а√下载| 天天一区二区日本电影三级| 成人无遮挡网站| 国产午夜福利久久久久久| 别揉我奶头~嗯~啊~动态视频| 两个人的视频大全免费| 国产视频内射| avwww免费| 国产大屁股一区二区在线视频| 亚洲18禁久久av| 看片在线看免费视频| av在线天堂中文字幕| 国产免费男女视频| 一边摸一边抽搐一进一小说| 国产高清视频在线播放一区| 国产69精品久久久久777片| 少妇被粗大猛烈的视频| 真实男女啪啪啪动态图| 国产一区二区在线av高清观看| 国产精品不卡视频一区二区| 少妇猛男粗大的猛烈进出视频 | 免费不卡的大黄色大毛片视频在线观看 | 欧美日韩在线观看h| 国产91av在线免费观看| 国产精品人妻久久久影院| 亚洲av中文字字幕乱码综合| 高清毛片免费观看视频网站| 亚洲欧美精品自产自拍| 国产精华一区二区三区| 嫩草影视91久久| 老司机午夜福利在线观看视频| 草草在线视频免费看| 国产成人a区在线观看| 色综合站精品国产| 国产探花极品一区二区| 日韩高清综合在线| 一区二区三区高清视频在线| 又爽又黄无遮挡网站| 草草在线视频免费看| 亚洲在线自拍视频| 18禁在线播放成人免费| 人人妻人人澡人人爽人人夜夜 | 亚洲色图av天堂| 99久久精品国产国产毛片| 日韩av不卡免费在线播放| 干丝袜人妻中文字幕| 午夜a级毛片| 男女那种视频在线观看| 露出奶头的视频| 久久久久国产网址| 亚洲av免费高清在线观看| 神马国产精品三级电影在线观看| 久久精品国产99精品国产亚洲性色| 国产蜜桃级精品一区二区三区| 人妻丰满熟妇av一区二区三区| 国产精品精品国产色婷婷| 白带黄色成豆腐渣| 久久久色成人| 国产一区二区三区av在线 | 在线天堂最新版资源| 人妻少妇偷人精品九色| 亚洲欧美日韩无卡精品| 老女人水多毛片| 色综合站精品国产| 成年版毛片免费区| 别揉我奶头~嗯~啊~动态视频| 色在线成人网| 国产aⅴ精品一区二区三区波| 一级毛片电影观看 | 亚洲av不卡在线观看| 久久中文看片网| a级一级毛片免费在线观看| 精品免费久久久久久久清纯| 成年女人看的毛片在线观看| 久久99热6这里只有精品| 国产真实伦视频高清在线观看| av黄色大香蕉| 国产一区二区三区在线臀色熟女| 白带黄色成豆腐渣| 久99久视频精品免费| av国产免费在线观看| 国产精品一区二区免费欧美| 国产精品女同一区二区软件| 在线天堂最新版资源| 秋霞在线观看毛片| www.色视频.com| 午夜视频国产福利| 天天躁日日操中文字幕| 91久久精品电影网| 成人亚洲精品av一区二区| 亚洲熟妇中文字幕五十中出| 伊人久久精品亚洲午夜| 精品欧美国产一区二区三| 亚洲自拍偷在线| 国产在视频线在精品| 狂野欧美激情性xxxx在线观看| 亚洲av二区三区四区| 熟女人妻精品中文字幕| 一区福利在线观看| 99精品在免费线老司机午夜| 久久6这里有精品| 永久网站在线| 性欧美人与动物交配| 日韩欧美三级三区| 国产伦一二天堂av在线观看| 亚洲精品国产av成人精品 | 国产av一区在线观看免费| 欧美一区二区国产精品久久精品| 一个人看的www免费观看视频| 乱系列少妇在线播放| www日本黄色视频网| 中文字幕久久专区| 最近中文字幕高清免费大全6| 寂寞人妻少妇视频99o| 国产精品伦人一区二区| 亚洲熟妇中文字幕五十中出| 人妻制服诱惑在线中文字幕| 别揉我奶头~嗯~啊~动态视频| 少妇被粗大猛烈的视频| 一级毛片aaaaaa免费看小| 99国产精品一区二区蜜桃av| ponron亚洲| 欧美高清性xxxxhd video| 国产黄a三级三级三级人| 99久国产av精品国产电影| 欧美日本亚洲视频在线播放| 男女那种视频在线观看| 搡老妇女老女人老熟妇| 寂寞人妻少妇视频99o| 欧美成人精品欧美一级黄| 久久精品影院6| 色综合色国产| 乱系列少妇在线播放| 草草在线视频免费看| 午夜日韩欧美国产| 亚洲精品国产av成人精品 | 一本精品99久久精品77| 美女xxoo啪啪120秒动态图| 国产精品久久久久久久电影| 免费看日本二区| 99在线人妻在线中文字幕| 国产精品国产高清国产av| 国产美女午夜福利| 亚洲综合色惰| 久久久久久久久久成人| 国内精品宾馆在线| 男人舔女人下体高潮全视频| 看片在线看免费视频| 中国美女看黄片| 亚洲美女黄片视频| 国产探花在线观看一区二区| 毛片一级片免费看久久久久| 午夜福利在线在线| 国产精品一区二区免费欧美| 狠狠狠狠99中文字幕| 日本免费一区二区三区高清不卡| 亚洲第一电影网av| 我要看日韩黄色一级片| 国产午夜福利久久久久久| 人妻久久中文字幕网| 色综合站精品国产| 在线天堂最新版资源| 99久国产av精品| 国产一区二区亚洲精品在线观看| 成人亚洲欧美一区二区av| 最新在线观看一区二区三区| 国产亚洲91精品色在线| 国语自产精品视频在线第100页| 免费在线观看成人毛片| 国产一区亚洲一区在线观看| 国产精品一区二区三区四区免费观看 | 在线a可以看的网站| 最新在线观看一区二区三区| 国产欧美日韩精品亚洲av| 人人妻人人澡人人爽人人夜夜 | 一进一出抽搐gif免费好疼| 亚洲国产精品久久男人天堂| 成人漫画全彩无遮挡| 精品一区二区三区视频在线观看免费| 午夜精品国产一区二区电影 | 毛片一级片免费看久久久久| av中文乱码字幕在线| 国内精品久久久久精免费| 毛片一级片免费看久久久久| 亚洲乱码一区二区免费版| 免费观看精品视频网站| 久久午夜福利片| 亚洲美女黄片视频| 国产欧美日韩精品一区二区| 91久久精品国产一区二区成人| 国产男靠女视频免费网站| 亚洲三级黄色毛片| 亚洲精品久久国产高清桃花| 亚洲精品成人久久久久久|