孟坤 崔春義 王本龍 李靜波 王坤鵬
摘要:為分析大直徑浮承樁縱向振動(dòng)特性,基于黏彈性連續(xù)介質(zhì)理論同時(shí)考慮樁身和樁底土的三維波動(dòng)效應(yīng),提出了一種三維虛土樁模型.首先,采用拉普拉斯變換和分離變量法求解得到樁身和樁底虛土樁的位移基本解;然后,結(jié)合樁-土及樁-虛土樁完全耦合條件,推導(dǎo)得出大直徑樁樁頂動(dòng)力阻抗解析解,并通過(guò)與已有解答對(duì)比分析驗(yàn)證了推導(dǎo)所得解析解的合理性和準(zhǔn)確性;最后,利用數(shù)值算例分析了樁頂徑向位置及三維虛土樁參數(shù)對(duì)大直徑浮承樁樁頂動(dòng)力阻抗的影響.計(jì)算結(jié)果表明:大直徑樁頂動(dòng)剛度和動(dòng)阻尼呈現(xiàn)由樁中心向樁邊緣減小的趨勢(shì),且樁長(zhǎng)徑比越小樁頂動(dòng)力阻抗的這種徑向不均勻性越明顯;對(duì)于大直徑樁忽略樁身徑向波動(dòng)效應(yīng)會(huì)過(guò)高估計(jì)樁頂動(dòng)力阻抗的振幅和頻率,不利于樁基抗振防振設(shè)計(jì);三維虛士樁模型不僅對(duì)于大直徑浮承樁縱向振動(dòng)問(wèn)題具有更好的適用性,而且可以通過(guò)調(diào)整虛土樁參數(shù)將其應(yīng)用于端承樁動(dòng)力特性分析中.
關(guān)鍵詞:大直徑樁;縱向振動(dòng);連續(xù)介質(zhì)理論;三維虛土樁;解析解
中圖分類號(hào):TU473文獻(xiàn)標(biāo)志碼:A
Study on Vertical Vibration of Large Diameter Pile Based on Three-dimensional Fictitious Soil Pile Model
MENG Kun1,2,CUI Chunyi2,WANG Benlong2,LI Jingbo2,WANG Kunpeng2
(1. College of Transportation,Shandong University of Science and Technology,Qingdao 266590,China;2. College of Transportation Engineering,Dalian Maritime University,Dalian 116026,China)
Abstract:To investigate the vertical vibration characteristic of a large-diameter floating pile,a threedimensional fictitious soil pile model (TFSP)is presented by introducing a three-dimensional visco-elastic continuum theory and considering the three-dimensional wave propagation effect of the pile and pile end soil. First,the fundamental solutions of pile shaft and fictitious soil pile are derived by using Laplace transform and variables separation methods. Then,combining the compatibility conditions at the interfaces of pile-soil and pile-TFSP,the analytical solution of dynamic impedance at the head of a large-diameter pile is obtained. The rationality and accuracy of the proposed model and corresponding analytical solutions are verified by comparing them with existing research.Finally,the numerical examples are performed to investigate the effect of the radial location of the pile cross-section and parameters of TFSP on the dynamic impedance of a large-diameter floating pile. The results indicate that the dynamic stiffness and damping of the pile head decrease from the pile center to the pile edge,and the smaller the length diameter ratio of the pile,the more obvious the radial heterogeneity of the dynamic impedance of the pile. For large-diameter piles,ignoring the radial wave effect of the pile shaft can overestimate the amplitude and frequency of the dynamic impedance at the pile head,which is not conducive to the anti-vibration design of' the pile shaft. The proposed three-dimensional fictitious soil pile model not only has better applicability for the vertical vibration of the large-diameter floating pile but also can be used to analyze the dynamic characteristics of the end-bearing pile by adjusting the parameters of' the fictitious soil pile.
Key words:large-diameter pile;vertical vibration;continuum theory;three-dimensional fictitious soil pile;analytical solution
隨著社會(huì)經(jīng)濟(jì)的全面發(fā)展,現(xiàn)代建筑及各類基礎(chǔ)設(shè)施呈現(xiàn)大型化和復(fù)雜化趨勢(shì),其對(duì)基礎(chǔ)的承載和變形要求也隨之提高,樁基作為一種承載力高、抗變形能力強(qiáng)的基礎(chǔ)形式得到更為普遍的應(yīng)用.樁基除了承受上部結(jié)構(gòu)傳遞的靜荷載外,還會(huì)受到諸如交通、機(jī)械振動(dòng)等縱向動(dòng)荷載作用,而樁-土縱向振動(dòng)理論作為樁基抗振防振設(shè)計(jì)的基礎(chǔ),受到國(guó)內(nèi)外學(xué)者的廣泛關(guān)注[1-3].
樁-土縱向振動(dòng)理論模型主要由三部分組成,即樁側(cè)土、樁底土和樁身,已有研究多圍繞樁側(cè)土和樁底土模型的改進(jìn)展開(kāi)[4].樁側(cè)土模型由簡(jiǎn)化的Winkler模型[5],到可考慮徑向波動(dòng)效應(yīng)的Novak平面應(yīng)變模型[6],再到可進(jìn)一步考慮豎向波動(dòng)效應(yīng)的三維連續(xù)介質(zhì)模型[7],發(fā)展已趨于完善.樁底土模型作為界定浮承樁和端承樁的關(guān)鍵,近年來(lái)受到越來(lái)越多的關(guān)注.對(duì)于端承樁,采用樁端固定模型即可很好地分析其縱向振動(dòng)特性[8];而對(duì)于浮承樁,樁底土模型的合理性則會(huì)對(duì)計(jì)算結(jié)果產(chǎn)生較大影響[9].Kelvin- Voigt模型[10]是針對(duì)浮承樁縱向振動(dòng)問(wèn)題應(yīng)用最為普遍的一種樁底土模型,但其作為一種離散的彈簧- 阻尼器模型無(wú)法考慮樁底土波動(dòng)效應(yīng)的影響.因此,Muki等[11]和Zheng等[12]將彈性半空間模型引入樁- 土縱向耦合振動(dòng)分析中,探討了樁底土波動(dòng)效應(yīng)對(duì)樁基縱向動(dòng)力響應(yīng)的影響.然而,彈性半空間模型僅適用于樁底基巖埋深無(wú)限大的情況,鑒于此,楊冬英等[13]和吳文兵等[14]通過(guò)將樁底土假設(shè)為與樁基等直徑的圓柱體提出了一種理論上更為嚴(yán)格的虛土樁模型,該模型既考慮了樁底土波動(dòng)效應(yīng)的影響,又不受樁底基巖埋深的限制.
上述研究中,樁身模型均采用基于平面應(yīng)變假定的Euler-Bernoulli桿模型,該模型對(duì)于細(xì)長(zhǎng)樁縱向振動(dòng)問(wèn)題具有很好的適用性.然而,隨著上部結(jié)構(gòu)對(duì)基礎(chǔ)承載力要求的不斷提高,樁身直徑也隨之加大,這樣,平截面假定對(duì)于此類大直徑樁將不再適用[15].呂述暉等[16]和李振亞等[17]通過(guò)在樁身一維波動(dòng)方程中引入泊松比項(xiàng),考慮樁身橫向慣性效應(yīng)的影響,提出了一種可應(yīng)用于大直徑樁縱向振動(dòng)問(wèn)題的Rayleigh-Love模型.然而,Rayleigh-Love模型實(shí)際意義上仍是一種一維模型,無(wú)法考慮樁身徑向波動(dòng)效應(yīng)的影響.鑒于此,楊驍?shù)萚18]將樁底考慮為固定端,基于連續(xù)介質(zhì)理論建立了三維樁身模型,分析了樁身徑向波動(dòng)效應(yīng)對(duì)端承樁縱向振動(dòng)特性的影響. 在此基礎(chǔ)上,孟坤等[19]進(jìn)一步利用Kelvin-Voigt模型考慮樁底土對(duì)樁的支撐作用,對(duì)大直徑浮承樁的縱向振動(dòng)特性進(jìn)行了分析.
綜上所述,在利用樁身三維模型分析大直徑樁縱向振動(dòng)特性的研究中,浮承樁樁底土采用了簡(jiǎn)化的Kelvin-Voigt模型,無(wú)法合理考慮樁底土波動(dòng)效應(yīng)的影響.鑒于此,本文基于三維黏彈性連續(xù)介質(zhì)理論,將樁底一維虛土樁模型拓展到三維情況,提出一種可同時(shí)考慮樁身和樁底土徑向波動(dòng)效應(yīng)的三維虛土樁模型.利用拉普拉斯變換和分離變量法,并結(jié)合樁-土完全耦合條件,推導(dǎo)得出大直徑浮承樁樁頂動(dòng)力阻抗解析解,進(jìn)而分析樁頂徑向位置及三維虛土樁參數(shù)對(duì)樁頂動(dòng)力阻抗的影響規(guī)律,所得相關(guān)解析解及分析結(jié)果可為實(shí)際工程中大直徑浮承樁的動(dòng)力設(shè)計(jì)及現(xiàn)場(chǎng)樁基完整性檢測(cè)提供理論指導(dǎo).
1定解問(wèn)題
1.1簡(jiǎn)化力學(xué)模型
基于三維虛土樁模型的大直徑黏彈性樁簡(jiǎn)化力學(xué)模型,如圖1所示.大直徑樁力學(xué)性質(zhì)采用三維黏彈性連續(xù)介質(zhì)描述,樁側(cè)土和樁底土簡(jiǎn)化為相互獨(dú)立的薄層,樁底半徑范圍內(nèi)的土體考慮為與樁等截面的三維虛土樁.大直徑樁樁長(zhǎng)和半徑分別為HP和r0,三維虛土樁樁長(zhǎng)(即樁底土層厚度)為HFP,基巖上土層總厚度為H.樁頂激振力p(t)均布在半徑為rh的圓形區(qū)域內(nèi),具體形式如式(1)(2)所示:
式中:Q為激振力幅值;T為脈沖寬度;h為階躍函數(shù).
本文解析模型基于樁與樁側(cè)土、虛土樁與樁底土以及樁與虛土樁界面完全耦合假定,適用于小變形的振動(dòng)和波動(dòng)問(wèn)題,具體的應(yīng)用場(chǎng)景包括:1)樁基礎(chǔ)結(jié)構(gòu)物抗振防振設(shè)計(jì),如大直徑浮承樁樁頂動(dòng)力阻抗計(jì)算及影響因素分析;2)低應(yīng)變反射波法檢測(cè)樁基完整性,如大直徑樁浮承樁樁頂不同位置處速度反射波曲線變化規(guī)律對(duì)樁基完整性判別的影響.
1.2控制方程
基于Novak平面應(yīng)變理論建立土體縱向振動(dòng)控制方程:
大直徑樁和三維虛土樁的控制方程則可根據(jù)三維黏彈性連續(xù)介質(zhì)模型理論建立:
1.3邊界條件
1)土體邊界條件.
徑向無(wú)窮遠(yuǎn)處土體位移為零:
2)樁邊界條件.
大直徑樁樁頂作用均布激振力p(t):
虛土樁樁底位移為零:
樁和虛土樁樁中心處位移為有限值:
樁與虛土樁界面位移、應(yīng)力耦合條件:
3)樁-土界面耦合條件.
為樁、樁側(cè)土、虛土樁和樁底土的切應(yīng)力.
2定解問(wèn)題求解
對(duì)樁-土耦合縱向振動(dòng)控制方程式(3)~(5)進(jìn)行拉普拉斯變換后可得:
2.1土體振動(dòng)求解
方程(15)的位移基本解為:
2.2樁-虛土樁振動(dòng)求解
2.2.1位移基本解
利用分離變量法,令UP=ZP(z)·RP(r),UFP=ZFP(z)·RFP(r),并將其分別代入式(16)和式(17)可得:
進(jìn)一步地,式(21)和式(22)可分解為常微分方程:
根據(jù)式(21)和式(22)可知,αP和βP、αFP和βFP分別滿足關(guān)系式(25)(26):
方程(23)和(24)的基本解為:
式中:CP、DP、EP、FP、CFP、DFP、EFP和FFP為待定系數(shù).
將式(27)和式(28)分別代入邊界條件式(9)和(10)可得EP=EFP=0,因此樁和虛土樁的位移可表示為:
2.2.2振動(dòng)模態(tài)特征值
根據(jù)式(29)和(30),可以得到樁和虛土樁的正應(yīng)力和剪應(yīng)力表達(dá)式:
根據(jù)樁-土界面耦合條件,當(dāng)j=1時(shí)將式(19)(29)(20)(32)代入式(13)后可得:
當(dāng)j=2時(shí)將式(19)(30)(20)(34)代入式(14)后可得:
分別聯(lián)立式(35)~(38)后可得:
根據(jù)疊加原理可得樁和虛土樁位移解為:
2.2.3待定系數(shù)求解
將式(41)和式(42)分別代入邊界條件式(7)和
式中:P(ω)為p(t)的拉氏變換.
根據(jù)貝塞爾函數(shù)性質(zhì)可知其具有如下正交性:
式中:
此外,考慮樁與虛土樁界面的耦合條件,將式(41)和(42)代入邊界條件式(11)和(12)后可得:
聯(lián)立式(47)~(50)可求解得到大直徑樁位移解
待定系數(shù)的具體形式:
式(8)后可得:
2.2.4樁頂動(dòng)力阻抗
將待定系數(shù)代入式(41)可得大直徑樁樁頂(z=0)縱向振動(dòng)位移頻響函數(shù):
樁頂動(dòng)力阻抗則可進(jìn)一步表示為:
樁頂動(dòng)力阻抗為復(fù)數(shù),其實(shí)部代表動(dòng)剛度,虛部代表動(dòng)阻尼,具體可表示為:
Kd=Kr+iKi(55)
根據(jù)式(53)可進(jìn)一步得到樁頂速度頻域和時(shí)域解:
VP(z,r,ω)=iωUP(z,r,ω)(56)
vP(z,r,t)=IFT[iωUP(z,r,ω)](57)
式中:Vp和vp分別為樁頂速度頻域解析解和時(shí)域半解析解;IFT為傅里葉逆變換.
3模型驗(yàn)證及參數(shù)化分析
在應(yīng)用本文方法對(duì)大直徑浮承樁進(jìn)行抗振防振設(shè)計(jì)及對(duì)樁身完整性進(jìn)行評(píng)價(jià)時(shí),樁長(zhǎng)、樁徑、樁身密度、彈性模量、土體密度、剪切模量等可通過(guò)現(xiàn)場(chǎng)或室內(nèi)試驗(yàn)測(cè)量的參數(shù),根據(jù)實(shí)際工程情況取值;泊松比、材料阻尼等無(wú)法實(shí)測(cè)的參數(shù),可參照已有相關(guān)研究取值[21].
3.1模型驗(yàn)證
3.1.1本文解與已有解退化驗(yàn)證
為更合理地考慮樁底土波動(dòng)效應(yīng)的影響,吳文兵等[14]將樁和樁底土簡(jiǎn)化為Euler-Bernoulli桿,提出了一維虛土樁模型,探討了虛土樁參數(shù)對(duì)浮承樁縱向振動(dòng)特性的影響規(guī)律.Liu等[20]將樁底考慮為周端支撐,基于三維波動(dòng)理論建立了大直徑端承樁縱向振動(dòng)理論模型,并基于此分析了樁身三維波動(dòng)效應(yīng)對(duì)端承樁縱向振動(dòng)特性的影響.結(jié)合一維虛土樁模型和三維波動(dòng)理論,本文進(jìn)一步提出了對(duì)于大直徑浮承樁適用性更好的三維虛土樁模型.
3.1.2本文解與已有實(shí)測(cè)案例對(duì)比驗(yàn)證
此外,圖5給出了相同參數(shù)體系下本文樁頂速度時(shí)域半解析解與Chow等[22]三維有限元計(jì)算結(jié)果的對(duì)比.綜合圖4和圖5可見(jiàn),本文樁頂速度時(shí)域半解析解與有限元計(jì)算結(jié)果及現(xiàn)場(chǎng)試驗(yàn)實(shí)測(cè)結(jié)果吻合較好.
3.2樁頂縱向振動(dòng)特性參數(shù)化分析
3.2.1三維樁徑向位置的影響
為探討樁截面徑向位置對(duì)樁頂縱向振動(dòng)特性的影響規(guī)律,選取樁頂截面動(dòng)力阻抗曲線上第三個(gè)峰值點(diǎn)處動(dòng)剛度值KrF3和動(dòng)阻尼值KiF3,并按式(58)和(59)對(duì)KrF3和KiF3進(jìn)行無(wú)量綱化后分析其沿樁截面徑向位置的變化情況.
不同樁徑(長(zhǎng)徑比)情況下,Kr-R和Ki-R隨無(wú)量綱徑向位置F的變化規(guī)律如圖6所示.由圖6可見(jiàn),Kr-R和Ki-R均為負(fù)值,結(jié)合式(58)和(59)的定義可知,樁中心處的動(dòng)剛度和動(dòng)阻尼值最大,且呈現(xiàn)由樁中心向樁邊緣減小的趨勢(shì).此外,隨著樁徑的增大(樁長(zhǎng)徑比減小),樁邊緣處與樁中心處動(dòng)力阻抗值的差距增大,也就是說(shuō)大直徑樁動(dòng)力阻抗的徑向不均勻性更為明顯,因此,本文提出的三維樁身模型對(duì)于大直徑樁縱向振動(dòng)問(wèn)題適用性更好.
3.2.2三維虛土樁參數(shù)的影響
三維虛土樁樁長(zhǎng)對(duì)樁頂動(dòng)力阻抗的影響如圖7 所示.為進(jìn)一步對(duì)比分析本文提出的三維虛土樁與已有一維虛土樁模型的差異,圖7同時(shí)給出了樁頂動(dòng)力阻抗隨一維虛土樁長(zhǎng)度的變化情況,圖中H1DFP即為一維虛土樁的樁長(zhǎng).由圖可見(jiàn),三維虛土樁模型與一維虛土樁模型計(jì)算結(jié)果差異性主要體現(xiàn)在以下兩個(gè)方面:
1)基于三維虛土樁模型計(jì)算所得樁頂動(dòng)力阻抗振動(dòng)幅值和頻率均較一維虛土樁模型?。?/p>
2)三維虛土樁樁長(zhǎng)對(duì)動(dòng)力阻抗的振幅和頻率均有較明顯影響,具體而言三維虛土樁樁長(zhǎng)的增加會(huì)使得樁頂動(dòng)力阻抗振幅和頻率減小,不同地,一維虛土樁樁長(zhǎng)對(duì)樁頂動(dòng)力阻抗的影響則可忽略.
引起這兩種模型計(jì)算結(jié)果呈現(xiàn)上述差異性的原因可歸結(jié)為:一維虛土樁模型將實(shí)體樁和虛土樁簡(jiǎn)化為Euler-Bernoulli桿,僅考慮樁身縱向波動(dòng)效應(yīng)的影響,而三維虛土樁模型中實(shí)體樁和虛土樁控制方程均基于三維連續(xù)介質(zhì)理論建立,可同時(shí)考慮實(shí)體樁和樁底土層的縱向和徑向波動(dòng)效應(yīng).
結(jié)合現(xiàn)象與原因不難發(fā)現(xiàn),實(shí)體樁樁身徑向波動(dòng)效應(yīng)會(huì)使得樁頂動(dòng)力阻抗振動(dòng)幅值和頻率減小,也就是說(shuō)對(duì)于大直徑樁采用一維桿模型計(jì)算其縱向動(dòng)力阻抗會(huì)過(guò)高地估計(jì)共振幅值和頻率,這對(duì)于大直徑樁的抗振防振設(shè)計(jì)是不利的.此外,虛土樁的徑向波動(dòng)效應(yīng)同樣會(huì)引起樁頂動(dòng)力阻抗振幅和頻率的減小,且此種減小效應(yīng)隨著虛土樁樁長(zhǎng)的增加而更加明顯.
三維虛土樁(即樁底土層)剪切模量對(duì)樁頂動(dòng)力阻抗的影響如圖8所示.由圖可見(jiàn),三維虛土樁剪切
4結(jié)論
本文基于三維黏彈性連續(xù)介質(zhì)理論,將樁底一維虛土樁模型拓展到三維情況,建立了一種可同時(shí)考慮樁身和樁底土徑向波動(dòng)效應(yīng)的三維虛土樁模型,并推導(dǎo)得出大直徑浮承樁樁頂動(dòng)力阻抗解析解,進(jìn)而分析了樁頂徑向位置及三維虛土樁參數(shù)對(duì)樁頂動(dòng)力阻抗的影響情況,計(jì)算分析結(jié)果表明:
1)大直徑樁頂動(dòng)剛度和動(dòng)阻尼呈現(xiàn)由樁中心向樁邊緣減小的趨勢(shì),且樁長(zhǎng)徑比越小樁頂動(dòng)力阻抗的徑向不均勻性越明顯.
2)實(shí)體樁樁身徑向波動(dòng)效應(yīng)會(huì)使得樁頂動(dòng)力阻抗振動(dòng)幅值和頻率減小,對(duì)于大直徑樁采用一維桿模型計(jì)算其縱向動(dòng)力阻抗會(huì)過(guò)高地估計(jì)共振幅值和頻率,不利于大直徑樁的抗振防振設(shè)計(jì).
3)虛土樁的徑向波動(dòng)效應(yīng)使得樁頂動(dòng)力阻抗振幅和頻率減小,且此種減小效應(yīng)隨著虛土樁樁長(zhǎng)的增加而更加明顯.
4)三維虛土樁模型不僅對(duì)于大直徑浮承樁縱向振動(dòng)問(wèn)題具有更好的適用性,而且可以通過(guò)調(diào)整虛土樁參數(shù)將其應(yīng)用于端承樁動(dòng)力特性分析中.
本文所得解析解可通過(guò)MATLAB實(shí)現(xiàn)公式簡(jiǎn)化計(jì)算,進(jìn)一步結(jié)合其中的GUI控件可建立簡(jiǎn)單、易用的人機(jī)交互界面,以便實(shí)際工程中樁基動(dòng)力設(shè)計(jì)和現(xiàn)場(chǎng)完整性檢測(cè)的應(yīng)用.
參考文獻(xiàn)
[1]鄭長(zhǎng)杰,丁選明,欒魯寶,等.低應(yīng)變瞬態(tài)荷載作用下基樁動(dòng)力響應(yīng)解析解[J].土木工程學(xué)報(bào),2019,52(11):79-85.
ZHENG C J,DING XM,LUAN LB,et al. Simplified analytical solution for the dynamic response of piles subjected to low-strain transient loadings [J]. China Civil Engineering Journal,2019,52(11):79-85. (In Chinese)
[2]王奎華,劉鑫,吳君濤,等.考慮橫向慣性下填砂竹節(jié)管樁縱向振動(dòng)特性[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,47(5):58-69.
WANG KH,LIU X,WU JT,et al. Longitudinal vibration characteristics of sand-filled nodular pipe pile considering lateral inertial effect [J]. Journal of Hunan University (Natural Sciences),2020,47(5):58-69.(In Chinese)
[3]MENG K,CUI C Y,LIANG Z M,et al. A new approach for longitudinal vibration of a large-diameter floating pipe pile in viscoelastic soil considering the three-dimensional wave effects [J]. Computers and Geotechnics,2020,128:103840.
[4]官文杰,吳文兵,蔣國(guó)盛,等.飽和土中非完全黏結(jié)管樁縱向振動(dòng)特性研究[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,48(1):46-58.
GUAN W J,WU W B,JIANG G S,et al. Study on vertical vibration characteristics of incompletely bonded pipe pile in saturated soil[J]. Journal of Hunan University(Natural Sciences),2021,48(1):46-58.(In Chinese)
[5]MYLONAKIS G. Winkler modulus for axially loaded piles [J]. Geotechnique,2001,51(5):455-461.
[6]WANG K H,YANG D Y,ZHANG Z Q,et al. A new approach for vertical impedance in radially inhomogeneous soil layer[J].Inter- national Journal for Numerical and Analytical Methods in Geomechanics,2012,36(6):697-707.
[7]WU W B,WANG K H,ZHANG Z Q,et al. Soil-pile interaction in the pile vertical vibration considering true three-dimensional wave effect of soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2013,37(17):2860-2876.
[8]FAGHIHNIA TORSHIZI M,SAITOH M,ALAMO GM,et al. Influence of pile radius on the pile head kinematic bending strains of end-bearing pile groups[J].Soil Dynamics and Earthquake Engineering,2018,105:184-203.
[9]孟坤,崔春義,許成順,等.基于虛土樁模型的三維飽和介質(zhì)中浮承樁縱向振動(dòng)特性分析[J].巖土力學(xué),2019,40(11):4313- 4323.
MENG K,CUI C Y,XU C S,et al.Longitudinal vibration characteristics of floating pile in threedimensional saturated soils based on virtual soil pile model[J].Rock and Soil Mechanics,2019,40 (11):4313-4323.(In Chinese)
[10]盧一為,丁選明,劉漢龍,等.均勻黏彈性地基中X形樁縱向振動(dòng)響應(yīng)簡(jiǎn)化解析方法[J].巖土力學(xué),2021,42(9):2472-2479.
LU Y W,DING X M,LIU H L,et al. Simplified analytical solution for vertical vibration of X-section pile in homogeneous viscoelastic soil[J]. Rock and Soil Mechanics,2021,42(9):2472- 2479.(In Chinese)
[11]MUKI R,STERNBERG E. Elastostatic load-transfer to a halfspace from a partially embedded axially loaded rod[J]. International Journal of Solids and Structures,1970,6(1):69-90.
[12]ZHENG C J,KOURETZIS G P,SLOAN S W,et al. Vertical vibration of an elastic pile embedded in poroelastic soil [J]. Soil Dynamics and Earthquake Engineering,2015,77:177-181.
[13]楊冬英,王奎華,非均質(zhì)土中基于虛土樁法的樁基縱向振動(dòng)[J].浙江大學(xué)學(xué)報(bào)(工學(xué)版),2010,44(10):2021-2028.
YANG D Y,WANG K H. Vertical vibration of pile based on fictitious soil-pile model in inhomogeneous soil [J]. Journal of Zhejiang University (Engineering Science),2010,44 (10):20212028. (In Chinese)
[14]吳文兵,王奎華,楊冬英,等.成層土中基于虛土樁模型的樁基縱向振動(dòng)響應(yīng)[J].中國(guó)公路學(xué)報(bào),2012,25(2):72-80.
WU W B,WANG K H,YANG D Y,et al. Longitudinal dynamic response to the pile embedded in layered soil based on fictitious soil pile model[J]. China Journal of Highway and Transport,2012,25(2):72-80.(In Chinese)
[15]KRAWCZUK M,GRABOWSKA J,PALACZ M. Longitudinal wave propagation. Part I—Comparison of rod theories [J]. Journal ofSound and Vibration,2006,295(3/4/5):461-478.
[16]呂述暉,王奎華,吳文兵.考慮橫向慣性效應(yīng)時(shí)黏彈性支承樁縱向振動(dòng)特性研究[J].振動(dòng)工程學(xué)報(bào),2016,29(4):679-686.
LU SH,WANG KH,WU W B. Longitudinal vibration of viscoelastic bearing piles considering transverse inertia effect[J]. Journal of Vibration Engineering,2016,29(4):679-686.(In Chinese)
[17]李振亞,王奎華.考慮橫向慣性效應(yīng)時(shí)非均質(zhì)土中大直徑樁縱向振動(dòng)特性及其應(yīng)用[J].巖石力學(xué)與工程學(xué)報(bào),2017,36(1):243-253.
LI Z Y,WANG K H. Vertical vibration of a large diameter pile embedded in inhomogeneous soil considering the transverse inertia effect and its applications[J]. Chinese Journal of Rock Mechanics and Engineering,2017,36(1):243-253.(In Chinese)
[18]楊驍,劉慧,蔡雪瓊.端承粘彈性樁縱向振動(dòng)的軸對(duì)稱解析解[J].固體力學(xué)學(xué)報(bào),2012,33(4):423-430.
YANG X,LIU H,CAI X Q. Axisymmetrical analytical solution for vertical vibration of end-bearing viscoelastic pile[J]. Chinese Journal of Solid Mechanics,2012,33(4):423-430.(In Chinese)
[19]孟坤,崔春義,許成順,等.考慮徑向波動(dòng)效應(yīng)的黏彈性支承樁縱向振動(dòng)阻抗研究[J].振動(dòng)工程學(xué)報(bào),2019,32(2):296-304.
MENG K,CUI C Y,XU C S,et al. Vertical dynamic impedance of floating pile considering the radial wave effect[J]. Journal of Vibration Engineering,2019,32(2):296-304.(In Chinese)
[20]LIU X,NAGGAR M H E,WANG K H,et al.Theoretical analysis of three-dimensional effect in pile integrity test[J]. Computers and Geotechnics,2020,127:103765.
[21]MENG K,SU H F. Analytical model of large-diameter viscoelastic floating pile and application in pile low-strain integrity testing [J]. Soil Dynamics and Earthquake Engineering,2022,158:107296.
[22]CHOW Y K,PHOON K K,CHOW W F,et al.Low strain integrity testing of piles:three-dimensional effects[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(11):1057-1062.