• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamics and synchronization in a memristor-coupled discrete heterogeneous neuron network considering noise

    2024-02-29 09:19:52XunYan晏詢ZhijunLi李志軍andChunlaiLi李春來
    Chinese Physics B 2024年2期

    Xun Yan(晏詢), Zhijun Li(李志軍),?, and Chunlai Li(李春來)

    1School of Automation and Electronic Information,Xiangtan University,Xiangtan 411105,China

    2School of Computer Science&School of Cyberspace Science,Xiangtan University,Xiangtan 411105,China

    Keywords: heterogeneous neuron network,discrete memristor,coexisting attractors,synchronization,noise

    1.Introduction

    Studying neuromorphic behaviors of neurons is favorable to help us to understand more about the operating mechanism of the brain.Therefore, establishing appropriate neuron models to simulate the dynamic behavior of biological neurons has received widespread attention.[1–3]The Hodgkin–Huxley (HH) model was the first established neuron paradigm,[4]which demonstrates the connection between the membrane voltage of neurons and the membrane currents of squid giant axons.However, the HH model is formulated by seven coupled ordinary differential equations and includes four ionic channels,which lead to its complexity.Some simplified models, thus, have been proposed to simulate the neuromorphic behaviors of the biological neurons, such as FitzHugh–Nagumo(FHN)model,[5–8]Hindmarsh–Rose(HR)model,[9–13]Morris–Lecar(ML),[14–18]etc.These continuous neuron models have played an important role in understanding the generation and transmission of action potential.[19–23]

    Compared with continuous neuron models,discrete neuron models are more computationally efficient, especially in the modeling of large-scale neuron networks.The modeling of discrete neurons and the analysis of their firing patterns have become a hot topic in the field of neurodynamics in recent years.[24–27]Due to the non-volatile, nanoscale,memory properties of memristors,and the similarity between nano-scale moving particles in memristors and mobile neurotransmitters in biological synapses, memristors are often considered as ideal candidates for simulating synapses.[28–32]For example, Baoet al.[33]established a discrete neuron network containing two identical Rulkov neurons, and regarded the current flowing through the memristor as the electromagnetic induction current to analyze the effect of electromagnetic induction on the dynamic behavior of neuron network.Under the influence of the electromagnetic induction current,the model can achieve complete synchronization and lag synchronization.The synchronous firing and chimera state were observed in a ring neuron network constructed with memristorcoupled discrete Chialvo neurons.[34]Mahtab Mehrabbeiket al.[35]studied the memristive Rulkov neuron maps and analyzed the synchronous dynamics under electrical and chemical coupling.Their results shows that two m-Rulkov neurons can achieve synchronization only when electrically coupled,but not when chemically coupled.Liet al.[36]used discrete locally active memristor to construct a logarithmic map, and the coexisting attractors were observed.

    Among many neuron models, the Izhikevich model simplifies the HH model[37–40]with consideration of biological concepts, which is capable of simulating almost all spikes of cortical neurons.[41,42]Furthermore, the Izhikevich model outperforms other models in terms of computational efficiency.[43–46]The Chialvo model is one of the earliest discrete neuron models,[47,48]and it was attempted to study the synchronous rhythmic activity in some areas of mammals at that time,[48]including the cortical spindle rhythms, hyppocampal rhythms, and somatomotor cortices.The Chialvo model can demonstrate key patterns of neuronal activities,such as spiking,excitations,bursting,and so on.

    In fact, the brain is a very complex system, which can be divided into many brain regions,including the motor area,sensory area, visual area, auditory area and association area,just to name a few.[49]The neurons in different brain regions are independent but interact with each other, and jointly control neural activities of the human body.[50,51]Therefore,neuron networks composed of heterogeneous neurons is more in line with biological reality.However, to our knowledge, previous studies on discrete neuron networks mainly focus on homogeneous neurons,while neuron networks composed of heterogeneous neurons coupled by memristors are rarely studied.To further understand the operating mechanism of the brain,it is essential and meaningful to study the dynamic behavior of neuron networks constructed with heterogeneous neurons distributed in different brain regions.[52–54]In addition,in the biological nervous systems, a large number of neurons work together,which inevitably leads to changes in the surrounding physiological environment.Therefore, noise is ubiquitous in the biological nervous systems.[44]However,it is currently unclear how noise affects the information processing mechanism of neurons, so the impact of noise on the firing activities of neurons cannot be ignored.[55–57]

    In the present study,we propose a new discrete locally active memristor and use it to connect the discretized Izhikevich and Chialvo neurons.Thus, a heterogeneous discrete neuron network model coupled by the discrete locally active memristor is constructed.The dynamics of the neuron network are analyzed, and the synchronous behavior between two heterogeneous neurons are revealed.Finally,Gaussian noise is added to the model to analyze the impact of noise on firing activities of neuron network.

    The rest of this paper is organized as follows.Section 2 proposes a new four-stable locally active discrete memristor and studies its properties in detail.In Section 3, a heterogeneous discrete neuron network model is developed by using the discrete memristor to bridge two heterogeneous neurons and the equilibrium points of the model and their corresponding stabilities are theoretically analyzed.The dynamic behavior and coexistence behavior of neuron networks are revealed in Section 4.Section 5 studies the effect of adding noise on the phase synchronization of neuron networks.Finally,the study is concluded in Section 6.

    2.Four-stable locally-active memristor model and characteristics

    2.1.Memristor model

    The discrete memristor proposed in this paper can be described as follows:

    wherev,i,andw(φ)are the input voltage,output current,and admittance function,respectively.F(φ,v)is the internal state equation of the memristor, which consists of a sign function related to the magnetic flux and voltage, andα,β,λare the three parameters of the memristor.In this paper,α= 0.1,β=0.001,andλ=9.

    2.2.Pinched hysteresis loops

    A periodic voltage signalv(n)=Asin(2πωT(n)) is applied to the memristor, and the initial value of the memristor is selected as 1.By varying the amplitudeAand frequencyω, the memristor shows pinched hysteresis loops on thev–iplane,as shown in Fig.1.

    It can be seen from Fig.1 that all the pinched hysteresis loops pass through the origin.When the frequencyω=0.0001 is fixed,the area of the pinched hysteresis loop lobe increases monotonously as the excitation amplitudeAincreases.Once the amplitudeA=20 is fixed,the pinched hysteresis loop lobe area decreases monotonously with the increase of excitation frequencyω.Thus,the proposed memristor satisfies the three characteristic fingerprints of a generalized memristor.[58]

    Fig.1.Pinched hysteresis loops of locally active discrete memristor.(a) Amplitude-dependent pinched hysteresis loops with A = 10, 15,and 20.(b)Frequency-dependent pinched hysteresis with ω =0.0001,0.0002,and 0.0005.

    2.3.Nonvolatility and local activity

    Non-volatility means that a memristor can maintain its latest memductance value when the power is off, which can be verified by the power off plot (POP).If there are multiple negative slope intersections between the POP and the zero horizontal axis,then the memristor is non-volatile.Letvn=0 in Eq.(1),the resulting POP is shown in Fig.2.

    From Fig.2, it is observed that there are seven intersection points where the POP intersects the?axis, namely,Q1(-1,0),Q2(0,0),Q3(1,0),Q4(2,0),Q5(3,0),Q6(4,0), andQ7(5,0), among which the intersections with a negative slope are the stable equilibrium points, and the other intersections are unstable points.Therefore, the proposed memristor has four stable equilibrium pointsQ1,Q3,Q5, andQ7.When the power is off, the state?will trend to one of the four stable equilibrium points,depending on the attractive domain in which the fnial state?(n) is located.Based on Eq.(1), four possible remembered memductances after power-off are obtained as

    implying that the memristor is non-volatile.

    Fig.2.Power-off plot(POP)of the memristor.

    In circuit theory, the DCV–Idiagram is a visual tool to help us analyze whether the memristor is locally active.The region with a negative slope in the DCV–Idiagram is called the locally active region of the memristor.Let?(n+1)-?(n)=0, we can get the following expressions of voltageVand currentI:

    Imposing a voltage in the range-2 V≤V ≤1 V on the memristor, the corresponding DCV–Icurve can be obtained according to Eq.(3),as shown in Fig.3(a).The negative slope regions can be observed in the DCV–Idiagram,which are locally active regions of the memristor.In addition,the pinched hysteresis loops of this local active memristor under different initial values are shown in Fig.3(b).

    Fig.3.(a)The DC V–I diagram of the four-stable locally active discrete memristor.(b)The coexisting hysteresis loops with different initial values.

    3.Discrete heterogeneous neuron network

    3.1.Memristor coupled discrete heterogeneous neuron network

    For the discretization of the original Izhikevich neuron,the improved discrete Izhikevich neuron model is written as

    wherevanduare the neuron membrane potential and membrane recovery variables respectively,Iis the external excited current and the parametersa,b,c,anddare all dimensionless parameters.This improved Izhikevich model is more computationally efficient, and thus iterative calculations can be performed at a very fast rate.

    The discrete Chialvo model is written as

    wherexis the membrane potential of the neuron,yis the recovery variable,Itsimulates the effect of the ionic current injected into the neuron, the parameterarepresents the recovery time(a<1), the activation dependence of the recovery process is defined byb(b<1),and the constantcrepresents the offset,which can balance the firing states of the model.

    Based on the discrete Izhikevich model and the discrete Chialvo model,a new neuron network model based on locally active discrete memristor is constructed as follows:

    wherekis the coupling strength,and the parameters areI=1,a1=0.02,b1=0.25,c1=-55,d1=2,a2=0.9,b2=0.18,c2=0.28,It=0.03,c3=0.1.For an intuitive understanding of the proposed discrete heterogeneous neuron network,its topology is shown in Fig.4.

    Fig.4.The topology of the new discrete heterogeneous neuron network.

    and the relationship betweenvandxsatisfies the following expression:

    Therefore, two equations containing onlyxand?can be obtained.Note that the signum function is approximated by a hyperbolic tangent function with a large slope, namely,tan(1010?)is used instead of sign(?).The Jacobian matrix at each equilibrium pointE(v,0.25v,x,-1.8x+2.8,?) is given below:

    where

    3.2.Stability analysis of equilibrium points

    Stability analysis plays an important role in studying the firing behavior of neurons.From Eq.(6),the equilibrium point setEis described as

    Fig.5.Two function curves and their intersection points.

    Table 1.The eigenvalues and stability with k=0.001.

    Takingk=0.001, figure 5 shows the curves of Eq.(8)in the interval[-2,2].In order to examine whether the equilibrium pointsE1,E2,E3,E4,E5,E6,E7, andE8are stable,the eigenvalues corresponding to these equilibrium points are obtained as shown in Table 1.Based on the stability theory of discrete systems, a equilibrium point is stable when its all eigenvalues are located inside the unit circle, while it is unstable when one of the eigenvalues is located outside the unit circle.It can be seen from Table 1 that the equilibrium pointsE2, andE8are stable, while the other equilibrium points are unstable.

    4.Dynamics of heterogeneous discrete neuron networks

    In this section, we will study the dynamic behavior of the coupled neuron network under different initial values of the memristor and the coupling strengthk.The other parameters are determined asI=1,a1=0.02,b1=0.25,c1=-55,d1=2,a2=0.9,b2=0.18,c2=0.28,It=0.03,andc3=0.1.The MATLAB iterative algorithm is used in the following calculation.

    4.1.Coupling strength dependent dynamics

    Bifurcation diagram and Lyapunov exponents are common methods for analyzing system dynamics.In this study,we use the quadrature rectangle (QR) decomposition method to calculate the Lyapunov exponents.Consideringkas the bifurcation parameter with the step size 0.001 and selecting the initial value of the network (-6,-1, 1, 1, 1) as an example, the bifurcation diagram and Lyapunov exponents are shown in Figs.6(a)and 6(b),respectively.It can be seen from Fig.6(a)that the system initially exhibits chaotic firing whenkis located at the interval[-0.54,-0.453], where the corresponding maximum Lyapunov exponentLE1is greater than zero,as observed in Fig.6(b).Then,a reverse period-doubling bifurcation route occurs fork ∈[-0.452,0.0018],resulting in the appearance of periodic spiking.As illustrated in Fig.6(b),all Lyapunov exponents are less than zero in this parameter interval,verifying that the neuron network is in a periodic state.Whenkincreases to the critical valuek=0.0018, a tangent bifurcation occurs,resulting in the occurrence of hyperchaotic firing, which can be validated from the superimposed local magnification plot in Fig.6(b),where the Lyapunov exponentsLE1andLE2are both greater than zero.The sampled phase diagrams and the corresponding time series withk=-0.46,k=-0.4,andk=0.065 are shown in Fig.7,which effectively validate the three parameter regions of chaotic, periodic, and hyperchaotic firing in Fig.6.

    Fig.6.The dynamics of the network(6)with respect to the control parameter k with the initial parameters(-6,-1,1,1,1).(a)Bifurcation diagram.(b)Lyapunov exponents.

    Fig.7.Phase diagrams on the v–u plane and time series of the variable v with different parameters k: (a) and (b) k=-0.46; (c) and (d)k=-0.4;(e)and(f)k=0.065.

    4.2.Coexisting firing patterns

    Two different coupling strengthsk=0.011, and-0.002 are selected as examples to demonstrate the coexisting firing patterns of the neuron network related to the initial value of the memristor.

    Fork=0.011,figure 8(a)illustrates the Lyapunov exponents with respect to the initial value of the memristor.When?<0, all Lyapunov exponents are less than zero, meaning the neuron network is in a resting state.With the increase of?, the Lyapunov exponentsLE1andLE2suddenly jump to positive values when?exceeds the critical value?=0,resulting in the network transitioning from a resting state to a hyperchaotic firing pattern.When?increases to?= 2,the Lyapunov exponentLE1still remains positive value,whileLE2suddenly jump to negative values, resulting in the existence of one positive Lyapunov exponent,which indicates that the network transitions from hyperchaotic firing to chaotic firing.Figure 8(b) shows the phase diagram of the coexistence of resting state,hyperchaotic firing,and two different chaotic firing patterns.Note that in Fig.8(b), the red trajectory originates from the initial value?=5, the blue from?=3, the green from?=1, and the cyan from?=-1.The corresponding time series ofx(n) are illustrated in Fig.8(c).It is worth noting that although the all Lyapunov exponents remain unchanged when?=5 and?=3, the network exhibit two heterogeneous chaotic firing patterns, which can be validated by the red and the blue phase diagrams in Fig.8(b) and the time series diagrams colored with the same colors in Fig.8(c).Similarly,whenk=-0.002,the network can exhibit the coexisting hyperchaotic firing,chaotic firing,and two resting states under different initial values,as depicted in Figs.8(d)–8(f).

    Fig.8.The Lyapunov exponents,phase diagrams,and time series of coexisting attractors under two groups of different k values.(a)Lyapunov exponents for the initial value of the memristor at k=0.011.(b)The phase diagram of coexistence of chaotic attractors and resting state when k=0.011.(c) Time series diagram when k=0.011.(d) Lyapunov exponents for k=-0.002.(e) Phase diagram of coexistence of chaotic attractors and resting states at k=-0.002.(f)Time series diagram when k=-0.002.

    4.3.Effects of noise on the network

    We add the following noiseεξnto the internal state equation of the memristor in the neuron network.With the coupling and iteration of the discrete neuron network,the noise will act on the entire system.

    Fig.9.Time series diagram of membrane potential of Izhikevich neurons at k=0.1.(a)Periodic state in the absence of noise.(b)Chaotic state in the presence of noise.

    5.Synchronization transition of heterogeneous neural networks considering noise

    In order to study phase synchronization and synchronization transition of two different neurons coupled by the locally active discrete memristor,the definition of a phase is given as

    When the absolute value of the phase difference between two neurons is bounded by the value 2π, phase synchronization can be detected.We choose three differentkvalues to indicate synchronous transition behavior of the network.Whenk=0, the two neurons are uncoupled.In this case, the neuron Izhikevich exhibits a spiking firing pattern,while the Chialvo neuron exhibits a periodic firing pattern,as shown in Fig.10(a).It is observed that the firing patterns of the two neurons are obviously different.As depicted in Fig.10(b), the phase difference between the two neurons increases monotonously, validating that the two neurons are desynchronized.Whenk=0.44, the two neurons exhibit a quasi-synchronous burst firing pattern,as shown in Fig.10(c).In this case, the phase difference between two neurons is bounded by 2π.Whenkincreases tok=0.73 or more,the synchronous periodic spiking firing pattern emerges.Figure 10(e)shows the onsets of the action potential of the two neurons are consistent and figure 10(f) illustrates the phase difference is always 0.Thus, we can infer that the two neurons are completely phase synchronized.In addition,we found that appropriate noise can enable the network to achieve synchronization at a lower coupling strength.This has practical significance,because the large coupling strength does not conform to the biological reality.Whenk=0.4,figure 11 shows the time series and phase difference of two neurons.The red and blue trajectories in the figure represent the Izhikevich neuron, and the Chialvo neuron, respectively.When no noise is considered in the neuron network,The two neurons present an irregular chaotic firing pattern, as shown in Fig.11(a).The two neurons are desynchronized, which can be verified from the monotonously increasing phase difference of the two neurons in Fig.11(b).Then,the noise is added to the neuron network,it can be seen from Figs.11(c)and 11(d)that the two neurons are completely phase synchronized and the phase difference is always 0, which proves that the noise enables the neuron network achieve synchronization at a lower coupling strength.Note that when the noise intensity added to the neuron network is too large, the two neurons will return to the resting state.

    Fig.10.Synchronization transition of heterogeneous neuron networks.(a)The time series of k=0.(b)Phase difference of two neurons when k=0.(c)The time series of k=0.44.(d)Phase difference of two neurons when k=0.44.(e)The time series of k=0.73.(f)Phase difference of two neurons when k=0.73.

    Fig.11.The time series of neuron membrane voltage and the phase difference between two neurons when the system is at k=0.4.(a) Time series in the absence of noise.(b)Phase difference in the absence of noise.(c)Time series in the presence of noise.(d)Phase difference in the presence of noise.

    6.Conclusions

    In this study,a discrete four-stable memristor is proposed and its locally activity and non-volatility are studied in detail.Then, the discrete Izhikevich neuron and Chialvo neuron is coupled by the memristor, a discrete heterogeneous neuron network model, thus, is established.The equilibrium points along with their stabilities are systematically analyzed.The coupling strength dependent dynamics are analyzed and it is found that the network can exhibit resting state,periodic firing,chaotic firing and hyperchaotic firing under different coupling strengths.The coexisting firing patterns, including the coexistence of resting state,two different chaotic firing and hyperchaotic firing, the coexistence of hyperchaotic firing, chaotic firing and two resting states are revealed.Furthermore,phase synchronization between two heterogeneous neurons are explored by varying the coupling strength and our results shows that the two heterogeneous neurons can achieve perfect phase synchronization at large coupled strength.What is more, the effects of noise on the network are also considered.We find that the presence of noise not only leads to the transition of firing patterns,but also achieves the phase synchronization between two heterogeneous neurons at a low coupling strength.

    Acknowledgement

    Project supported by the National Natural Science Foundations of China(Grant Nos.62171401 and 62071411).

    长腿黑丝高跟| 欧美日韩亚洲国产一区二区在线观看| 中国美女看黄片| 欧美成人一区二区免费高清观看 | 叶爱在线成人免费视频播放| 制服丝袜大香蕉在线| 中文字幕另类日韩欧美亚洲嫩草| 狠狠狠狠99中文字幕| 亚洲av熟女| 男女下面插进去视频免费观看| 色播亚洲综合网| 亚洲人成电影观看| 国产极品粉嫩免费观看在线| 两人在一起打扑克的视频| 在线观看日韩欧美| 国产精品一区二区免费欧美| 激情视频va一区二区三区| 久久国产精品男人的天堂亚洲| 久久国产乱子伦精品免费另类| 精品欧美一区二区三区在线| 精品免费久久久久久久清纯| 亚洲少妇的诱惑av| 日韩精品青青久久久久久| 亚洲全国av大片| 日韩国内少妇激情av| 欧美不卡视频在线免费观看 | 制服诱惑二区| 国产亚洲av嫩草精品影院| 69精品国产乱码久久久| 操美女的视频在线观看| 成人亚洲精品av一区二区| 最近最新中文字幕大全电影3 | 中文字幕色久视频| 99久久综合精品五月天人人| 91精品国产国语对白视频| 99国产精品一区二区三区| 婷婷精品国产亚洲av在线| 99国产精品免费福利视频| 免费搜索国产男女视频| 国产欧美日韩精品亚洲av| 久久精品91蜜桃| 日韩成人在线观看一区二区三区| 亚洲精品在线观看二区| 色哟哟哟哟哟哟| 久久欧美精品欧美久久欧美| 天天躁狠狠躁夜夜躁狠狠躁| 一a级毛片在线观看| 黄片小视频在线播放| 国产精品av久久久久免费| 亚洲五月天丁香| 1024视频免费在线观看| 69av精品久久久久久| 免费观看人在逋| 1024视频免费在线观看| 精品国产一区二区久久| 一卡2卡三卡四卡精品乱码亚洲| 级片在线观看| 精品久久久久久久久久免费视频| 这个男人来自地球电影免费观看| 中文字幕人妻熟女乱码| 大码成人一级视频| 午夜免费鲁丝| 制服人妻中文乱码| 久久久久久久久免费视频了| 12—13女人毛片做爰片一| 亚洲久久久国产精品| 午夜福利视频1000在线观看 | 999久久久国产精品视频| 日韩欧美三级三区| www.www免费av| 亚洲男人的天堂狠狠| 国产精品亚洲美女久久久| 免费看a级黄色片| 精品久久久久久久毛片微露脸| 亚洲色图 男人天堂 中文字幕| 欧美国产日韩亚洲一区| 欧美国产精品va在线观看不卡| 少妇粗大呻吟视频| 黄色视频,在线免费观看| 久久久久久亚洲精品国产蜜桃av| 国产精品一区二区精品视频观看| 国产精品久久久人人做人人爽| 久久精品成人免费网站| 亚洲精品国产色婷婷电影| 在线观看66精品国产| 婷婷六月久久综合丁香| 午夜福利在线观看吧| 色尼玛亚洲综合影院| 变态另类成人亚洲欧美熟女 | 麻豆一二三区av精品| 18禁观看日本| 日本免费a在线| 成年女人毛片免费观看观看9| 亚洲一区二区三区不卡视频| 一区福利在线观看| 欧美成狂野欧美在线观看| 国内精品久久久久精免费| 日韩免费av在线播放| 成人免费观看视频高清| 国产亚洲欧美98| 又黄又粗又硬又大视频| 日韩欧美一区视频在线观看| 一级,二级,三级黄色视频| 欧洲精品卡2卡3卡4卡5卡区| 久久婷婷成人综合色麻豆| 国产黄a三级三级三级人| 国产欧美日韩综合在线一区二区| 亚洲av片天天在线观看| 色在线成人网| 久久亚洲真实| www.熟女人妻精品国产| 久久婷婷成人综合色麻豆| 国产亚洲欧美在线一区二区| 欧美日韩亚洲国产一区二区在线观看| 身体一侧抽搐| 免费看美女性在线毛片视频| 欧洲精品卡2卡3卡4卡5卡区| 精品一区二区三区视频在线观看免费| 19禁男女啪啪无遮挡网站| 国产成人av教育| 看黄色毛片网站| 最好的美女福利视频网| 一级,二级,三级黄色视频| 亚洲欧洲精品一区二区精品久久久| 国产99白浆流出| 午夜福利,免费看| 高清毛片免费观看视频网站| 我的亚洲天堂| 一级a爱片免费观看的视频| 男女之事视频高清在线观看| 法律面前人人平等表现在哪些方面| 精品少妇一区二区三区视频日本电影| 国产精品日韩av在线免费观看 | 日韩欧美国产一区二区入口| 亚洲九九香蕉| 欧美丝袜亚洲另类 | 老司机靠b影院| 琪琪午夜伦伦电影理论片6080| 精品一区二区三区四区五区乱码| 老熟妇乱子伦视频在线观看| 国产一卡二卡三卡精品| 美女 人体艺术 gogo| 91在线观看av| 他把我摸到了高潮在线观看| 亚洲人成电影免费在线| 国产在线精品亚洲第一网站| 99香蕉大伊视频| 人妻丰满熟妇av一区二区三区| 国产精华一区二区三区| 两个人视频免费观看高清| 两性夫妻黄色片| 国产亚洲欧美98| 日日摸夜夜添夜夜添小说| 久久国产精品影院| 97人妻精品一区二区三区麻豆 | 亚洲熟女毛片儿| 亚洲欧美日韩无卡精品| 国产欧美日韩精品亚洲av| 老鸭窝网址在线观看| 久久久精品国产亚洲av高清涩受| 国产日韩一区二区三区精品不卡| 曰老女人黄片| 国产精品亚洲一级av第二区| 国产精品免费一区二区三区在线| 夜夜夜夜夜久久久久| 曰老女人黄片| 久久久久久国产a免费观看| 中出人妻视频一区二区| 精品电影一区二区在线| 18禁美女被吸乳视频| 久久久久精品国产欧美久久久| 999精品在线视频| 国产精品av久久久久免费| 多毛熟女@视频| 身体一侧抽搐| av超薄肉色丝袜交足视频| 黄色a级毛片大全视频| 波多野结衣高清无吗| 啦啦啦 在线观看视频| 亚洲成人国产一区在线观看| 高潮久久久久久久久久久不卡| 伦理电影免费视频| 91九色精品人成在线观看| 国产野战对白在线观看| 国产一区二区三区在线臀色熟女| 亚洲人成伊人成综合网2020| 精品久久久久久久人妻蜜臀av | 久久国产精品男人的天堂亚洲| 国产av精品麻豆| 99久久国产精品久久久| 色综合婷婷激情| 女人被躁到高潮嗷嗷叫费观| 亚洲精品美女久久av网站| 精品欧美国产一区二区三| 国产亚洲欧美98| 91在线观看av| 波多野结衣高清无吗| 国产亚洲欧美在线一区二区| 久久久精品国产亚洲av高清涩受| 亚洲 欧美一区二区三区| 亚洲精品国产区一区二| 免费av毛片视频| av超薄肉色丝袜交足视频| 在线播放国产精品三级| 午夜两性在线视频| 亚洲男人天堂网一区| 午夜福利视频1000在线观看 | 亚洲自拍偷在线| av在线天堂中文字幕| 亚洲免费av在线视频| 久久久久国产精品人妻aⅴ院| 麻豆成人av在线观看| 日韩 欧美 亚洲 中文字幕| 99国产精品一区二区蜜桃av| 久久久国产成人精品二区| 午夜福利影视在线免费观看| 99国产极品粉嫩在线观看| 午夜亚洲福利在线播放| 欧洲精品卡2卡3卡4卡5卡区| 国产精品一区二区精品视频观看| 国产男靠女视频免费网站| 国产精品自产拍在线观看55亚洲| bbb黄色大片| 亚洲午夜理论影院| 人人妻人人澡欧美一区二区 | 午夜日韩欧美国产| 亚洲av成人不卡在线观看播放网| 国产一区二区三区在线臀色熟女| 非洲黑人性xxxx精品又粗又长| 午夜免费鲁丝| 老汉色∧v一级毛片| 长腿黑丝高跟| 久久久国产成人免费| 国产精品野战在线观看| 老熟妇仑乱视频hdxx| 变态另类丝袜制服| bbb黄色大片| 亚洲中文日韩欧美视频| 国产三级在线视频| 制服丝袜大香蕉在线| 久久久国产成人免费| 久久国产亚洲av麻豆专区| 久久人人97超碰香蕉20202| 成人亚洲精品一区在线观看| 18禁黄网站禁片午夜丰满| 两个人看的免费小视频| 色哟哟哟哟哟哟| 美女高潮喷水抽搐中文字幕| 两性夫妻黄色片| 99精品在免费线老司机午夜| 身体一侧抽搐| 19禁男女啪啪无遮挡网站| x7x7x7水蜜桃| 丝袜美足系列| 午夜免费成人在线视频| 国产伦人伦偷精品视频| 亚洲精品国产色婷婷电影| 又紧又爽又黄一区二区| 一进一出好大好爽视频| 51午夜福利影视在线观看| 日本撒尿小便嘘嘘汇集6| 中文字幕高清在线视频| 男人舔女人的私密视频| 嫩草影院精品99| 国产区一区二久久| 欧美性长视频在线观看| 久久狼人影院| 免费看十八禁软件| 中文字幕久久专区| 欧美+亚洲+日韩+国产| 日韩欧美免费精品| 欧洲精品卡2卡3卡4卡5卡区| 黄网站色视频无遮挡免费观看| 久久精品影院6| 亚洲欧美激情综合另类| 欧美乱色亚洲激情| 国产又色又爽无遮挡免费看| 黄色视频,在线免费观看| 99香蕉大伊视频| 国产成人免费无遮挡视频| 纯流量卡能插随身wifi吗| 国产免费av片在线观看野外av| 又大又爽又粗| 人人澡人人妻人| 嫩草影视91久久| 国内毛片毛片毛片毛片毛片| 亚洲精品国产一区二区精华液| av免费在线观看网站| 亚洲男人天堂网一区| 可以在线观看的亚洲视频| 丝袜美足系列| 无遮挡黄片免费观看| 久久精品国产亚洲av高清一级| 自拍欧美九色日韩亚洲蝌蚪91| 97人妻天天添夜夜摸| 1024香蕉在线观看| 真人一进一出gif抽搐免费| 精品久久久久久久久久免费视频| 嫩草影视91久久| 久久午夜亚洲精品久久| 久久香蕉精品热| 18禁美女被吸乳视频| 精品卡一卡二卡四卡免费| АⅤ资源中文在线天堂| 91老司机精品| 日韩欧美三级三区| xxx96com| 亚洲男人天堂网一区| 丰满人妻熟妇乱又伦精品不卡| 亚洲成人精品中文字幕电影| aaaaa片日本免费| 999精品在线视频| 1024视频免费在线观看| 一二三四在线观看免费中文在| 欧美日韩乱码在线| 亚洲自偷自拍图片 自拍| 一个人免费在线观看的高清视频| 成人av一区二区三区在线看| 亚洲精华国产精华精| 欧美精品啪啪一区二区三区| 国产高清有码在线观看视频 | 久久久精品国产亚洲av高清涩受| 自线自在国产av| 99精品久久久久人妻精品| 999久久久精品免费观看国产| 日本 欧美在线| 亚洲自偷自拍图片 自拍| 日韩视频一区二区在线观看| netflix在线观看网站| 久久久久久国产a免费观看| 国内精品久久久久精免费| 亚洲成人国产一区在线观看| 国产精品一区二区在线不卡| 免费av毛片视频| 欧美日韩亚洲国产一区二区在线观看| 国产精品香港三级国产av潘金莲| 免费久久久久久久精品成人欧美视频| 在线观看免费视频网站a站| 首页视频小说图片口味搜索| 国产在线观看jvid| 色av中文字幕| 国产又色又爽无遮挡免费看| 欧美中文综合在线视频| 久久狼人影院| 亚洲国产精品久久男人天堂| 丰满的人妻完整版| 国产高清videossex| 婷婷六月久久综合丁香| 级片在线观看| 美女高潮喷水抽搐中文字幕| 高潮久久久久久久久久久不卡| 亚洲第一青青草原| 精品第一国产精品| 欧美黄色片欧美黄色片| 人妻丰满熟妇av一区二区三区| 午夜福利,免费看| 欧美大码av| 欧美午夜高清在线| 黑人欧美特级aaaaaa片| 亚洲av美国av| 淫妇啪啪啪对白视频| 美女高潮喷水抽搐中文字幕| 脱女人内裤的视频| 亚洲无线在线观看| 色综合婷婷激情| 淫秽高清视频在线观看| 黑人操中国人逼视频| 亚洲中文av在线| 免费一级毛片在线播放高清视频 | 欧美性长视频在线观看| 亚洲国产精品成人综合色| 国产精品国产高清国产av| 国产成人精品无人区| 精品高清国产在线一区| 俄罗斯特黄特色一大片| 亚洲最大成人中文| av超薄肉色丝袜交足视频| 国产精品99久久99久久久不卡| av超薄肉色丝袜交足视频| 国产精品98久久久久久宅男小说| 亚洲人成电影观看| 丝袜在线中文字幕| 久99久视频精品免费| 亚洲国产欧美日韩在线播放| 国产成人av教育| 黑人巨大精品欧美一区二区蜜桃| 亚洲免费av在线视频| 日韩成人在线观看一区二区三区| 国产亚洲欧美精品永久| 国产主播在线观看一区二区| 91大片在线观看| 欧美午夜高清在线| 夜夜躁狠狠躁天天躁| 99在线人妻在线中文字幕| 日韩大尺度精品在线看网址 | 无限看片的www在线观看| 国产精品av久久久久免费| 搞女人的毛片| av超薄肉色丝袜交足视频| 精品不卡国产一区二区三区| 男人操女人黄网站| 亚洲专区中文字幕在线| 最新在线观看一区二区三区| 99re在线观看精品视频| 伦理电影免费视频| 免费高清视频大片| 免费一级毛片在线播放高清视频 | 9热在线视频观看99| cao死你这个sao货| 麻豆成人av在线观看| 大香蕉久久成人网| 老司机靠b影院| 99精品久久久久人妻精品| 成人国产一区最新在线观看| 亚洲成a人片在线一区二区| 亚洲国产精品sss在线观看| 色综合欧美亚洲国产小说| 中文字幕人成人乱码亚洲影| 国内久久婷婷六月综合欲色啪| 日韩欧美一区二区三区在线观看| 夜夜躁狠狠躁天天躁| av有码第一页| 老司机深夜福利视频在线观看| 日本a在线网址| 国产精品国产高清国产av| 久久精品91无色码中文字幕| 久久精品91蜜桃| 别揉我奶头~嗯~啊~动态视频| 成人国产一区最新在线观看| www国产在线视频色| 一区福利在线观看| 18禁裸乳无遮挡免费网站照片 | 别揉我奶头~嗯~啊~动态视频| 老汉色∧v一级毛片| 亚洲色图 男人天堂 中文字幕| 国产精品av久久久久免费| 久久人人爽av亚洲精品天堂| 国产私拍福利视频在线观看| 免费一级毛片在线播放高清视频 | 亚洲av片天天在线观看| 日本免费a在线| 成年版毛片免费区| 黄片大片在线免费观看| 欧美一区二区精品小视频在线| 可以在线观看的亚洲视频| 乱人伦中国视频| aaaaa片日本免费| 在线视频色国产色| 日韩欧美在线二视频| 国产一卡二卡三卡精品| 午夜免费鲁丝| 叶爱在线成人免费视频播放| 国产精品1区2区在线观看.| a在线观看视频网站| 身体一侧抽搐| 两人在一起打扑克的视频| 一a级毛片在线观看| 级片在线观看| 女性生殖器流出的白浆| 亚洲自偷自拍图片 自拍| 久久天躁狠狠躁夜夜2o2o| 久久精品91蜜桃| 人人妻人人澡人人看| 丁香欧美五月| 精品第一国产精品| 亚洲av日韩精品久久久久久密| 搞女人的毛片| 亚洲欧美精品综合一区二区三区| 亚洲成av人片免费观看| 97碰自拍视频| 欧美成人免费av一区二区三区| 91麻豆精品激情在线观看国产| 成人欧美大片| 午夜亚洲福利在线播放| 亚洲欧美激情在线| 女警被强在线播放| 一a级毛片在线观看| 国产精品一区二区免费欧美| 黑丝袜美女国产一区| 亚洲色图av天堂| 久久性视频一级片| 最好的美女福利视频网| 久久久久精品国产欧美久久久| 久久久水蜜桃国产精品网| netflix在线观看网站| 亚洲黑人精品在线| 亚洲精品中文字幕在线视频| av片东京热男人的天堂| 丰满的人妻完整版| 亚洲中文日韩欧美视频| 久久亚洲真实| 日韩免费av在线播放| 91麻豆av在线| 99国产精品免费福利视频| 女人爽到高潮嗷嗷叫在线视频| 人成视频在线观看免费观看| 亚洲国产欧美日韩在线播放| 中出人妻视频一区二区| 国产精品二区激情视频| 91在线观看av| 这个男人来自地球电影免费观看| 黑人巨大精品欧美一区二区蜜桃| 午夜成年电影在线免费观看| av有码第一页| 国产乱人伦免费视频| 久久久国产成人免费| 亚洲国产毛片av蜜桃av| 国产在线精品亚洲第一网站| 免费看美女性在线毛片视频| 黄网站色视频无遮挡免费观看| 国产麻豆69| 久久精品国产亚洲av香蕉五月| 中文字幕av电影在线播放| 狠狠狠狠99中文字幕| 妹子高潮喷水视频| 亚洲成国产人片在线观看| 国产精品久久久久久精品电影 | 欧美+亚洲+日韩+国产| 精品久久久久久成人av| 免费高清视频大片| 色婷婷久久久亚洲欧美| 欧美人与性动交α欧美精品济南到| 国产成人系列免费观看| 两个人看的免费小视频| 中文字幕另类日韩欧美亚洲嫩草| 女同久久另类99精品国产91| 国产成人一区二区三区免费视频网站| 两个人免费观看高清视频| 国产激情欧美一区二区| а√天堂www在线а√下载| 久久精品91蜜桃| 国产精品亚洲av一区麻豆| 欧美午夜高清在线| 精品久久久精品久久久| 禁无遮挡网站| 村上凉子中文字幕在线| 国产精品一区二区在线不卡| 亚洲九九香蕉| 国产一级毛片七仙女欲春2 | 757午夜福利合集在线观看| 后天国语完整版免费观看| 无遮挡黄片免费观看| 精品久久久久久久久久免费视频| 一夜夜www| 欧美亚洲日本最大视频资源| 色综合欧美亚洲国产小说| 日韩三级视频一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| tocl精华| 免费少妇av软件| 亚洲色图综合在线观看| 国产成人精品无人区| 国产欧美日韩一区二区三区在线| 可以免费在线观看a视频的电影网站| 99国产精品免费福利视频| 欧美精品啪啪一区二区三区| tocl精华| av欧美777| 免费在线观看日本一区| 一夜夜www| 亚洲一区二区三区色噜噜| 色av中文字幕| 色综合站精品国产| 国产视频一区二区在线看| 亚洲一区高清亚洲精品| 免费高清视频大片| 欧美日韩精品网址| 老司机午夜十八禁免费视频| 99热只有精品国产| 热re99久久国产66热| a在线观看视频网站| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲 欧美一区二区三区| 母亲3免费完整高清在线观看| 亚洲专区中文字幕在线| 国产高清videossex| 91av网站免费观看| 国产99白浆流出| 熟女少妇亚洲综合色aaa.| 女生性感内裤真人,穿戴方法视频| 97人妻天天添夜夜摸| 99久久精品国产亚洲精品| 欧美老熟妇乱子伦牲交| 天天一区二区日本电影三级 | 美女免费视频网站| 久久 成人 亚洲| 99riav亚洲国产免费| 午夜福利18| 国产成人av激情在线播放| 免费人成视频x8x8入口观看| 久久久久久人人人人人| 午夜成年电影在线免费观看| 99国产综合亚洲精品| 久久婷婷成人综合色麻豆| 亚洲国产精品久久男人天堂| av在线天堂中文字幕| 国产成人欧美| 国产激情久久老熟女| 亚洲无线在线观看| 精品国产亚洲在线| 免费久久久久久久精品成人欧美视频| 久久久精品欧美日韩精品| 不卡一级毛片| 色尼玛亚洲综合影院| 欧美日韩乱码在线| 男人舔女人的私密视频| 久久国产精品人妻蜜桃| 69av精品久久久久久| 国产男靠女视频免费网站| 脱女人内裤的视频| 免费看十八禁软件| 久久国产精品男人的天堂亚洲| 国产成人精品久久二区二区免费| 成人手机av| 精品人妻在线不人妻|