• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A multi-view K-multiple-means clustering method

    2021-12-21 14:09:16ZHANGNiniGEHongwei

    ZHANG Nini, GE Hongwei

    (1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China;2. Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence,Jiangnan University, Wuxi 214122, China)

    Abstract: The K-multiple-means (KMM) retains the simple and efficient advantages of the K-means algorithm by setting multiple subclasses, and improves its effect on non-convex data sets. And aiming at the problem that it cannot be applied to the Internet on a multi-view data set, a multi-view K-multiple-means (MKMM) clustering method is proposed in this paper. The new algorithm introduces view weight parameter, reserves the design of setting multiple subclasses, makes the number of clusters as constraint and obtains clusters by solving optimization problem. The new algorithm is compared with some popular multi-view clustering algorithms. The effectiveness of the new algorithm is proved through the analysis of the experimental results.

    Key words: K-multiple-means (KMM) clustering; weight parameters; multi-view K-multiple-means (MKMM) method

    0 Introduction

    Clustering is a common technology for pattern recognition and is widely applied to machine learning task such as image segmentation and user portrait. K-means[1]is the most classical method among a large number of existing clustering algorithms. And it is widely used due to its high efficiency and intuitive principle. However, the K-means algorithm does not perform well on non-spherical datasets. In order to improve the defect of K-means, many variants algorithm of K-means algorithm have been proposed[2-5]. Setting multiple subclasses for a class is a strategy to improve the K-means algorithm. This design is more in line with the practical application scenarios, and performs better on non-convex datasets. K-multiple-means (KMM), a multiple-means clustering method with specified K[6]proposed by Nie et al. at ACM SIGKDD in 2019, is a typical example. KMM algorithm is concerned because of its excellent performance[5-7].

    KMM is a traditional clustering method to study samples through a set of characteristics. When the samples has multiple groups of features, multi-view clustering can divide the samples by integrating and processing multiple groups of features. In the era of big data, data with multiple sets of characteristics is very common in real scenarios[7]. For example, in the problem of understanding multimedia content, multimedia content contains both the video signal from the camera and the audio signal from the microphone. In some image recognition tasks, image features include colour feature, textures feature and shape feature. The proliferation of multi-view data makes many scholars have a strong interest in multi-view learning. The data on different views of multi-view data is heterogeneous but potentially related. In other word, in multi-view data, each individual view has a specific attribute for a specific knowledge discovery task, but the different views often contain complementary information. Therefore, how to use this information to reveal the potential value of multi-perspective data is very important in big data research. In terms of unsupervised learning, the clustering method based on single view can not solve problems by using multi-view information as effectively as the multi-view clustering in many cases. Multi-view clustering needs to judge relationship among samples in each view respectively and completes clustering task by using the complementary and consensus information of multiple views. It is difficult to obtain good result by integrating different views to a single view and then using the advanced traditional clustering algorithm to cluster. Because each view has its specific attributes, in the process of feature fusion, a particular view may have higher weight than other views, resulting in clustering relies on only one of the views.

    Although KMM algorithm has excellent performance in traditional clustering, similar to other single-view clustering methods, it cannot use multiple groups of feature in multi-view data to complete the clustering task effectively. In this paper, a multi-view K-multiple-means (MKMM) clustering method is proposed. In the new algorithm, weight parameters of view are introduced, a new objective function is proposed, and the optimum allocation of weight parameters and clustering results of data are obtained through alternating optimization strategy.

    For a better clustering performance on multi-view data, it’s an effective strategy that modify good traditional clustering method to adapt to multi-view datasets. Recently, KMM and MKMM has excellent performance on traditional data sets. This paper proposed a new multi-view clustering based on KMM and revisited KMM in this section.

    The key idea of KMM algorithm is to set multiple prototypes for each cluster and make the location of clustering prototype and the partitioning of data to prototype an optimization problem.

    s.t.S≥0,S1=1,S∈Ω.

    (1)

    The position of prototypes will change asSchanges. WhenSupdated, each prototype can be relocated. This process can be iteratively performed by

    s.t.S≥0,S1=1,S∈Ω,A∈Rm×d.

    (2)

    The clustering result can be obtained by solving problem (2).

    KMM performs well in traditional clustering, so the multi-view clustering based on KMM has a good foundation for multi-view data clustering.

    1 Proposed method

    1.1 Design of objective function

    As mentioned above, KMM sets multiple prototypes in each class for better performance (Fig.1), and solving problem (1) can obtain the assignment of data to neighboring prototypes. Supposing that the data set hasnvviews, this paper integrates information from all views by introducing weight parametersW=[w1,w2,…,wnv] to extend KMM algorithm to multi-view data. Then, problem (1) becomes

    Fig.1 Integration of multi-view schematic

    s.t.S≥0,S1=1,

    (3)

    Similar to the single view, the task assigned to a similar prototype for each data sample are independent of the other data samples in the multi-view. However, when data is partitioned into similar prototypes, the information of different views will influence each other and jointly determine the partition of sample.Therefore, the assignment of each samplexiis presented as

    (4)

    After the matrixSis updated, each prototype will be relocated according to the average of new subclass. This process is performed iteratively until the partition of sample is no longer changed which can be expressed as

    s.t.S≥0,S1=1,A∈Rm×d.

    (5)

    As with single-view clustering, in most cases, connecting samples to prototypes belonging to the same cluster will result in a connected graph. In order to make the partition of samples more reasonable, considering that the matrixSshould havekconnected components, MKMM introduces a new constraintS∈Ω to the objective function (5) to form a new objective, that is

    s.t.S≥0,S1=1,S∈Ω,A∈Rm×d.

    (6)

    In order to get the best view weight parameters distribution, the view may initially be assigned a weight average. When the partition between the prototype and the samples is updated again, the view weights will be updated and changed accordingly to obtain the best weight. Eq.(6) should be turned as

    s.t.S≥0,S1=1,S∈Ω,A∈Rm×d,

    W≥0,W1=1.

    (7)

    1.2 Optimization strategy

    A∈Rm×d,W≥0,W1=1.

    (8)

    In order to solve the problem (8), relax the restriction in problem (8) and turn the problem (8) into

    F∈R(n+m)×k,FTF=I,W≥0,W1=1.

    (9)

    Eq.(9) can be solved by updateA,S,F,Witeratively. FixAfirstly, then updateS,F,W. Problem (9) can be turned into

    F∈R(n+m)×k,FTF=I,W≥0,W1=1.

    (10)

    For solving problem (10), fixS,Wand updateF.

    WhenFis fixed, fixW, updateSand change the problem (10) as

    (11)

    (12)

    s.t.S≥0,S1=1.

    (13)

    (14)

    The solution of problem (14) is similar to that of problem (4).

    WhenS,Ffixed, it needs to updateW, which is used to solve the problem (14), expressed as

    s.t.W≥0,W1=1.

    (15)

    (16)

    DenoteY∈Rnv×nv, problem (16) can be regarded as

    (17)

    Removing the constraintW≥0, the Lagrange function of Eq.(17) can be expressed as

    L(w,η)=WTYW-η(WT1-1),

    (18)

    (19)

    (20)

    1.3 MKMM algorithm steps

    In summary, the main steps of the MKMM algorithm are described as:

    Input: multi-view data setXnv={X(1),X(2),…,X(nv)}, number of clustersk, number of subclassm, parameterγ,λ.

    Output: clustering resultsC={C1,C2,…,Ck}.

    Step 1: calculate matrixS;

    Step 3: solving problem (14) to update matrixS.

    Step 4: update weight parameterWaccording to Eq.(20). Repeat steps 2, 3, 4 until converge.

    Step 5: calculate the position of each prototype and update the matrixAuntil the position of the prototype no longer changes according to the matrixS;

    Step 6: thekclusters are obtained according to the bipartite graph composed of samples and prototypes.

    1.4 Computational complexity

    In summary, supposing thatAis updatedt2times, and the total time complexity of the KMM algorithm is

    O(((nmk+nmc+m2n+nv)t1+nmd)t2+nlogn+nd).

    2 Experiments

    2.1 Clustering metrics

    The measure of clustering generally uses one or more evaluation indicators as judgment criteria to evaluate and analyze the clustering results, so as to determine the quality of the clustering algorithm. This article evaluates the algorithm throughAccuracy,NormalizedMutualInformation(NMI)[11]andPuritymetrics. The three metrics are introduced, respectively.

    SupposingCis the real label of dataset,Wis the label obtained by the algorithm. The definition ofAccuracyis

    (21)

    where map is the best mapping function, which can transform the label obtained by the algorithm and the real label into one to one mapping relationship.δis the indicator function.

    The definition ofNMIis

    (22)

    whereIrepresents mutual information;Hrepresents information entropy.

    Purityis defined as

    (23)

    The larger the values of theAccuracy,NMIandPurityare, the better the clustering performance. The value range of the metrics is [0,1].

    2.2 Datasets

    The Caltech101-7 in Table1 is a dataset of 7 classes extracted from Caltech101. The Caltech101 is a dataset containing 101 classes of images created by the California University in 2003. Each class contains 40 to 80 pictures, each with assize of 300×200 pixels. The seven classes extracted by Caltech101-7 are human faces, motorcycles, dollar, garfield, snoopy, stop signs and Windsor chairs. Caltech101-7 extracted six features from the above seven classes images containing gabor, wavelet cenhist, hog, gist and lbp.

    The Caltech101-20 in Table 1 is a dataset of 20 classes extracted from the Caltech101. The 20 classes are human face, leopard, motorcycle, binoculars, brain, camera, car sidewall, dollar, ferry, garfield, hedgehog, pagoda, rhino, snoopy, stapler, parking indicator, water lily, Windsor chair, wrench, and yinyang. The six features extracted from the images by Caltech101-20 are the same as Caltech101-20.

    Table 1 Real benchmark dataset

    The Yale32 in Table 1 is a face dataset of Yale University.There are 15 people in the dataset. Each person has 11 pictures with different poses, expressions and lighting. There are 165 pictures in total, and the pixels of the pictures are 32×32 pixels.

    The Wikipedia Articles in Table 1 is some documents collected from the featured article in Wikipedia. This is a continuously growing data set. This article uses a dataset composed of 2 669 articles in 29 classes collected in October 2009. Because some of the classes are sparse, only 10 classes are retained, and dataset are pruned to retain 693 samples. The dataset has two sets of features, one set is taken from the text information in the document and the other set is taken from the text.

    2.3 Competitors

    In order to evaluate the MKMM algorithm proposed in this paper, some algorithms are selected.

    Liu et al. proposed MKKM-MR[12]algorithm. This algorithm designed a novel, effective matrix-induced regularization to reduce such redundancy and enhance the diversity of the selected kernels. The algorithm needed to set the regularization parameters in advance when the algorithm was executed. According to the recommendations in the article, this article sets the parameter range from -15 to 20, sets the step size as 1 for comparison experiments, and takes the average of 26 results of algorithm.

    Zhao et al. proposed SCMK1[13]algorithm. This algorithm learned similarity information from data and integrated three subtask of traditional spectral clustering into a unified framework. The parameters were tuned as suggested[13].

    Zhao et al. proposed SCMK2[14]algorithm. This algorithm proposed a model to simultaneously learn cluster indicator matrix and similarity information in kernel spaces in a principles way.

    Wang et al. proposed MVC_LFA[15]algorithm. This algorithm proposed to maximally align the consensus partition with the weighted base partitions. According to the recommendations, the balance parameters were set according to the values in set {2-15,2-14,…,215}, and the average value of 31 experiments was displayed.

    2.4 Performance

    Results of the MKMM algorithm and the competitors on the four multi-view datasets were evaluated byAccuracy,NMIandPuritymetric, which was shown in Tables 2-4.

    Table 2 Accuracy values of five algorithms

    Table 3 NMI values of five algorithms

    Table 4 Purity values of five algorithms

    In order to eliminate the influence of the initial prototypes selection of the MKMM algorithm, the average value of 30 experiments performed by the algorithm on the dataset is used for display. From the Tables 2-4, it can be seen that the MKMM algorithm has outstanding performance in some datasets compared with other popular multi-view clustering algorithms. Although the MKMM algorithm performs not the best on other datasets, it still achieves a good clustering effect. MKMM performs particularly well on Yale32, probably because the same person in different facial expressions can be taken as in distinct subclasses. MKMM may be more advantageous on similar datasets to Yale32.

    3 Conclusions

    Considering that the KMM algorithm cannot solve the problem of multi-view clustering, this paper proposes MKMM algorithm. The algorithm introduces view weight parameter, designs a new objective function and effectively uses multiple features to achieve better clustering results. However, affected by the initial point selection like the KMM algorithm, so that the clustering results of the MKMM algorithm are unstable. Therefore, how to make the MKMM algorithm select prototypes on the multi-view dataset scientifically and improve the clustering effect while stabilizing the clustering performance will be the next research work.

    国产av国产精品国产| 日本欧美国产在线视频| 丝袜美腿在线中文| 亚洲国产精品成人综合色| 精品久久久久久久末码| 五月天丁香电影| 午夜激情欧美在线| 国产人妻一区二区三区在| 色视频www国产| 中文字幕免费在线视频6| 在线观看人妻少妇| 久久久久久久久中文| 成年版毛片免费区| 成人毛片a级毛片在线播放| 久久热精品热| 精华霜和精华液先用哪个| 五月伊人婷婷丁香| av又黄又爽大尺度在线免费看| 国产精品国产三级国产av玫瑰| 色综合站精品国产| 卡戴珊不雅视频在线播放| 精品久久久精品久久久| 老司机影院成人| 三级毛片av免费| 亚洲精品乱码久久久v下载方式| 国产日韩欧美在线精品| 久久久久久久久久成人| 精品不卡国产一区二区三区| 亚洲精品自拍成人| 日韩不卡一区二区三区视频在线| 精品久久国产蜜桃| 欧美日韩视频高清一区二区三区二| 日韩人妻高清精品专区| 亚洲av电影不卡..在线观看| 最近手机中文字幕大全| 久久精品久久精品一区二区三区| 少妇的逼好多水| 国产综合精华液| 亚洲高清免费不卡视频| 亚洲人与动物交配视频| 久热久热在线精品观看| 看十八女毛片水多多多| 国产 亚洲一区二区三区 | 精品久久久久久久久av| 久久久久精品性色| 久久久欧美国产精品| 男女边摸边吃奶| 床上黄色一级片| 老司机影院成人| 精品久久久噜噜| 国产免费福利视频在线观看| av一本久久久久| 国产美女午夜福利| 国产成人一区二区在线| 久久精品国产自在天天线| 国产黄色小视频在线观看| 午夜爱爱视频在线播放| 亚洲丝袜综合中文字幕| 亚洲真实伦在线观看| 嫩草影院精品99| 97精品久久久久久久久久精品| 国产激情偷乱视频一区二区| 亚洲精品日韩在线中文字幕| 久久久精品欧美日韩精品| 免费在线观看成人毛片| 欧美激情久久久久久爽电影| 日韩大片免费观看网站| 精品人妻熟女av久视频| 99久久精品一区二区三区| av网站免费在线观看视频 | 亚洲精品中文字幕在线视频 | 精品久久国产蜜桃| 日本黄色片子视频| 岛国毛片在线播放| 亚洲av成人精品一二三区| 久久韩国三级中文字幕| 别揉我奶头 嗯啊视频| 久久久久国产网址| 久久精品国产自在天天线| 91久久精品国产一区二区成人| 又爽又黄无遮挡网站| 伊人久久精品亚洲午夜| 国产精品一及| 欧美xxxx性猛交bbbb| a级一级毛片免费在线观看| 日韩av不卡免费在线播放| 丰满乱子伦码专区| 亚洲av不卡在线观看| 99久久九九国产精品国产免费| 男女下面进入的视频免费午夜| 天天躁日日操中文字幕| 中文字幕久久专区| 亚洲自拍偷在线| 乱人视频在线观看| 别揉我奶头 嗯啊视频| 九九在线视频观看精品| 九色成人免费人妻av| 国产麻豆成人av免费视频| 国产在线男女| 国产高清不卡午夜福利| 91精品国产九色| 国产亚洲午夜精品一区二区久久 | 日韩欧美三级三区| 天美传媒精品一区二区| 熟女人妻精品中文字幕| 国产淫片久久久久久久久| 丝瓜视频免费看黄片| 日日摸夜夜添夜夜添av毛片| 国产一级毛片七仙女欲春2| 五月伊人婷婷丁香| 综合色av麻豆| 亚洲欧美清纯卡通| 中文字幕免费在线视频6| 大又大粗又爽又黄少妇毛片口| 日本熟妇午夜| 欧美不卡视频在线免费观看| 最近手机中文字幕大全| 日本欧美国产在线视频| 在线 av 中文字幕| 国产69精品久久久久777片| 五月天丁香电影| 日本黄色片子视频| 欧美97在线视频| 免费无遮挡裸体视频| 中文字幕av成人在线电影| 一级a做视频免费观看| 最近的中文字幕免费完整| 久久久久免费精品人妻一区二区| 久久久久精品久久久久真实原创| 国产精品嫩草影院av在线观看| 国产激情偷乱视频一区二区| 男人舔女人下体高潮全视频| 成年人午夜在线观看视频 | 国产 亚洲一区二区三区 | 最后的刺客免费高清国语| 99热这里只有是精品50| 日本与韩国留学比较| 日日摸夜夜添夜夜爱| 国产大屁股一区二区在线视频| 99视频精品全部免费 在线| 久久久久久久久久黄片| 三级国产精品片| www.av在线官网国产| 亚洲国产精品专区欧美| 简卡轻食公司| 欧美高清成人免费视频www| 婷婷色麻豆天堂久久| 麻豆成人午夜福利视频| 国产在视频线精品| 少妇裸体淫交视频免费看高清| 免费观看性生交大片5| 国产黄a三级三级三级人| 国产精品久久久久久av不卡| 美女高潮的动态| 成人欧美大片| 免费av不卡在线播放| 久久99热这里只有精品18| 亚洲欧美清纯卡通| av在线亚洲专区| 日韩精品有码人妻一区| 亚洲欧美一区二区三区国产| 白带黄色成豆腐渣| 国产精品三级大全| 高清毛片免费看| av在线蜜桃| 在线观看美女被高潮喷水网站| 高清毛片免费看| 人妻夜夜爽99麻豆av| 成人漫画全彩无遮挡| a级毛色黄片| 国产v大片淫在线免费观看| 中文在线观看免费www的网站| 性色avwww在线观看| 99re6热这里在线精品视频| 狠狠精品人妻久久久久久综合| 国产高清不卡午夜福利| 久久久精品欧美日韩精品| 中文字幕免费在线视频6| 特级一级黄色大片| 我的老师免费观看完整版| 男女边摸边吃奶| 国产亚洲5aaaaa淫片| 精华霜和精华液先用哪个| 国产精品国产三级国产av玫瑰| 亚洲国产精品成人综合色| 国产单亲对白刺激| 一级毛片aaaaaa免费看小| 精品国产一区二区三区久久久樱花 | 97超碰精品成人国产| 黄色日韩在线| 久久久久国产网址| 久久精品熟女亚洲av麻豆精品 | 夜夜爽夜夜爽视频| 久久精品国产亚洲av涩爱| 亚洲成人av在线免费| 成年版毛片免费区| 寂寞人妻少妇视频99o| 国产一区二区三区av在线| 淫秽高清视频在线观看| 亚洲成人久久爱视频| 国产色婷婷99| 人妻夜夜爽99麻豆av| 一级二级三级毛片免费看| 久久精品国产亚洲av天美| 国产有黄有色有爽视频| 青青草视频在线视频观看| 天堂影院成人在线观看| 中文字幕av成人在线电影| 亚洲国产精品成人综合色| 大又大粗又爽又黄少妇毛片口| 国产 一区精品| 六月丁香七月| 80岁老熟妇乱子伦牲交| 亚洲欧洲国产日韩| 成人av在线播放网站| 人妻制服诱惑在线中文字幕| xxx大片免费视频| 韩国av在线不卡| .国产精品久久| or卡值多少钱| 大又大粗又爽又黄少妇毛片口| 日本午夜av视频| 国产精品久久久久久精品电影小说 | 久久久久网色| 日本熟妇午夜| 国产视频首页在线观看| 99热这里只有是精品50| 久久这里只有精品中国| 熟女人妻精品中文字幕| 熟女电影av网| 亚洲av一区综合| 又黄又爽又刺激的免费视频.| 人人妻人人澡欧美一区二区| 国产人妻一区二区三区在| 亚洲性久久影院| 日韩三级伦理在线观看| 99久久人妻综合| 午夜福利在线在线| 国产精品久久久久久精品电影小说 | 欧美成人精品欧美一级黄| 午夜福利网站1000一区二区三区| av国产久精品久网站免费入址| 日韩视频在线欧美| 国产免费福利视频在线观看| 精品国产一区二区三区久久久樱花 | 午夜免费男女啪啪视频观看| 亚洲精华国产精华液的使用体验| 91久久精品电影网| 男女国产视频网站| 中文字幕久久专区| 国产 亚洲一区二区三区 | 亚洲成人久久爱视频| 亚洲色图av天堂| 国产精品爽爽va在线观看网站| 尤物成人国产欧美一区二区三区| 黄片wwwwww| av女优亚洲男人天堂| 亚洲成色77777| 舔av片在线| 又黄又爽又刺激的免费视频.| 欧美日韩在线观看h| 在线 av 中文字幕| 亚洲国产高清在线一区二区三| 国产高清有码在线观看视频| 美女被艹到高潮喷水动态| 菩萨蛮人人尽说江南好唐韦庄| 国产乱来视频区| 国产成人一区二区在线| 国产成人精品久久久久久| av黄色大香蕉| 精品亚洲乱码少妇综合久久| 亚洲国产欧美在线一区| 色综合亚洲欧美另类图片| 国产精品一二三区在线看| 亚洲电影在线观看av| 久久99热这里只频精品6学生| 联通29元200g的流量卡| 97超视频在线观看视频| 成人亚洲精品av一区二区| 成人毛片a级毛片在线播放| 在线观看免费高清a一片| 亚洲丝袜综合中文字幕| 亚洲一级一片aⅴ在线观看| 色视频www国产| 国产成人精品久久久久久| 91在线精品国自产拍蜜月| 国产探花在线观看一区二区| 国产伦精品一区二区三区视频9| 99热全是精品| 一区二区三区高清视频在线| 春色校园在线视频观看| 人人妻人人澡人人爽人人夜夜 | 少妇人妻精品综合一区二区| 身体一侧抽搐| 成人无遮挡网站| 亚洲无线观看免费| 色综合亚洲欧美另类图片| 欧美日韩视频高清一区二区三区二| 男人爽女人下面视频在线观看| 久久精品国产亚洲网站| 一级毛片黄色毛片免费观看视频| 亚洲av二区三区四区| 久久久久久久久大av| 日韩亚洲欧美综合| 国产色婷婷99| 亚洲欧美精品自产自拍| 丰满人妻一区二区三区视频av| 日日摸夜夜添夜夜爱| 免费看av在线观看网站| 最近中文字幕2019免费版| 免费看美女性在线毛片视频| 中文字幕av在线有码专区| 日韩欧美三级三区| 日日啪夜夜爽| 久久这里只有精品中国| 18禁动态无遮挡网站| 亚洲av中文av极速乱| 高清欧美精品videossex| 免费大片黄手机在线观看| 国国产精品蜜臀av免费| 亚洲三级黄色毛片| 丰满人妻一区二区三区视频av| 亚洲国产成人一精品久久久| 国产 一区精品| 欧美xxxx性猛交bbbb| 亚洲电影在线观看av| 国产免费视频播放在线视频 | 乱人视频在线观看| 赤兔流量卡办理| 爱豆传媒免费全集在线观看| 亚洲久久久久久中文字幕| 亚洲国产高清在线一区二区三| 我要看日韩黄色一级片| 一级爰片在线观看| 日本wwww免费看| 麻豆av噜噜一区二区三区| 人妻夜夜爽99麻豆av| 欧美日韩国产mv在线观看视频 | 成人一区二区视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 色尼玛亚洲综合影院| 深夜a级毛片| 久久人人爽人人片av| 天天躁夜夜躁狠狠久久av| 18禁裸乳无遮挡免费网站照片| 久久久久国产网址| 国产成人91sexporn| 麻豆成人午夜福利视频| 最近的中文字幕免费完整| 国产免费视频播放在线视频 | 成人午夜精彩视频在线观看| 免费av不卡在线播放| 我的老师免费观看完整版| 乱人视频在线观看| 午夜久久久久精精品| 国产女主播在线喷水免费视频网站 | 一级毛片我不卡| 国产v大片淫在线免费观看| 麻豆成人av视频| h日本视频在线播放| or卡值多少钱| 十八禁国产超污无遮挡网站| 美女脱内裤让男人舔精品视频| 麻豆国产97在线/欧美| 免费黄网站久久成人精品| 人妻夜夜爽99麻豆av| 久久综合国产亚洲精品| av黄色大香蕉| 国产有黄有色有爽视频| 五月玫瑰六月丁香| 免费看av在线观看网站| 在线a可以看的网站| 一级片'在线观看视频| 国产亚洲一区二区精品| 在线a可以看的网站| 国内揄拍国产精品人妻在线| 欧美成人精品欧美一级黄| 一级片'在线观看视频| 国产一区有黄有色的免费视频 | 日韩欧美精品免费久久| 免费无遮挡裸体视频| 少妇裸体淫交视频免费看高清| 午夜精品一区二区三区免费看| 国产精品一及| 在线观看人妻少妇| 最近最新中文字幕免费大全7| av线在线观看网站| 九九久久精品国产亚洲av麻豆| 特大巨黑吊av在线直播| 国产av在哪里看| 非洲黑人性xxxx精品又粗又长| ponron亚洲| 好男人在线观看高清免费视频| 欧美不卡视频在线免费观看| 国产黄色小视频在线观看| 91狼人影院| 国产视频首页在线观看| 亚洲国产日韩欧美精品在线观看| 国产高清国产精品国产三级 | 国产淫语在线视频| 免费观看a级毛片全部| 听说在线观看完整版免费高清| 久久精品久久久久久噜噜老黄| 欧美成人a在线观看| 女的被弄到高潮叫床怎么办| 三级国产精品片| 中文在线观看免费www的网站| 亚洲精品视频女| 嫩草影院入口| 天堂影院成人在线观看| 亚洲av日韩在线播放| 国产精品国产三级国产av玫瑰| 韩国av在线不卡| 少妇裸体淫交视频免费看高清| 非洲黑人性xxxx精品又粗又长| 丝袜喷水一区| 成年版毛片免费区| 亚洲精品久久久久久婷婷小说| 色综合站精品国产| 国产老妇伦熟女老妇高清| 国产乱人偷精品视频| 夜夜看夜夜爽夜夜摸| 深夜a级毛片| 最近手机中文字幕大全| 国产伦一二天堂av在线观看| 日本免费a在线| 国产成人a区在线观看| 黑人高潮一二区| 日本一本二区三区精品| 一边亲一边摸免费视频| 欧美一级a爱片免费观看看| 黑人高潮一二区| 黄色欧美视频在线观看| 亚洲国产欧美人成| 看黄色毛片网站| 综合色av麻豆| 搞女人的毛片| 免费观看无遮挡的男女| 国产高清不卡午夜福利| 美女cb高潮喷水在线观看| 免费观看在线日韩| 中文乱码字字幕精品一区二区三区 | 免费电影在线观看免费观看| 免费少妇av软件| 高清av免费在线| 免费人成在线观看视频色| 夫妻午夜视频| 国产亚洲精品av在线| 亚洲自偷自拍三级| 亚洲精品国产av蜜桃| 欧美日韩综合久久久久久| 你懂的网址亚洲精品在线观看| 亚洲av.av天堂| 免费看日本二区| 男女啪啪激烈高潮av片| 国内精品宾馆在线| 国内精品一区二区在线观看| 天堂√8在线中文| 亚洲一区高清亚洲精品| 精品一区二区三区人妻视频| 久久精品综合一区二区三区| 中文字幕人妻熟人妻熟丝袜美| 亚洲国产高清在线一区二区三| 99视频精品全部免费 在线| 3wmmmm亚洲av在线观看| 少妇猛男粗大的猛烈进出视频 | 乱系列少妇在线播放| 看免费成人av毛片| 亚洲精品色激情综合| 丰满少妇做爰视频| 啦啦啦韩国在线观看视频| 精品人妻视频免费看| 最近手机中文字幕大全| 亚洲人成网站高清观看| 日韩av不卡免费在线播放| 亚洲欧美日韩卡通动漫| 午夜视频国产福利| 久久久久久伊人网av| 精品一区二区三卡| 日本免费a在线| 黄色配什么色好看| 在现免费观看毛片| 蜜臀久久99精品久久宅男| 成年av动漫网址| 亚州av有码| 免费av观看视频| 男女视频在线观看网站免费| 身体一侧抽搐| 国产精品一二三区在线看| 国产精品av视频在线免费观看| 国产色婷婷99| 国产精品女同一区二区软件| 精品国产露脸久久av麻豆 | 久久久久久久久久人人人人人人| 国内精品宾馆在线| 亚洲精品视频女| 内地一区二区视频在线| 色哟哟·www| 不卡视频在线观看欧美| 国内精品宾馆在线| 少妇人妻一区二区三区视频| 男女那种视频在线观看| 久久久久久久午夜电影| 黄色配什么色好看| 麻豆成人午夜福利视频| 日韩中字成人| 青春草视频在线免费观看| 亚洲av一区综合| 插逼视频在线观看| 国产精品国产三级国产专区5o| 九九久久精品国产亚洲av麻豆| 久久这里有精品视频免费| 国产高清有码在线观看视频| 国产免费一级a男人的天堂| 亚洲精品中文字幕在线视频 | av线在线观看网站| 日本猛色少妇xxxxx猛交久久| 人妻制服诱惑在线中文字幕| 中文乱码字字幕精品一区二区三区 | 日本一二三区视频观看| 免费看不卡的av| av在线天堂中文字幕| 一个人看的www免费观看视频| 久99久视频精品免费| av国产免费在线观看| 精品久久久噜噜| 搡老妇女老女人老熟妇| 身体一侧抽搐| 特大巨黑吊av在线直播| 国产黄a三级三级三级人| 岛国毛片在线播放| 简卡轻食公司| 日韩不卡一区二区三区视频在线| 成人午夜精彩视频在线观看| 亚洲婷婷狠狠爱综合网| 亚洲精品久久久久久婷婷小说| 日日啪夜夜爽| 国产视频首页在线观看| 人体艺术视频欧美日本| 美女高潮的动态| 亚洲av免费在线观看| 熟妇人妻久久中文字幕3abv| 日韩亚洲欧美综合| 日韩中字成人| 天堂av国产一区二区熟女人妻| 少妇猛男粗大的猛烈进出视频 | or卡值多少钱| 国产av码专区亚洲av| 日本黄色片子视频| 五月玫瑰六月丁香| 黄色配什么色好看| 日韩 亚洲 欧美在线| 亚洲国产av新网站| 国产亚洲精品av在线| 欧美成人一区二区免费高清观看| 精品人妻偷拍中文字幕| 99久久人妻综合| 舔av片在线| 日本免费在线观看一区| 蜜桃亚洲精品一区二区三区| 亚洲内射少妇av| 网址你懂的国产日韩在线| 国产麻豆成人av免费视频| www.色视频.com| 久久亚洲国产成人精品v| 午夜福利视频1000在线观看| av国产免费在线观看| av专区在线播放| 精品久久久久久久末码| 日本与韩国留学比较| 午夜精品一区二区三区免费看| 久久6这里有精品| 久久精品人妻少妇| 老师上课跳d突然被开到最大视频| av在线天堂中文字幕| 亚洲欧美一区二区三区黑人 | 精品久久国产蜜桃| 国产男女超爽视频在线观看| 美女高潮的动态| 午夜激情久久久久久久| 亚洲经典国产精华液单| 人妻系列 视频| 亚洲自偷自拍三级| 女人久久www免费人成看片| 狂野欧美白嫩少妇大欣赏| 亚洲av.av天堂| 久久精品国产亚洲av涩爱| 简卡轻食公司| 免费av毛片视频| 内射极品少妇av片p| 亚洲国产色片| 热99在线观看视频| 久久久久免费精品人妻一区二区| 在线 av 中文字幕| 亚洲国产av新网站| 欧美激情国产日韩精品一区| 乱系列少妇在线播放| 七月丁香在线播放| 日韩,欧美,国产一区二区三区| 狂野欧美白嫩少妇大欣赏| 丰满人妻一区二区三区视频av| 成人高潮视频无遮挡免费网站| 午夜激情欧美在线| 黑人高潮一二区| 亚洲色图av天堂| 国产69精品久久久久777片| 2018国产大陆天天弄谢| 大陆偷拍与自拍| 欧美 日韩 精品 国产| 91久久精品国产一区二区三区| 夜夜看夜夜爽夜夜摸| 精品久久久久久成人av| 99九九线精品视频在线观看视频| 永久免费av网站大全| 精品人妻一区二区三区麻豆|