付衛(wèi)亮
(山東省濱州市無棣縣魯北高新技術(shù)開發(fā)區(qū)實驗學校,山東 濱州)
進入新時代以來,隨著新課程改革的推進和實施,提高教學質(zhì)量成為教育工作者的追求。小學數(shù)學教育的首要目的是讓學生掌握一些基礎(chǔ)知識,同時要通過教學來幫助學生養(yǎng)成良好的學習習慣,進一步培養(yǎng)學生的數(shù)學核心素養(yǎng)。因此,教師應(yīng)該在課堂中滲透數(shù)學思維方法,提升學生計算能力,從而提高學生對數(shù)學知識的掌握程度。
刻板印象是一種思維的“慣性”,它能讓學生用自己掌握的方法快速解決與舊知識相似的問題,但不斷地使用相似的舊知識會強化記憶,形成思維障礙。消極的思維方式往往會影響學生對計算概念、計算規(guī)則和計算性質(zhì)的正確理解,導致計算錯誤。由于反復做某類練習,學生會有先入為主的想法。小學生在解決性質(zhì)完全不同的問題時,往往使用習慣性的方法,從而導致錯誤。例如,當學生第一次學習十進制乘法時,會受到十進制加減法的影響;列豎式時,對齊小數(shù)點而不是最后一位,導致計算錯誤。
學生只有對小學數(shù)學的概念、性質(zhì)、公式、規(guī)律等基本知識有深刻的理解和把握,才能正確靈活地運用它,培養(yǎng)計算能力。如果對概念、性質(zhì)、規(guī)律的把握不準確,理解不透徹,就會出現(xiàn)錯誤。例如,垂直數(shù)字未對齊;當同一數(shù)位上的數(shù)相減時,就會出現(xiàn)錯位相減而導致錯誤;乘法中,每位數(shù)字相乘所得乘積的上下位錯誤,小數(shù)乘法任意標小數(shù)點;在除法中,商不夠時,忘記用0 占位;十進制除法小數(shù)點錯誤、十進制除法無法正確轉(zhuǎn)換為十進制乘法等。
今天的大多數(shù)學生高度依賴生活。當他們開始學習時,缺乏學習的主動性。做完功課,就變成了“甩手掌柜”。究竟是對是錯,要靠家長的檢查。另外,小學生在做計算題的時候,大部分都習慣了拿起筆,就算抄錯數(shù)字或計算符號的情況也很常見。雖然一再強調(diào)做題時要注意檢查,但大部分學生都不會主動檢查,更不會認真分析,因此經(jīng)常出現(xiàn)讀抄錯、看小數(shù)或大數(shù)、記錯公式等問題。這種草率寫題、做完題后不檢查的壞習慣,直接導致計算精度不斷下降。
數(shù)學學習在一定程度上是抽象的,我們可能無法在這個過程中盡可能地拆解具體的數(shù)學知識。因此,教師可以通過創(chuàng)設(shè)情境讓學生掌握數(shù)學的相關(guān)知識和能力,學生可以在特定的氛圍中處理問題,從而提高學生的知識水平。值得注意的是,教師在教學設(shè)計上要生動形象,不能過于抽象,否則不利于學生進行知識的聯(lián)想。比如,解答四則運算的應(yīng)用題時,出現(xiàn)了雞兔同籠的問題,教師可以讓學生想象面前有這樣一個籠子,里面裝著數(shù)量不等的雞和兔子,讓學生來求具體的數(shù)量。學生通過仔細觀察雞和兔子露出的頭和腳的數(shù)量就可以解決問題,并提高解決問題的效率。
在教學過程中,教師可能會在一段時間內(nèi)不斷傳授新的解題方法,這會導致學生學習的知識過多,而且每一種知識之間沒有明確的區(qū)分,學生的所有知識交織在一起,無法形成知識網(wǎng)絡(luò),從而降低學生的學習效率。教師在教學中要注意對學生的知識進行有規(guī)律、有系統(tǒng)的安排,讓學生在頭腦中形成完整的知識網(wǎng)絡(luò),積極建立知識之間的聯(lián)系。例如,在學習乘法時,教師可以將乘法與長方形的面積結(jié)合起來,促進學生對乘法知識的理解。這樣老師每講一個新的知識點,都可以與舊知識聯(lián)系起來,幫助學生形成一個系統(tǒng)的知識體系。因此,學生逐漸掌握了這些常用的思想和方法,這些數(shù)學思想不僅可以用來解決數(shù)學問題,而且可以應(yīng)用到生活中,因為數(shù)學思維是一種可視化、合理化的思維活動形式,學生可以通過學習鍛煉自己的數(shù)學思維,從而提升自己的數(shù)學素養(yǎng)。
小學數(shù)學教材中沒有數(shù)學思維方法的直接教學,而是將思維方法逐漸滲透到基礎(chǔ)知識中,希望潛移默化地幫助學生形成數(shù)學思維。因此,教師需要充分探究教材中涉及的教學內(nèi)容,而重點是幫助學生分析和理解數(shù)學思想和方法。此外,教師可以充分利用各種課外教學資源,在教學過程中搜集、整理一部分數(shù)學思維和方法的教學資源,引導學生逐漸掌握更多的思維和方法。
在運算定律的教學中,我將逆向思維的思想方法融入數(shù)學課堂,帶領(lǐng)學生體驗?zāi)嫠季S解決問題的方法。一般來說,學習這門課程時,老師會先教運算定律,然后讓學生做簡單的計算題。但是,我在本節(jié)知識的講解中先讓學生解答一些簡單的計算題,然后根據(jù)計算結(jié)果來找規(guī)律,進而推導出四則運算的運算律。通過這種逆向法的教學思路,學生對運算律有了更深的印象,知道如何利用算法來解決運算問題。由此可見,逆推法的思想在學習數(shù)字運算中起到了很大的作用,使學生充分了解如何解決數(shù)字運算。在逆向思維的數(shù)學思想下,學生的學習效率大大提高。
教師要充分了解學生知識和思維方法的積累,開展更有針對性的教學活動,增加教學思維方法的可操作性,讓學生逐漸適應(yīng)這些思維方法,并在實踐中熟練靈活地運用這些思想和方法。比如,在“多位數(shù)乘個位數(shù)”的教學中,首先,我要求學生口算整十、整百乘個位數(shù)的問題,這樣他們就可以初步了解相關(guān)計算規(guī)律。然后,我再用不同的多位數(shù)去乘個位數(shù)的問題來測試學生,在運算中首先為學生做了演示。在這種演示過程中,我們幫助學生培養(yǎng)了創(chuàng)造性思維,深刻理解了計算中每一步的意義。
小學生遇到計算題,任務(wù)是要得出正確的結(jié)果,這必然涉及計算規(guī)則、性質(zhì)、計算公式、數(shù)學概念、規(guī)律等內(nèi)容的應(yīng)用。如果學生不能更好地理解上述數(shù)學基礎(chǔ)知識,勢必會影響自身的計算能力。小學生在學習時需要具備四種計算能力。在形成能力之前,需要深入了解分數(shù)的基本概念和屬性,并在此基礎(chǔ)上理解和掌握分數(shù)之間的轉(zhuǎn)換,一般分數(shù)、近似分數(shù)和假分數(shù)等必不可少的基本知識。這時,數(shù)學教師需要耐心、準確地向?qū)W生講解相關(guān)知識,避免學生在實際操作中出現(xiàn)問題。同時,對低年級學生來說,高年級學生數(shù)學基礎(chǔ)知識體系較為豐富,掌握知識的能力也有優(yōu)勢。因此,教師在實際教學中不應(yīng)急于求成,應(yīng)結(jié)合學生的實際情況,幫助組織基礎(chǔ)知識,然后利用知識遷移的方法逐步加強學習的深度。以“不同分母分數(shù)的加法”為例,數(shù)學教師可以先讓學生解釋加法的意義和性質(zhì)?;旧希瑢W生可以將兩個數(shù)組合成一個數(shù)字運算形式,然后讓學生觀察不同的分母分數(shù),不能簡單地相加,而要通過一定的方法換算成同分母分數(shù),然后相加即可得到正確答案。此外,數(shù)學教師還可以讓學生熟練背誦小數(shù)、分數(shù)、整數(shù)等算術(shù)算法,有利于形成良好的計算能力。
教學評價在小學數(shù)學計算教學中占有重要地位,要不斷完善教學評價體系。一是評價主體多元化。在小學數(shù)學教學中,教師是主導,學生是主體,兩者缺一不可。因此,不僅要有教師的評價,還要有學生的自我評價和學生之間的相互評價;二是評價內(nèi)容的全面性。小學數(shù)學計算教學不僅要提高學生的計算能力,還要培養(yǎng)學生的數(shù)學意識,提高學生的邏輯思維和應(yīng)用能力,培養(yǎng)學生的數(shù)學素養(yǎng)。因此,評價內(nèi)容應(yīng)從多角度開展,促進學生的全面發(fā)展。
多種計算方法的傳播可以幫助學生提高計算能力。在日常教學中,教師不僅要引導學生進行計算,還要引導學生形成良好的計算能力。比如,在教授學生多個相同數(shù)相加的過程中,可以引入乘法,幫助學生實現(xiàn)思維的轉(zhuǎn)變,實現(xiàn)教學的全面發(fā)展,為學生的成長打下堅實的基礎(chǔ),給學生全面的啟發(fā)。在日常教學中,教師可以給學生留下更多的思考空間,討論計算方法。例如,當計算1+2+3+…+98+99 時,老師可以把主動權(quán)留給學生,讓學生想辦法解決問題。此外,在小學數(shù)學教學中,我們經(jīng)常會遇到一些考試題,如選擇題的解答,一般來說我們要求學生一一計算。但是,在解決此問題時,如果實在求不出正確答案,我們可以讓他們嘗試估計答案或?qū)⒋鸢柑鎿Q為選項。一方面能夠拓展學生的思維方式,另一方面也能提高學生做題的正確率。
當小學生掌握了數(shù)學思維,就能在日常學習乃至生活中很好地利用起來,學習數(shù)學的興趣就能提高,成績也會隨之提升。用數(shù)學思想解決四則運算問題,可以讓學生產(chǎn)生一定的數(shù)學知識記憶,同時還能使學生更容易計算。因此,培養(yǎng)良好的數(shù)學思維是讓小學生學好數(shù)學的必由之路。