• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Detection and correction of level echo based on generalized S-transform and singular value decomposition

    2021-12-21 14:09:44ZHUTianliangWANGXiaopengWANGQi

    ZHU Tianliang, WANG Xiaopeng, WANG Qi

    (School of Electronics and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

    Abstract: The echo of the material level is non-stationary and contains many singularities. The echo contains false echoes and noise, which affects the detection of the material level signals, resulting in low accuracy of material level measurement. A new method for detecting and correcting the material level signal is proposed, which is based on the generalized S-transform and singular value decomposition (GST-SVD). In this project, the change of material level is regarded as the low speed moving target. First, the generalized S-transform is performed on the echo signals. During the transformation process, the variation trend of window of the generalized S-transform is adjusted according to the frequency distribution characteristics of the material level echo signal, achieving the purpose of detecting the signal. Secondly, the SVD is used to reconstruct the time-frequency coefficient matrix. At last, the reconstructed time-frequency matrix performs an inverse transform. The experimental results show that the method can accurately detect the material level echo signal, and it can reserve the detailed characteristics of the signal while suppressing the noise, and reduce the false echo interference. Compared with other methods, the material level measurement error does not exceed 4.01%, and the material level measurement accuracy can reach 0.40% F.S.

    Key words: echo signal; false echo; generalized S-transform; singular value decomposition (SVD); level measurement

    0 Introduction

    The frequency modulation (FM) radar level gauge is based on the principle of FM radar ranging, and it has the advantage of less influenced by temperature. It has been widely used in industrial fields. In practical application, the false material level echo is generated because the material will splash or dust when materials fall. Also, false echoes, random spikes and noise generated by the structure of the sensor can cause false level echoes and interference of noise.Therefore the detection and denoising of echo signals is the key to improve the accuracy of material level measurement. In Ref.[1], the target echo signal is segmented and equivalent to a continuous pulse signal, and the target echo signal is detected and located by pulse compression and Doppler principle. In Ref.[2], the echo signal is subjected to short-time fractional Fourier transform, and the enveloped time and amplitude plane and the frequency and amplitude plane are enveloped to obtain the joint estimation of the delay and Doppler shift of the dynamic target echo signal, thereby achieving the recognition of the target radar echo. An approximation function of the mean square error function is constructed, and the optimal value in the sense of mean square error is obtained. Although the method can effectively filter the noise in the signal when the signal is mixed with white noise and discontinuous points, the computational complexity is high[3-5]. Denoising by modulus maxima has a good effect, but it produces pseudo-extreme points and loses some essential local singularities[6]. The peak point of the original signal can be better preserved, and the calculation is faster after denoising by wavelet threshold. However, its denoising effect depends on the signal-to-noise ratio and threshold selection in Ref.[7]. The above method can effectively denoise, but it is easy to cause the signal detail information to be smooth so that the signal singularity feature cannot be retained.

    In order to accurately detect the level echo signal and suppress the noise interference, a method of detecting and correcting the level echo signal based on the combination of generalized S-transform and singular value decomposition (SVD) is proposed. Firstly, the time-frequency coefficient matrix of the echo signal is obtained by the generalized S-transform, and then the matrix is reconstructed by using the SVD. This method can filter the false echo in the echo signal, retain the singularity of the signal and avoid the pseudo-Gibbs oscillation.

    1 Analysis of level echo signal

    The echo signal includes the radar’s transmit signal, the reflected material level echo signal and the noise. When the material is in canned, the surface of the material in the tank will have a weak displacement (splash, dust, etc.). The accuracy of the level measurement is affected because the vibration caused by the falling of the material produces a small Doppler shift. The radar’s transmit signal is a continuous FM signalST(t)

    (1)

    whereAis the amplitude of the transmitted signal;fcis the frequency of the transmitted signal;θiis the initial phase of the transmitted signal;μis the linear modulation frequency. The reflected echo signal produces a Doppler effect due to the height variation of the material level. So the reflected echo signal is

    SR(t)=kAcos

    (2)

    wherekAis the echo signal amplitude;φis the additional phase shift produced by the Doppler effect;φiis the phase shift caused by surface vibration when the material falls;tdis the propagation delay,td=2R/c.

    (3)

    Thematerial level echo signal can be expressed as[4]

    (4)

    wherex(t) is the noise signal that power spectral density function obeys the Gaussian distribution. Fig.1 shows the echo spectrum of the material level with noise. It can be seen that there is a difference in the frequency between the material level echo, the noise and the false echo. This difference is used to detect level echo signals and remove noise.

    Fig.1 Level echo signal spectrum

    2 Correction of echo signal

    2.1 Generalized S-transform

    S-transform is a time-frequency analysis tool, which is based on the improvement of short-time Fourier transform and wavelet transform. Stockwell proposed a Gaussian window that varied with frequency (f)[8-9]. The window function could be expressed as

    (5)

    The S-transform of the non-stationary signal is

    (6)

    S-transform is a linear, multi-resolution, lossless and reversible time-frequency analysis method. It can detect the high-frequency component of the signal effectively and avoid the cross-term interference of Cohen distribution. However, under specific frequencies, the time-frequency window of S-transform is slender, which leads to the improvement of time resolution and the decrease of frequency resolution. The phenomenon of inaccurate resolution in frequency domain occurs in the higher frequency band. In order to improve the resolution of S-transform in the frequency domain at specific frequencies, adjusting parametersλandpare introduced to improve the Gauss window, which is used to adjust the time-width and convergence trend of the window function. At this point, the window function is

    (7)

    Then the generalized S-transform of the non-stationary signalh(t) can be defined as

    Then she wept bitterly and said, I have done great wrong, and am not worthy36 to be your wife. But he said, Be comforted, the evil days are past; now we will celebrate our wedding. 35 Then the maids-in-waiting came and put on her the most splendid clothing, and her father and his whole court came and wished her happiness in her marriage with King Thrushbeard, and the joy now began in earnest. I wish you and I had been there too.#p#

    exp(-i2πfτ)dτ.

    (8)

    Then the one-dimensional discrete generalized S-transform of the non-stationary signalh(t) can be defined as

    (9)

    whereTis the sampling interval of the signalh(t), andNis the number of sampling points,j,n=0,1,2,…,N-1. The echo signal is transformed into a two-dimensional matrix by generalized S-transform. The column of thetmatrix is the time-domain coefficient of the echo signal; the row of the matrix is the frequency domain coefficient of the echo signal. The matrix reflects the relationship between signal amplitude, time and frequency. S-transformation time-frequency analysis of echo signals is shown in Fig.2.

    Fig.2 S-transform time-frequency distribution of level echo signal

    It can be seen from the Fig.2 that the high-frequency components are not clearly distinguished in the time domain. Fig.3 is a generalized S-transform that adjusts the window coefficientsλandpaccording to the frequency distribution characteristics of the level echo signal. As seen from the Fig.3, the frequency domain resolution of the high-frequency portion of the echo signal is improved without changing the time resolution.

    Fig.3 GST time-frequency distribution of level echo signal

    2.2 Denoising based on generalized S-transform and SVD

    The singular value obtained by SVD decomposition can reflect the intrinsic properties of the signal, so it can eliminate most of the noise in the signal and improve the signal-to-noise ratio. The time-frequency coefficient matrix of the echo signal is obtained by generalized S-transform of the echo signal, which is used as the target matrix to denoise and reconstruct the signal matrix. LetHbe a real matrix of typem×n, and then there are orthogonal matrices of order 1 and 2. There is an orthogonal matrixUof ordermand an orthogonal matrixVof ordern.There are

    H=UΛVT,

    (10)

    whereΛis a diagonal matrix,Λ=diag(σ1,σ2,…,σn). The diagonal element isσi>0(i=1,2,…,n), which is singular value of descending order of the matrixH. SVD can represent a matrix (m×n) of rankkas the sum ofksub-matrices (m×n) of rank 1. The sub-matrices are multiplied by two eigenvectors and weights, which is

    (11)

    wherekis the rank of the matrix;uiandviare the singular value eigenvectors of the columniofUandV;σiis theisingular value of matrix;Hiis a submatrix containinguiandvi. In practical applications, the time-frequency matrix of the echo signal is decomposed to obtain a series of singular values and singular value vectors corresponding to the time-frequency subspace. The transmitted signal is a modulated signal, so the frequency period of the echo signal does not change. After the generalized S-transform, the main energy of the echo signal is concentrated in a particular time-frequency domain, and the frequency-domain distribution of the material level echo signal is relatively concentrated. In contrast, the energy distribution of the noise and the false echo signal are relatively scattered. SVD is used to extract time-frequency features of relatively high energy, and eliminate the time-frequency characteristics of relatively dispersed energy. The time-frequency matrix of the echo signal is analyzed to obtain that the singular value corresponding to the material level echo is mainly distributed between 1 andkw(kw

    1) The echo signal is subjected to a generalized S-transform to obtain a transformed time-frequency coefficient matrix.

    2) Singular value decomposition of the time-frequency matrix obtained by generalized S-transformis is used to obtain the singular value of matrixAand arrange the singular values in decreasing order, that isaandb.

    3) Calculating the one-sided maximum of the singular difference spectrum to determine the active rank order of the reconstructed signal, and then reconstructing the S-transform time-frequency coefficient matrix.

    4) Performing the inverse transform on the reconstructed time-frequency coefficient matrix to obtain a corrected echo signal.

    3 Results and discussion

    In order to test the echo detection effect and material level measurement accuracy of the method in this paper, the simulation is performed based on the MATLAB2016 platform. The method in this paper is compared with the wavelet packet decomposition, ensemble empirical mode decomposition (EEMD) and S-transform and singular value decomposition (ST-SVD) for noise effect and measurement accuracy.

    3.1 Detection and analysis of level echo signal

    A plane wave is used to simulate the radar transmission signal. The carrier frequency is set to 20 GHz, the bandwidth is 500 MHz, the incident azimuth elevation angle is 90°, and the azimuth offset is approximately 0°. From Fig.4, it can be seen that energy of the reflected echo signal is concentrated in a particular area, and there are many interferences of Gauss noise and spike noise around it, which makes it impossible to detect the reflected echo of material level accurately. After the processing of GST-SVD (Fig.5), the Gauss noise and peak noise around the echo signal reflected by the material are expertly filtered, and the echo signal of the material level is accurately detected.

    Fig.4 Unprocessed level echo time-frequency diagram

    Fig.5 Reconstructed level echo time-frequency diagram

    3.2 Test and analysis of denoising simulation

    In order to verify the denoising effect of the method in this paper, Gauss noise (SNR=8 dB) is added to the given echo signalSS(t). Peak noise is added to the range of sampling points [2 400, 2 500]. Then wavelet packet decomposition, EEMD, ST-SVD and GST-SVD are used to denoise the level echo. The comparison result is shown in Fig.6. It can be seen that the wavelet packet decomposition (Fig.6(c)) effectively suppresses Gaussian noise. However, the filtering effect of the spike noise is poor, and pseudo-Gibbs oscillation appears in the peak portion of the signal. EEMD (Fig.6(d)) effectively filters out the spike noise, but the suppression effect on Gaussian noise is poor, resulting in low signal-to-noise of the echo signal. ST-SVD (Fig.6 (e)) has a good suppression effect on spike noise. However, because the S-transform window is fixed, it has a poor filtering effect on Gaussian noise and generates more pseudo-Gibbs oscillations at the peak portion of the signal. GST-SVD (Fig.6(f)) can effectively suppress the noise amplitude. Pseudo-Gibbs oscillation is increased, and signal details are better-preserved. The running time of the above four methods is shown in Table 1. The processing time of the echo signal in this paper is shorter than that of the EMMD algorithm, more than that of ST-SVD and wavelet packet decomposition, but still meets the real-time requirements.

    (a) Original echo signal

    Table 1 Signal-to-noise ratio and operation time

    3.3 Measurement and analysis of level accuracy

    In order to test the measurement accuracy of this method and simulate the filling situation of material in the tank, the measured values of level gauges with different correction methods are compared with the actual set values, and the relative errors are calculated.The measurements of FM radar level gauge using wavelet transform, traditional filtering and the method in this paper are given in Table 2. The detection error of the wavelet transform correction method is 6.73%, the traditional filter correction method is 19.04%, and the detection error of this method is 4.01%, which shows that proposed method has less detection error. Due to the reduction of echo noise, the convergence speed of the measured value tending to the real value is accelerated, the output of the measured value is relatively stable, the relative error of material level is small, the maximum relative error is not more than 4.01%, and the measurement accuracy reaches 0.40% F.S.

    Table 2 Measurement accuracy of FM radar level meter

    4 Conclusions

    Considering the problem that false echo affects the accuracy of material level measurement in echo signal, the time-frequency matrix is obtained by generalized S-transform of the captured radar echo signal, and the material level echo signal is detected. Time-frequency matrix of the echo signal is reconstructed based on SVD, and the inverse transform is carried out to get the echo signal. In addition to the denoising in the echo signal, the false echo interference can be reduced, and the accuracy of material level measurement can be improved. The simulation results show that the relative error of the proposed method is smaller and the accuracy can reach 0.40% F.S compared with the existing measurement and correction methods. Under the condition of accurate measurement of material level, the singularity of the echo signal can be well preserved, and the pseudo-Gibbs oscillation can be avoided.

    av专区在线播放| 插阴视频在线观看视频| 色综合亚洲欧美另类图片| 亚洲美女黄片视频| 国产成人精品久久久久久| 成人毛片a级毛片在线播放| 成人毛片a级毛片在线播放| 国产午夜福利久久久久久| 女同久久另类99精品国产91| av福利片在线观看| 成人精品一区二区免费| 午夜视频国产福利| 精品久久久久久久人妻蜜臀av| 国产激情偷乱视频一区二区| 国产在线精品亚洲第一网站| 一本精品99久久精品77| 校园春色视频在线观看| 夜夜夜夜夜久久久久| 日韩欧美精品免费久久| 一区二区三区免费毛片| 欧美激情在线99| 午夜精品在线福利| 国产精品伦人一区二区| 免费看光身美女| 国产男靠女视频免费网站| 国产高清视频在线观看网站| 18禁裸乳无遮挡免费网站照片| 九九爱精品视频在线观看| 亚洲国产精品合色在线| 波多野结衣高清无吗| 亚洲美女黄片视频| 激情 狠狠 欧美| 国产黄色视频一区二区在线观看 | 亚洲国产精品成人综合色| 久久久久久大精品| 91久久精品国产一区二区三区| 俄罗斯特黄特色一大片| 日本爱情动作片www.在线观看 | 国产精品永久免费网站| 97超视频在线观看视频| 欧美又色又爽又黄视频| 亚洲美女黄片视频| 国产精品国产三级国产av玫瑰| 国产高清视频在线观看网站| a级毛片免费高清观看在线播放| 亚洲av一区综合| 亚洲av一区综合| 免费人成视频x8x8入口观看| 日韩欧美免费精品| 久久亚洲精品不卡| 一a级毛片在线观看| av免费在线看不卡| 淫秽高清视频在线观看| 日日干狠狠操夜夜爽| 插阴视频在线观看视频| 在线免费十八禁| 嫩草影院入口| 乱人视频在线观看| 欧美在线一区亚洲| 亚洲五月天丁香| 国产成人影院久久av| 久99久视频精品免费| 久久99热6这里只有精品| 最新在线观看一区二区三区| 国产单亲对白刺激| 亚洲美女搞黄在线观看 | 两个人的视频大全免费| 最新中文字幕久久久久| 天堂动漫精品| 国国产精品蜜臀av免费| 91在线精品国自产拍蜜月| 日韩欧美精品免费久久| 久久国内精品自在自线图片| 日韩 亚洲 欧美在线| 国产欧美日韩一区二区精品| 欧美丝袜亚洲另类| 欧美在线一区亚洲| 99久久久亚洲精品蜜臀av| 国产午夜精品久久久久久一区二区三区 | 亚洲精品亚洲一区二区| 国产三级在线视频| 国产亚洲91精品色在线| 99久久九九国产精品国产免费| 国产av在哪里看| 少妇被粗大猛烈的视频| 亚洲av成人av| 精品乱码久久久久久99久播| 日日啪夜夜撸| 草草在线视频免费看| 少妇被粗大猛烈的视频| 哪里可以看免费的av片| 天美传媒精品一区二区| 日韩高清综合在线| 99久国产av精品国产电影| 亚洲欧美中文字幕日韩二区| 狂野欧美白嫩少妇大欣赏| 久久精品国产亚洲网站| 高清毛片免费看| 91狼人影院| 成人三级黄色视频| 一区二区三区免费毛片| 国产精品电影一区二区三区| 国产精品无大码| 69人妻影院| 亚洲国产精品久久男人天堂| 国产免费一级a男人的天堂| 亚洲内射少妇av| 国产麻豆成人av免费视频| 久久久久久久久中文| 欧美又色又爽又黄视频| 国产成人a∨麻豆精品| 欧洲精品卡2卡3卡4卡5卡区| 12—13女人毛片做爰片一| 床上黄色一级片| 日韩亚洲欧美综合| 亚洲无线观看免费| 久久99热这里只有精品18| 最后的刺客免费高清国语| 日本一本二区三区精品| 亚洲av中文av极速乱| 国产精品女同一区二区软件| 特大巨黑吊av在线直播| 午夜福利在线观看免费完整高清在 | 好男人在线观看高清免费视频| 国产私拍福利视频在线观看| 国产私拍福利视频在线观看| 久久韩国三级中文字幕| 特大巨黑吊av在线直播| 亚洲性久久影院| 国产精品无大码| 欧美一区二区国产精品久久精品| 天美传媒精品一区二区| 精品久久国产蜜桃| 深爱激情五月婷婷| 夜夜爽天天搞| 美女 人体艺术 gogo| 啦啦啦观看免费观看视频高清| ponron亚洲| 亚洲最大成人av| 99久国产av精品| 亚洲经典国产精华液单| 精品乱码久久久久久99久播| 成人鲁丝片一二三区免费| 老熟妇乱子伦视频在线观看| 亚洲无线在线观看| 国产精品永久免费网站| 国产三级中文精品| 人妻久久中文字幕网| 日韩国内少妇激情av| 久久99热这里只有精品18| 好男人在线观看高清免费视频| 人人妻人人看人人澡| 亚洲自拍偷在线| 天天躁日日操中文字幕| 午夜视频国产福利| 国产成人91sexporn| 久久久久国内视频| 国产精品人妻久久久久久| 91av网一区二区| 夜夜爽天天搞| 看黄色毛片网站| 亚洲精品日韩av片在线观看| 给我免费播放毛片高清在线观看| 搡老熟女国产l中国老女人| 国产精品久久久久久亚洲av鲁大| 18禁裸乳无遮挡免费网站照片| a级一级毛片免费在线观看| 搡老岳熟女国产| 日韩欧美精品免费久久| 伦精品一区二区三区| www.色视频.com| 最近在线观看免费完整版| 91狼人影院| 一进一出好大好爽视频| 少妇熟女欧美另类| 国产视频一区二区在线看| 国产国拍精品亚洲av在线观看| 麻豆精品久久久久久蜜桃| 人人妻人人澡人人爽人人夜夜 | 在线免费观看不下载黄p国产| 熟妇人妻久久中文字幕3abv| 婷婷六月久久综合丁香| 麻豆精品久久久久久蜜桃| 又黄又爽又免费观看的视频| 国产精品三级大全| 久久久久精品国产欧美久久久| 日韩av不卡免费在线播放| 日日摸夜夜添夜夜爱| 午夜精品一区二区三区免费看| 人人妻人人澡欧美一区二区| 亚洲va在线va天堂va国产| 亚洲人成网站在线观看播放| 免费av毛片视频| 免费观看的影片在线观看| 国产乱人偷精品视频| 在线天堂最新版资源| 亚洲成a人片在线一区二区| 老司机福利观看| 国产欧美日韩精品一区二区| 亚洲成人av在线免费| 亚洲成人精品中文字幕电影| 亚洲精品粉嫩美女一区| 久久国内精品自在自线图片| 乱码一卡2卡4卡精品| 在线观看66精品国产| 美女黄网站色视频| 国产精品伦人一区二区| 欧美+亚洲+日韩+国产| 欧美成人a在线观看| 成人精品一区二区免费| 亚洲一级一片aⅴ在线观看| 欧美色欧美亚洲另类二区| 一级黄色大片毛片| 美女xxoo啪啪120秒动态图| 精品人妻一区二区三区麻豆 | 一级毛片久久久久久久久女| 国产欧美日韩精品一区二区| 亚洲美女视频黄频| 成人二区视频| 嫩草影视91久久| 久久午夜福利片| 日韩在线高清观看一区二区三区| 久久精品影院6| 精品日产1卡2卡| 悠悠久久av| 少妇猛男粗大的猛烈进出视频 | 精品一区二区三区人妻视频| 少妇的逼好多水| 日本色播在线视频| 欧美一区二区亚洲| 国产成人aa在线观看| 国产亚洲精品综合一区在线观看| 婷婷精品国产亚洲av| 日本与韩国留学比较| av卡一久久| 日本三级黄在线观看| 午夜福利在线观看免费完整高清在 | 欧美日韩一区二区视频在线观看视频在线 | 卡戴珊不雅视频在线播放| 久久草成人影院| 青春草视频在线免费观看| 我的老师免费观看完整版| 99热只有精品国产| 美女高潮的动态| 午夜福利在线观看免费完整高清在 | 18禁在线无遮挡免费观看视频 | 丝袜美腿在线中文| 色5月婷婷丁香| 日本精品一区二区三区蜜桃| 直男gayav资源| 99国产极品粉嫩在线观看| 美女内射精品一级片tv| 国产伦在线观看视频一区| 亚洲18禁久久av| 性欧美人与动物交配| 色哟哟哟哟哟哟| 天天躁日日操中文字幕| 人妻制服诱惑在线中文字幕| 淫秽高清视频在线观看| 国产探花在线观看一区二区| 日韩三级伦理在线观看| 亚洲人成网站在线播| 91午夜精品亚洲一区二区三区| 六月丁香七月| 欧美绝顶高潮抽搐喷水| 精品久久久久久久久av| 国产综合懂色| 国产一区二区三区av在线 | 啦啦啦观看免费观看视频高清| 精品少妇黑人巨大在线播放 | 男人舔女人下体高潮全视频| 成人鲁丝片一二三区免费| 欧美一区二区精品小视频在线| 亚洲国产精品成人综合色| 亚洲国产日韩欧美精品在线观看| 有码 亚洲区| 老女人水多毛片| 少妇人妻一区二区三区视频| 最近的中文字幕免费完整| 一个人免费在线观看电影| 国产大屁股一区二区在线视频| 日产精品乱码卡一卡2卡三| 国内精品宾馆在线| 中文亚洲av片在线观看爽| 欧美性感艳星| 91在线观看av| 九九热线精品视视频播放| 十八禁国产超污无遮挡网站| 久久99热这里只有精品18| 蜜桃亚洲精品一区二区三区| 人人妻人人澡欧美一区二区| 国产日本99.免费观看| 成人av一区二区三区在线看| 久久国内精品自在自线图片| 你懂的网址亚洲精品在线观看 | 嫩草影院精品99| 欧美最黄视频在线播放免费| 亚洲精品日韩av片在线观看| 国产亚洲精品久久久com| 亚洲第一电影网av| 午夜精品国产一区二区电影 | 美女黄网站色视频| 亚洲av一区综合| 亚洲人成网站高清观看| 午夜福利18| av视频在线观看入口| 色尼玛亚洲综合影院| 我的老师免费观看完整版| 天美传媒精品一区二区| 亚洲在线观看片| 成人三级黄色视频| 国产亚洲精品久久久com| 欧美日韩国产亚洲二区| 免费av毛片视频| 国产中年淑女户外野战色| 不卡视频在线观看欧美| 成人国产麻豆网| 热99re8久久精品国产| 一个人看的www免费观看视频| 国产成年人精品一区二区| 麻豆av噜噜一区二区三区| 国产精品国产高清国产av| 久久久久久久久久黄片| 国产成人aa在线观看| 日韩,欧美,国产一区二区三区 | 麻豆一二三区av精品| 99国产极品粉嫩在线观看| 性插视频无遮挡在线免费观看| 国内精品久久久久精免费| 一级a爱片免费观看的视频| 老司机影院成人| 欧美绝顶高潮抽搐喷水| 久久久成人免费电影| 最后的刺客免费高清国语| 美女被艹到高潮喷水动态| 亚洲精品成人久久久久久| 99riav亚洲国产免费| 成人欧美大片| 日本与韩国留学比较| 久久人人爽人人爽人人片va| 一级av片app| 亚洲欧美精品自产自拍| 在线观看美女被高潮喷水网站| 欧美国产日韩亚洲一区| 夜夜看夜夜爽夜夜摸| 国产精品日韩av在线免费观看| 韩国av在线不卡| 亚洲av二区三区四区| 午夜日韩欧美国产| 亚洲精品亚洲一区二区| 国产精品精品国产色婷婷| 高清毛片免费看| 国产高清视频在线播放一区| 天美传媒精品一区二区| 亚洲成a人片在线一区二区| 精品无人区乱码1区二区| 午夜免费男女啪啪视频观看 | 久久综合国产亚洲精品| 久久人妻av系列| 午夜福利在线在线| 97热精品久久久久久| 午夜日韩欧美国产| 免费av毛片视频| 国产麻豆成人av免费视频| 三级男女做爰猛烈吃奶摸视频| a级毛片免费高清观看在线播放| 亚洲不卡免费看| 久久精品人妻少妇| 亚洲高清免费不卡视频| 小蜜桃在线观看免费完整版高清| 最新中文字幕久久久久| 乱系列少妇在线播放| 少妇高潮的动态图| АⅤ资源中文在线天堂| 成年女人毛片免费观看观看9| 不卡一级毛片| 男女之事视频高清在线观看| 亚洲在线自拍视频| 亚洲国产精品sss在线观看| 麻豆国产av国片精品| 国产精品一区二区三区四区免费观看 | 日韩成人av中文字幕在线观看 | av免费在线看不卡| 国产中年淑女户外野战色| 欧美激情久久久久久爽电影| 我的女老师完整版在线观看| 熟女人妻精品中文字幕| 91狼人影院| 国产精品一及| 热99re8久久精品国产| 中文资源天堂在线| 久久99热这里只有精品18| 国产精品美女特级片免费视频播放器| 免费av观看视频| 日本与韩国留学比较| 美女cb高潮喷水在线观看| 亚洲欧美日韩高清在线视频| 国产精品久久久久久亚洲av鲁大| 18禁在线无遮挡免费观看视频 | 亚洲av美国av| 久久久久性生活片| 成人高潮视频无遮挡免费网站| 午夜福利在线在线| 天堂√8在线中文| 国产日本99.免费观看| 日本成人三级电影网站| 久久久久久国产a免费观看| 午夜激情欧美在线| 日韩成人伦理影院| 男女下面进入的视频免费午夜| 国产黄色小视频在线观看| 欧美高清性xxxxhd video| 我的老师免费观看完整版| 搡老妇女老女人老熟妇| 欧美国产日韩亚洲一区| 国产精品福利在线免费观看| 老司机影院成人| 国产毛片a区久久久久| 长腿黑丝高跟| 九九爱精品视频在线观看| 免费看av在线观看网站| h日本视频在线播放| a级毛片a级免费在线| 成年女人毛片免费观看观看9| 国内精品美女久久久久久| 精品免费久久久久久久清纯| 啦啦啦观看免费观看视频高清| 午夜福利在线在线| 日韩亚洲欧美综合| 一个人看的www免费观看视频| 亚洲一级一片aⅴ在线观看| a级毛色黄片| 女同久久另类99精品国产91| 99九九线精品视频在线观看视频| 久久久a久久爽久久v久久| 美女免费视频网站| 亚洲图色成人| 国产成年人精品一区二区| 国产精品野战在线观看| 欧美日韩乱码在线| 内射极品少妇av片p| 69av精品久久久久久| 在线观看66精品国产| 久久久色成人| 国产成人精品久久久久久| 一区二区三区免费毛片| 人妻制服诱惑在线中文字幕| 欧美一区二区国产精品久久精品| 国产黄色视频一区二区在线观看 | 国产黄a三级三级三级人| 女的被弄到高潮叫床怎么办| 婷婷精品国产亚洲av在线| 欧美日本亚洲视频在线播放| 国产精品爽爽va在线观看网站| 免费黄网站久久成人精品| 91午夜精品亚洲一区二区三区| 欧美在线一区亚洲| 人人妻人人看人人澡| 无遮挡黄片免费观看| 最后的刺客免费高清国语| 少妇的逼水好多| 日本色播在线视频| 一进一出抽搐动态| 国产精品一区二区性色av| 亚洲精品国产av成人精品 | 精品久久国产蜜桃| 一本精品99久久精品77| eeuss影院久久| 一本一本综合久久| 夜夜看夜夜爽夜夜摸| 日韩高清综合在线| 亚洲专区国产一区二区| 亚洲欧美日韩卡通动漫| 亚洲性久久影院| 欧美一区二区亚洲| 91在线观看av| 免费一级毛片在线播放高清视频| 亚洲精品在线观看二区| 亚洲欧美日韩卡通动漫| 高清毛片免费看| 3wmmmm亚洲av在线观看| 久久精品夜色国产| 精品熟女少妇av免费看| 精品久久久久久久末码| 亚洲av五月六月丁香网| 国产黄色小视频在线观看| 国产伦在线观看视频一区| 国产精品精品国产色婷婷| 国产精品人妻久久久久久| 亚洲无线在线观看| 在线国产一区二区在线| 舔av片在线| 精品福利观看| 亚洲国产精品成人久久小说 | 中文字幕熟女人妻在线| 日韩国内少妇激情av| 久久久久九九精品影院| 蜜臀久久99精品久久宅男| 亚洲美女搞黄在线观看 | 国产成人freesex在线 | 亚洲自拍偷在线| 国产在视频线在精品| 精品久久国产蜜桃| 少妇高潮的动态图| 别揉我奶头~嗯~啊~动态视频| 无遮挡黄片免费观看| 中文在线观看免费www的网站| 欧美性猛交黑人性爽| 又黄又爽又免费观看的视频| 99在线视频只有这里精品首页| 欧美日韩在线观看h| 国产aⅴ精品一区二区三区波| 精品久久国产蜜桃| 白带黄色成豆腐渣| 国产精品美女特级片免费视频播放器| 国产一区二区三区av在线 | 三级男女做爰猛烈吃奶摸视频| 人妻少妇偷人精品九色| 2021天堂中文幕一二区在线观| 精品久久久久久久久久久久久| 国产国拍精品亚洲av在线观看| 日韩国内少妇激情av| 亚洲最大成人手机在线| 2021天堂中文幕一二区在线观| 中文字幕人妻熟人妻熟丝袜美| 丰满乱子伦码专区| 亚洲精品一卡2卡三卡4卡5卡| 最近2019中文字幕mv第一页| 久久精品夜夜夜夜夜久久蜜豆| 亚洲丝袜综合中文字幕| 69av精品久久久久久| 国产高潮美女av| 色av中文字幕| 女生性感内裤真人,穿戴方法视频| 久久久久国产精品人妻aⅴ院| 精品一区二区三区视频在线| 国产不卡一卡二| 国产av麻豆久久久久久久| 色播亚洲综合网| 国产高潮美女av| 欧美另类亚洲清纯唯美| 国产黄a三级三级三级人| 久久久久国产精品人妻aⅴ院| 别揉我奶头~嗯~啊~动态视频| 少妇人妻一区二区三区视频| 观看免费一级毛片| 观看美女的网站| 成年女人看的毛片在线观看| 国产精品伦人一区二区| 国产一区亚洲一区在线观看| 国产探花极品一区二区| 免费观看的影片在线观看| 精品人妻视频免费看| 十八禁国产超污无遮挡网站| 一夜夜www| 成人av一区二区三区在线看| 中文字幕免费在线视频6| 久久精品国产清高在天天线| 国产探花在线观看一区二区| 国产精品女同一区二区软件| 国产成人精品久久久久久| 精品午夜福利视频在线观看一区| 国产亚洲91精品色在线| 亚洲欧美日韩东京热| 久久久久国内视频| 亚洲美女黄片视频| 国产探花在线观看一区二区| 毛片一级片免费看久久久久| 99国产极品粉嫩在线观看| 丝袜喷水一区| av在线播放精品| 大型黄色视频在线免费观看| 日韩欧美国产在线观看| 一个人免费在线观看电影| 寂寞人妻少妇视频99o| 在线看三级毛片| 免费电影在线观看免费观看| 精品少妇黑人巨大在线播放 | 成人漫画全彩无遮挡| 亚洲欧美精品自产自拍| 国产91av在线免费观看| 噜噜噜噜噜久久久久久91| 欧美三级亚洲精品| 午夜精品国产一区二区电影 | 亚洲精品影视一区二区三区av| av天堂在线播放| 天堂网av新在线| 丝袜美腿在线中文| 亚洲精品在线观看二区| 国产成人a区在线观看| 丝袜美腿在线中文| 日本五十路高清| 亚洲在线自拍视频| 夜夜爽天天搞| 亚洲精品在线观看二区| 天堂网av新在线| 亚洲国产精品成人综合色| 人人妻,人人澡人人爽秒播| 99热这里只有是精品50| 亚洲国产精品成人综合色| 国产av在哪里看| 伦理电影大哥的女人| 在线免费观看不下载黄p国产| 丰满的人妻完整版| 不卡视频在线观看欧美| 国产麻豆成人av免费视频| 精品乱码久久久久久99久播| 国产精品亚洲美女久久久| 国产精品一区www在线观看| 日韩欧美一区二区三区在线观看| 内射极品少妇av片p| 最近的中文字幕免费完整| 99热网站在线观看| 中国美白少妇内射xxxbb| 在线免费十八禁|