周德泉 張楊龍 曹勇 張紅塵 謝瑞庭 杜鵬
摘要:巖溶區(qū)基樁常刺穿不同高度的溶洞,承受樁頂豎向荷載或者單側(cè)超載,但荷載傳遞機(jī)制尚不十分清楚,針對(duì)此狀況,設(shè)計(jì)杠桿加載裝置,測(cè)試刺穿不同高度溶洞樁頂部加載時(shí)的樁身應(yīng)變及樁頂自由時(shí)單側(cè)超載下樁身應(yīng)變、土壓力和側(cè)移,獲得穿洞樁的軸力傳遞規(guī)律和單側(cè)超載響應(yīng).結(jié)果表明:1)樁頂豎向荷載作用下,基樁從土層或溶洞進(jìn)入巖層前,軸力-深度曲線存在界面效應(yīng),即土層或溶洞底部的基樁軸力增長,增長率隨荷載增大而增大.溶洞內(nèi)的樁身軸力-深度曲線呈“凹縮”狀,其凹縮幅度隨樁頂荷載和溶洞高度增大而增大.2)單側(cè)超載作用下,樁身側(cè)移、土壓力、彈性抗力和彎矩均隨超載和溶洞高度增大而增大.樁頂壓力為零時(shí),樁頂側(cè)移最大,隨深度增大而減小.土壓力和彈性抗力在土層段沿深度先增大后減小. 嵌巖樁和穿過溶洞樁體的樁身彎矩先隨深度增大而增大,在土層底部最大,進(jìn)入巖層和溶洞后減小.3)基樁垂直和水平承載力均隨樁身刺穿的溶洞高度增大而降低.沖擊鉆進(jìn)形成的洞內(nèi)樁段不易發(fā)生受壓或彎曲破壞.單側(cè)超載作用下,穿洞樁最可能繞土、巖界面轉(zhuǎn)動(dòng),在土層底部發(fā)生彎曲破壞.工程中,建議加大上部土層段樁徑和配筋率,將擴(kuò)徑段嵌巖,以提高基樁水平承載力.
關(guān)鍵詞:基礎(chǔ)工程;穿洞樁;巖溶;內(nèi)力;單側(cè)超載;模型試驗(yàn)
中圖分類號(hào):TU318文獻(xiàn)標(biāo)志碼:A
Test on Influence Law of Karst Cave Height on Axial Force Transfer and Lateral Overload Response of Rock-socketed Pile
ZHOU Dequan1,ZHANG Yanglong1,CAO Yong2,ZHANG Hongchen1,XIE Ruiting1,DU Peng1
(1. College of Civil Engineering,Changsha University of Science and Technology,Changsha 410076,China;2. The 6th Engineering Company Limited,CCCC Fourth Harbor Engineering Co. Ltd.,Zhuhai 519000,China)
Abstract:Pile in karst areas often impales the caves with different height and often bears the vertical load on pile top or unilateral overload,but worst of all,the working mechanism of the pile impaling cave is not well understood. Due to this problem,the lever loading device was designed,the strain of pile when impaling the caves of different height with applied vertical load on the top of the pile was tested,the strain of pile body,the earth pressure and horizontal displacement under unilateral overload were tested when the top of the pile is free,and the transfer law of axial force and the response under unilateral overload of pile impaling the cave of different height were obtained. The results show that:1)When the vertical load is applied on the top of the pile bears,before the pile enters the rock layer from the soil layer or the cave,the axial force-depth curve is of obvious interface effect,that is the pilers axial force at the bottom of the soil layer or the cave grows,and the growth rate increases with the increase of load. The axial force-depth curve of the cave is "concave",its magnitude of the concave increases with the increase of the load on the top of pile and the height of the cave. 2)When unilateral overload is applied on the pile,all of the horizontal displacement of pile earth pressure elastic resistance and bending moment increases with the increase of overload and the height of cave. When the pressure at the top of the pile is zero the lateral displacement of the pile decreases with the increasing depth,and it is maximal at the top of the pile. Both of the earth pressure and elastic resistance increase first and then decrease along the depth in the soil section. The bending moment of the embedded pile and pile impaling cave increase with depth and it is maximal at the bottom of the soil layer. But it decreases after entering the rock layer and cave. 3)Both of the vertical and horizontal bearing capacity of pile decreases with the increase of the height of the cave impaled by the pile. The pile section inside the cave formed by percussion drilling is not easily damaged by vertical compression and bend. Under the unilateral overload,the pile impaling cave is most likely to rotate around the soil-rock interface and bends at the bottom of the soil layer. In engineering,it is recommended to increase the diameter and reinforcement rate of the upper pile in the soil layer and to embed the expanded section to an enough depth so as to improve the horizontal bearing capacity of the pile impaling cave.
Key words:foundation engineering;pile impaling cave;karst;internal force;unilateral overload;model test
嵌巖樁沉降小、承載力高、抗震性能強(qiáng),應(yīng)用廣泛[1-4].在巖溶發(fā)育區(qū),溶洞影響嵌巖樁的豎向承載特性,土體移動(dòng)影響嵌巖樁的穩(wěn)定性,影響機(jī)制尚不十分清楚.
對(duì)于巖溶區(qū)嵌巖樁豎向承載特性方面,趙明華等[5]根據(jù)巖溶區(qū)嵌巖樁的樁端極限破壞模式及樁與溶洞的位置關(guān)系,分析了溶洞不破壞、沖切破壞及冒頂破壞等樁端3種破壞模式,推導(dǎo)出3種破壞模式下極限承載力計(jì)算公式;謝書萌[6]通過有限差分軟件分析溶洞頂部樁基承載特性的影響因素,認(rèn)為溶洞上方樁基承載力與溶洞高度幾乎無關(guān)聯(lián);張慧樂等[7]通過室內(nèi)模型試驗(yàn)研究巖溶區(qū)嵌巖樁承載力的影響因素,認(rèn)為溶洞直徑比頂板厚度影響大;夏煉[8]依托某巖溶區(qū)橋梁樁基工程,通過軟件建立模型分析樁基荷載一位移特性,認(rèn)為樁端位于溶洞頂板相比于樁基內(nèi)穿溶洞的影響更大,且內(nèi)穿溶洞樁基的極限承載力隨溶洞高度和跨度的增加呈線性降低,溶洞高度影響更大;金書濱等[9]結(jié)合工程實(shí)例,對(duì)比分析了巖溶區(qū)樁的荷載傳遞特性,認(rèn)為樁端的溶洞表現(xiàn)為對(duì)樁端阻力的影響,也會(huì)影響樁側(cè)摩阻力,并且承載力將隨樁端巖土的變形模量增大而大幅度提高;李金良等[10]提出簡化計(jì)算模型,采用非線性有限元法研究溶洞頂板厚度對(duì)單樁承載特性的影響,認(rèn)為極限承載力隨溶洞頂板厚度的增大而增大,隨著豎向荷載增大,樁基土體的主要塑性應(yīng)變區(qū)由嵌巖段上部逐漸過渡到溶洞上方的頂板;梅國雄等[11]提出一種巖溶區(qū)新型灌注樁-布袋樁,進(jìn)行樁頂加載模擬試驗(yàn),發(fā)現(xiàn)樁身軸力自上而下經(jīng)過枝狀體段時(shí),軸力降低速率先小后大.
樁側(cè)堆載導(dǎo)致工程事故[12-14]受到關(guān)注.馮昌明等[15]結(jié)合彈性體系明德林解及樁的差分方程,研究堆載作用下被動(dòng)樁的受力及位移特點(diǎn),提出被動(dòng)樁附近地表均布荷載作用下的水平及豎向承載特性的分析方法,通過算例驗(yàn)證;李仁平等[16]建立多層地基土側(cè)向受荷樁的力學(xué)模型,計(jì)算樁與橋墩受力,認(rèn)為土體蠕動(dòng)引起樁和橋墩損傷;鄭健龍等[17]建立橋臺(tái)樁基的三維有限元模型并設(shè)置樁-土接觸單元分析橋頭路基填筑對(duì)橋臺(tái)樁基受力性狀的影響,認(rèn)為樁- 土相對(duì)位移較大時(shí)樁平均側(cè)向壓力與樁-土相對(duì)位移呈非線性關(guān)系,且每級(jí)荷載下最大樁側(cè)土壓力約為路堤荷載的74%,路堤荷載與樁身最大彎矩的關(guān)系與基樁具體位置相關(guān);魏汝龍[18]對(duì)某填土水閘和堆載后碼頭進(jìn)行實(shí)測(cè),認(rèn)為墩下樁基的傾斜和撓曲由下臥軟土層的側(cè)向變形和建筑物的差異沉降共同引起;李志偉[19]通過有限元法分析軟土地基下鄰近單側(cè)堆載引發(fā)樁基偏位規(guī)律,認(rèn)為樁基會(huì)產(chǎn)生側(cè)向偏移和附加彎矩,反彎點(diǎn)位于軟土層與硬土層交界處附近,嚴(yán)重時(shí)會(huì)導(dǎo)致樁頂附近開裂破壞;吳瓊等[20]運(yùn)用三維有限元方法研究樁頂荷載對(duì)被動(dòng)樁受力變形的影響,認(rèn)為樁身在樁側(cè)堆載下產(chǎn)生了較大的側(cè)向位移與彎矩,出現(xiàn)負(fù)摩阻力和軸力,樁側(cè)堆載的被動(dòng)樁在樁頂豎向荷載作用下會(huì)產(chǎn)生樁身二次彎矩,加劇樁身彎曲變形和內(nèi)力.此外,趙明華等[21]綜合探討國內(nèi)外相關(guān)領(lǐng)域文獻(xiàn)、結(jié)合湖南大學(xué)多年來的研究成果,分別從承載機(jī)理、現(xiàn)場(chǎng)及模型試驗(yàn)方法、受力變形分析及其設(shè)計(jì)計(jì)算方法、施工技術(shù)和安全評(píng)價(jià)方法及加固處治措施四個(gè)方面詳細(xì)闡述了陡坡段橋梁樁基研究現(xiàn)狀及展望.
由此可見,嵌巖樁豎向承載特性研究主要集中于溶洞位于樁底持力層時(shí)的樁端極限破壞模式[4]及溶洞高度[6]、直徑[7]、頂板厚度和跨度[8-10]的影響規(guī)律,土體移動(dòng)影響嵌巖樁的穩(wěn)定性研究主要集中于軟土地基等非巖溶區(qū)地質(zhì)條件[12-20],穿過不同高度溶洞嵌巖樁的軸力傳遞規(guī)律及單側(cè)超載響應(yīng)尚不清楚,室內(nèi)模型試驗(yàn)很少開展.鑒于此,本文設(shè)計(jì)杠桿加載裝置,通過室內(nèi)模型試驗(yàn)測(cè)試基樁穿過三種高度溶洞時(shí)樁頂豎向荷載作用下的樁身應(yīng)變及樁側(cè)土體豎向荷載作用下的樁身應(yīng)變、水平位移和土壓力,研究樁頂荷載作用下樁身軸力傳遞規(guī)律及樁側(cè)堆載作用下樁身彎矩、水平位移和土壓力變化規(guī)律,并與未穿溶洞樁對(duì)比,為巖溶地區(qū)穿過不同高度溶洞嵌巖樁基礎(chǔ)設(shè)計(jì)提供試驗(yàn)依據(jù).
1模型試驗(yàn)概況
模型箱尺寸為1 420 mm×750 mm×1 100 mm(長×寬×高).試驗(yàn)分為兩階段:樁頂豎向加載試驗(yàn)(圖1)和樁側(cè)堆載響應(yīng)試驗(yàn)(圖2).將模型箱用剛性板隔成4個(gè)完全相同的獨(dú)立區(qū),分別設(shè)置1根未穿洞樁、穿10 cm高溶洞樁、穿20 cm高溶洞樁和穿30 cm 高溶洞樁,以Z0、Z1、Z2、Z3表示.
為了減小邊界效應(yīng),模型箱側(cè)壁和3塊隔板表面涂抹凡士林,以減小土體側(cè)移時(shí)的界面摩擦力.研究認(rèn)為②],模型樁邊界距離加載邊界達(dá)到1~2.5倍加載范圍時(shí),可認(rèn)為邊界效應(yīng)對(duì)試驗(yàn)產(chǎn)生的影響較小. 圖2(a)所示承壓鋼板邊緣與模型樁相距225 mm,模型樁邊界距離加載邊界達(dá)到1~1.125倍加載范圍. Z0、Z1、Z2、Z3等4根模型樁在完全相同的邊界條件下承受樁頂豎向加載和樁側(cè)堆載,考慮荷載從上到下傳遞,模型樁上部土層厚度均為400 mm,穿過溶腔頂板厚度均為115 mm,通過對(duì)比測(cè)試,可以揭示溶洞高度變化對(duì)樁頂荷載作用下樁身軸力傳遞規(guī)律及樁側(cè)堆載作用下樁身彎矩、水平位移和土壓力變化規(guī)律.
1.1模型樁與模型土
模型樁選用UPVC管,方形截面,外邊長40 mm、內(nèi)邊長31 mm,壁厚4.5 mm,長度1 000 mm. 將4根UPVC管分別沿豎直軸線方向剖成兩個(gè)半合管,在每根樁兩個(gè)半合管內(nèi)壁按設(shè)計(jì)間距對(duì)稱粘貼應(yīng)變片,將應(yīng)變片與端子焊接,再將應(yīng)變片連接好導(dǎo)線,最后將兩半合管用環(huán)氧樹脂粘合.溶洞空腔范圍內(nèi)樁身4個(gè)側(cè)面均用環(huán)氧樹脂粘貼UPVC管片(以下簡稱管片),模擬沖擊鉆孔施工造成的溶洞內(nèi)樁段擴(kuò)徑.
溶腔采用木盒模擬.3個(gè)木盒的長寬相同,均為240 mm×240 mm,高度分別為100 mm、200 mm、300 mm,頂板和底板中心預(yù)留40 mm×40 mm方形孔,用厚度12 mm的木板裝訂而成.安裝時(shí),模型樁擴(kuò)徑段卡在木盒頂板和底板之間,用環(huán)氧樹脂充填固定.組合的模型樁和模型溶洞見圖3,溶洞與模型樁參數(shù)見表1.
根據(jù)巖溶地區(qū)地層特點(diǎn),本試驗(yàn)將地層分為兩層:1)上層黏土;2)下層灰?guī)r,上層土體取自長沙理工大學(xué)新建學(xué)生宿舍樓后側(cè)土坡的紅黏土,經(jīng)過晾曬、粉碎、篩分,過5 mm濾篩;下層灰?guī)r采用灰?guī)r相似材料模擬.根據(jù)相似原理,若幾何相似及荷載相似,工程原型與試驗(yàn)?zāi)P偷奈锢砹W(xué)參數(shù)符合以下關(guān)系[23]:
C=C=C=C·C(1)
C=1(2)
式中:C為彈性模量相似比;C為黏聚力相似比;C為應(yīng)力相似比;C為幾何相似比;C為密度相似比;C為摩擦角相似比.
根據(jù)試驗(yàn)設(shè)計(jì),本模型試驗(yàn)的C和C分別取10和1.2;依據(jù)相似原理,得到C、C和C都是12,C為1.根據(jù)巖溶地區(qū)灰?guī)r概化參數(shù),得到模擬灰?guī)r的密度、抗壓強(qiáng)度、彈性模量和黏聚力的范圍,見表2.根據(jù)已有研究[24-25],篩選出適合本試驗(yàn)的模擬灰?guī)r材料配合比(質(zhì)量比)為m:m:m=5:0.8:0.2,此時(shí)模擬基巖的C為12,根據(jù)簡支梁法測(cè)出模型樁彈性模量約為3.332 6 GPa,工程中灌注樁彈性模量一般為30~32.5 GPa,即C′(樁彈性模量比)約為10,故本試驗(yàn)基巖模擬設(shè)計(jì)較合理.表3為模擬基巖材料配比情況.
1.2安裝與測(cè)試
將模型樁按試驗(yàn)設(shè)計(jì)定位,將配制的模擬基巖材料澆筑于模型箱內(nèi),將頂面抹成傾斜面(約20°),標(biāo)準(zhǔn)養(yǎng)護(hù)28 d以上.在樁身上段水平位移測(cè)點(diǎn)粘貼長30 mm、直徑為12 mm 的塑料軟管,將直徑為10 mm、長度300 mm的PVC硬管粘接在軟管周圍并通過模型箱外側(cè)板孔洞水平延伸出模型箱.塑料軟管的作用是減少PVC硬管對(duì)模型樁的約束,為百分表探針提供自由通道.分5層填筑紅黏土,土層頂面抹成梯形面(水平面寬度350 mm,傾斜面角度約20°),土自重沉降15 d.將應(yīng)變片導(dǎo)線及土壓力盒導(dǎo)線與應(yīng)變儀連接.
1.2.1測(cè)試系統(tǒng)
在樁頂和承壓鋼板安裝電子位移計(jì),測(cè)量樁頂沉降和地基沉降;將探針?biāo)讲迦隤VC硬管與樁穩(wěn)定接觸后安裝百分表,測(cè)量樁身水平位移,5個(gè)位移測(cè)點(diǎn)分別距樁頂30 mm、130 mm、230 mm、330 mm、430 mm;樁身前后兩側(cè)分別等距對(duì)稱粘貼土壓力盒,測(cè)試側(cè)向加載過程中樁后土壓力和樁前土抗力,土壓力盒與樁頂間距分別為90 mm、190 mm、290 mm、390 mm.
4根樁分別對(duì)稱粘貼14、22、22、20枚應(yīng)變片,測(cè)試加載過程中的樁身應(yīng)變.詳細(xì)位置為:Z0、Z1、Z2、Z3等4根模型樁在土層段均粘貼4組應(yīng)變片,離樁頂距離分別為96.5 mm、211.5 mm、326.5 mm、441.5 mm;Z1、Z2、Z3等3根模型樁在溶洞頂板段均粘貼2 組應(yīng)變片,離樁頂距離分別為473.5 mm.556.5 mm;Z0在巖層段粘貼3組應(yīng)變片,離樁頂距離分別為473.5 mm、673.5 mm、841 mm;Z1在溶洞段粘貼3組應(yīng)變片,離樁頂距離分別為573.5 mm、615 mm、656.5 mm,在溶洞底板段粘貼2組應(yīng)變片,離樁頂距離分別為673.5mm、841 mm;Z2在溶洞段粘貼3組應(yīng)變片,離樁頂距離分別為573.5 mm、665 mm、756.5 mm,在溶洞底板段粘貼2組應(yīng)變片,離樁頂距離分別為773.5 mm、888.5 mm;Z3在溶洞段粘貼3組應(yīng)變片,離樁頂距離分別為573.5 mm、715 mm、856.5 mm,在溶洞底板段粘貼1組應(yīng)變片,離樁頂距離為873.5 mm.采集系統(tǒng)為TDS-530和TDS-540.
1.2.2加載系統(tǒng)
1)樁頂豎向加載試驗(yàn)
如圖4(a)所示,每個(gè)隔室內(nèi)的杠桿一端固定于模型箱頂部鉸接支座,作用于樁頂固定的樁頂支座,杠桿端部掛有可以固定標(biāo)準(zhǔn)祛碼的掛鉤.對(duì)樁頂進(jìn)行分級(jí)加載,采用慢速維持荷載法,第一級(jí)為0.4 kN,此后每級(jí)增加0.2 kN,每隔30 min分別記錄一次沉降值,直到沉降值穩(wěn)定(即兩個(gè)1 h內(nèi)沉降值相差不超過0.01 mm,并連續(xù)出現(xiàn)2次),繼續(xù)加下一級(jí)荷載,至最大荷載2 kN后終止加載,分四級(jí)卸載.
2)樁側(cè)堆載響應(yīng)試驗(yàn)
如圖4(b)所示,在每個(gè)隔室水平土面上按平面設(shè)計(jì)位置對(duì)稱安裝承壓鋼板(長300 mm、寬200 mm、厚12 mm),沿鋼板中心軸線對(duì)稱放置承壓支座,將千斤頂放置于承壓體頂部中心位置.參考行業(yè)規(guī)程[26],使用千斤頂反力梁系統(tǒng)對(duì)樁單側(cè)土體進(jìn)行分級(jí)加載,共進(jìn)行11級(jí)加載.第一級(jí)加載包括承壓鋼板、承壓支座、千斤頂自重和千斤頂施加的壓力共2 kN,加載后迅速記錄百分表數(shù)據(jù)、采集應(yīng)變數(shù)據(jù),每隔0.5 h采讀一次,當(dāng)承壓支座連續(xù)2次位移差值不超過0.01 mm時(shí),認(rèn)為地基變形穩(wěn)定,繼續(xù)施加下一級(jí)荷載.此后每級(jí)荷載依次增加2 kN,最大荷載為22 kN,地基變形較大時(shí)停止加載,分一級(jí)卸載.
2試驗(yàn)結(jié)果與分析
2.1樁頂豎向加載響應(yīng)
2.1.1樁頂加載P-s曲線特征
模型樁頂?shù)暮奢dP-沉降s曲線如圖5所示.分析發(fā)現(xiàn):
1)Z0樁身穿過土層嵌入完整巖層,P-s曲線呈上凸型,符合一般規(guī)律;Z1、Z2、Z3樁身穿過相同厚度的土層、溶洞頂板和不同高度的溶洞時(shí),P-s曲線呈緩變型,并且位于Z0曲線的下方,說明溶洞加大了樁頂沉降.
2)相同荷載作用下,Z0的沉降最小、Z1次之、Z2較大、Z3最大,說明樁頂沉降隨溶洞高度增大而增大,與夏煉⑻通過數(shù)值模擬取得的規(guī)律一致.分析認(rèn)為,溶洞樁身的橫向變形隨溶洞高度增大而增大.由此推理,樁基礎(chǔ)豎向承載力隨樁身刺穿的溶洞高度加大而降低.
2.1.2穿洞樁軸力傳遞規(guī)律
由式(3)計(jì)算樁身軸力值:
Q=EAε(3)
式中:ε為某級(jí)荷載作用下樁身某截面的平均應(yīng)變;A為樁身截面面積,m;Q,為某級(jí)荷載作用下樁身某截面的軸力,N;E為樁的彈性模量(本文利用簡支梁法測(cè)定,其值為3.332 6 GPa).
從表1可知,各樁上段土層厚度均為405 mm,Z1的溶洞位置為z=565~665 mm,Z2的溶洞位置為z=565~765 mm,Z3的溶洞位置為z=565~865 mm. 從上往下,土層與頂板界面位于各樁第4組(z=441.5 mm)與第5組(z=473.5 mm)應(yīng)變片之間,頂板與溶洞界面位于穿洞樁第6組(z=556.5 mm)與第7組(z=573.5 mm)應(yīng)變片之間,溶洞與底板界面位于穿洞樁第9組與第10組應(yīng)變片之間(位置因溶洞高度不同而不同).溶洞內(nèi)均在上、中、下3個(gè)位置粘貼3組應(yīng)變片.
各樁的軸力Q-深度z關(guān)系曲線見圖6.圖6表明,常規(guī)嵌巖樁Z0的軸力-深度曲線特征符合軸力傳遞基本規(guī)律,說明本次應(yīng)變測(cè)試系統(tǒng)可靠.分析發(fā)現(xiàn):
1)土、巖界面處,樁身軸力傳遞存在明顯的界面效應(yīng).樁從土層即將進(jìn)入巖層前,土層樁身軸力增長,增長率隨荷載增大而增大,原因是即將進(jìn)入巖層時(shí)樁土相對(duì)位移減小導(dǎo)致摩擦力減小.
2)溶洞內(nèi),樁身軸力沿深度呈“凹縮”狀,凹縮幅度隨溶洞高度或者荷載增大而增大.由此推理,沖擊鉆進(jìn)形成的溶洞內(nèi)樁段不易發(fā)生受壓破壞.為了剖析溶洞內(nèi)樁身軸力沿深度“凹縮”機(jī)制,作出溶洞內(nèi)模型樁及樁段受力示意圖,見圖7.樁身穿過溶洞頂板進(jìn)入溶洞時(shí),管片(即模型樁側(cè)面用環(huán)氧樹脂粘貼的UPVC管片)頂端在軸力作用下將與頂板分離,所以,管片頂端沒有壓力.模型樁樁壁和管片均認(rèn)作彈性體,分別取模型樁樁壁和管片作脫離體分析受力情況,見式(4)~(6).
Q=N1+F(4)
F=F(5)
F=N(6)
式中:Q為模型樁上段傳遞的軸力;F為管片的摩擦力;N為模型樁下段支承力;F為管壁傳遞給管片的摩擦力;N為管片單元下部的支承力.F與F為作用力與反作用力.各參數(shù)單位均為N.
對(duì)于溶洞內(nèi)基樁上段,樁身處于豎直受力狀態(tài)并產(chǎn)生橫向變形,模型樁管壁與管片的相對(duì)位移增大.溶洞高度越大,或者荷載越大,相對(duì)位移越大.根據(jù)直剪實(shí)驗(yàn)原理,F(xiàn)必然增大,N必然減小,所以,軸力沿深度衰減.溶洞高度越大,或者模型樁上段傳遞的軸力Q越大,衰減速率越大.
對(duì)于溶洞內(nèi)基樁下段,樁身處于豎直受力狀態(tài)并產(chǎn)生橫向變形,但是,溶洞底板給模型樁的握裹力很大,模型樁管壁與管片的相對(duì)位移減小,根據(jù)直剪實(shí)驗(yàn)原理,F(xiàn)必然減小,N必然增大,所以,軸力沿深度增加.這樣,溶洞內(nèi)樁身軸力沿深度必然出現(xiàn)“谷值”,樁身軸力-深度曲線呈“凹縮”狀.
2.2樁側(cè)堆載響應(yīng)
2.2.1地基土荷載P-沉降s曲線
圖8為樁側(cè)地基土P-s曲線.加載曲線呈上凸型,規(guī)律明顯,說明測(cè)試系統(tǒng)可靠.分析發(fā)現(xiàn):相同荷載作用下,地基土沉降隨單側(cè)樁體穿過溶洞的高度增大而增大,其增長率隨荷載增大而增大.推理認(rèn)為,樁體作支擋結(jié)構(gòu)時(shí),樁身穿過溶洞或者溶洞高度增大,降低樁體的支擋能力.
2.2.2樁后土壓力變化
從表1可知,各樁上段土層厚度均為405 mm,樁側(cè)土壓力盒離樁頂距離為90 mm、190 mm、290 mm、390 mm.限于篇幅,給出P=22 kN時(shí)樁側(cè)土壓力P- 深度z的變化曲線,見圖9.由圖9分析發(fā)現(xiàn):
1)土壓力沿深度先增大后減小,有1個(gè)峰值,與祝廷尉等[27]研究滑體對(duì)嵌巖抗滑樁產(chǎn)生的樁后土壓力規(guī)律類似.根據(jù)地基附加應(yīng)力分布特點(diǎn),最下方的土壓力盒位置靠近土巖交界面,附加應(yīng)力較??;樁頂位于土層面偏上位置,受到的附加應(yīng)力為0,故在樁身中部附近一定會(huì)出現(xiàn)一個(gè)應(yīng)力峰值.
2)樁側(cè)土壓力隨溶洞高度增大而增大,樁體穿過溶洞高度越大,單側(cè)土體受超載產(chǎn)生的沉降和水平位移越大,導(dǎo)致土壓力越大.
2.2.3樁前彈性抗力變化
限于篇幅,給出P=22 kN時(shí)彈性抗力σ-深度z的變化曲線,見圖10.由圖10分析發(fā)現(xiàn):
1)樁前彈性抗力沿深度先增大后減小,有1個(gè)峰值,隨溶洞高度增大而增大.
2.2.4樁身水平位移
限于篇幅,給出P=4 kN、P =10 kN、P =16 kN和P =22 kN時(shí)樁身水平位移廠深度z的變化曲線,見圖11.由圖11分析發(fā)現(xiàn):
1)樁頂壓力為零時(shí),樁身側(cè)移在樁頂最大,隨深度加大而減小,土巖界面處為零,類似于焦世杰[28]根據(jù)工程實(shí)例研究的斜坡嵌巖抗滑樁樁身位移規(guī)律. 推理認(rèn)為,單側(cè)超載作用下,樁體繞土、巖界面轉(zhuǎn)動(dòng).
2)樁身水平位移隨側(cè)面超載和溶洞高度增大而增大.溶洞高度增大將降低樁體水平承載能力.
2.2.5樁身彎矩變化
試驗(yàn)測(cè)試樁身的拉應(yīng)變?chǔ)排c壓應(yīng)變?chǔ)牛词剑?)計(jì)算彎矩:
式中:M為樁身截面彎矩,kN·m;ε為為同一斷面處拉壓應(yīng)變差值,即ε=ε-ε;b為拉壓測(cè)點(diǎn)的間距,為31 mm;E為樁身彈性模量,實(shí)測(cè)為3.332 6 GPa;I為慣性矩,取2.13×10 m.
限于篇幅,給出P = 4 kN,P = 10 kN,P = 16 kN和P = 22 kN時(shí)樁身彎矩M-深度z的變化曲線(稱M-z曲線,下同),見圖12,圖中,Z0樁在深度473.5 mm與673.5 mm之間沒有應(yīng)變片.給出彎矩峰值隨荷載變化曲線,見圖13.
分析發(fā)現(xiàn):
1)對(duì)于嵌巖樁Z0,樁身彎矩隨深度增大而增大,在土層底部最大,進(jìn)入巖層后減小,該規(guī)律與焦世杰[28]和雷國平等[29]獲得的斜坡嵌巖抗滑樁的彎矩規(guī)律一致.
2)樁身彎矩隨樁身穿過溶洞的高度增大而增大.推理認(rèn)為,溶洞高度增大不利于樁基抵抗彎曲破壞.
3)對(duì)于穿過溶洞的樁體,樁身彎矩也隨深度增大而增大,在土層底部最大,進(jìn)入巖層和溶洞后減小,說明單側(cè)超載作用下,穿過溶洞的樁體最可能在土層底部發(fā)生彎曲破壞,溶洞越高,越容易破壞.工程中,建議加大上部土層段樁身直徑或者配筋率,以提高樁身水平承載力.
3結(jié)論
1)樁頂豎向荷載作用下,嵌巖樁的長度和豎向荷載相同時(shí),樁頂沉降隨溶洞高度增大而增大,基樁豎向承載力隨樁身刺穿溶洞的高度增大而降低.土巖界面、溶洞與底板界面處,樁身軸力-深度曲線存在明顯的界面效應(yīng).樁從土層或者溶洞即將進(jìn)入巖層前,土層或者溶洞底部的樁身軸力增長,增長率隨荷載增大而增大.溶洞內(nèi),樁身軸力-深度曲線呈“凹縮”狀,其凹縮幅度隨樁頂荷載和溶洞高度增大而增大.
2)單側(cè)超載作用下,樁后土壓力和樁前彈性抗力在土層段沿深度先增大后減小,有1個(gè)峰值.相同荷載作用下,樁后土壓力和樁前彈性抗力隨溶洞高度增大而增大.樁前彈性抗力為樁后土壓力的1/3~1/2,樁頂壓力為零時(shí),樁身側(cè)移隨深度加大而減小,樁頂側(cè)移最大.樁身水平位移隨側(cè)面超載和溶洞高度增大而增大.溶洞高度增大將降低基樁的水平承載力.嵌巖樁和穿過溶洞樁體的樁身彎矩隨深度增大而增大,在土層底部最大,進(jìn)入巖層和溶洞后減小.樁身彎矩隨樁身穿過的溶洞高度增大而增大.
3)樁頂荷載或單側(cè)超載作用時(shí),沖擊鉆進(jìn)形成的溶洞內(nèi)樁段不易發(fā)生受壓破壞或彎曲破壞.基樁穿過溶洞或者溶洞高度增大,降低基樁的支擋能力,樁后地基土沉降增大.單側(cè)超載作用下,穿過溶洞的基樁最可能繞土、巖界面轉(zhuǎn)動(dòng),在土層底部發(fā)生彎曲破壞.工程中,建議加大上部土層段基樁直徑或者配筋率,并將擴(kuò)徑段嵌巖一定深度,以提高基樁水平承載力.
參考文獻(xiàn)
[1]安康,劉曄,劉少林.南京地區(qū)大直徑后注漿嵌巖樁靜載荷試驗(yàn)研究[J].地下空間與工程學(xué)報(bào),2021,17(S1):46-54.
AN K,LIU Y,LIU S L. Experimental study on large diameter post-grouting rock-socketed piles in Nanjing using the method of static loading test[J]. Chinese Journal of Underground Space and Engineering,2021,17(S1):46-54.(In Chinese)
[2]霍少磊,鄧會(huì)元,余奇異,等.嵌巖樁基豎向承載特性現(xiàn)場(chǎng)試驗(yàn)研究[J].建筑結(jié)構(gòu),2020,50(S2):690-695.
HUO S L,DENG H Y,YU Q Y,et al. Field test study on vertical bearing behavior of rock-socketed piles [J]. Building Structure,2020,50(S2):690-695.(In Chinese)
[3]何泓男,黃康,戴國亮,等.軟巖地區(qū)大直徑嵌巖樁承載力試驗(yàn)分析[J].中外公路,2014,34(6):116-120.
HE H N,HUANG K,DAI G L,et al. Experimental analysis on bearing capacity of large diameter rock-socketed piles in soft rock area[J]. Journal of China & Foreign Highway,2014,34(6):116- 120.(In Chinese)
[4]周天應(yīng),周援衡,魯智勇.嵌巖樁水平承載力計(jì)算方法的討論和分析[J].交通科學(xué)與工程,2019,35(3):65-71.
ZHOU T Y,ZHOU Y H,LU Z Y. Analysis and discussion of calculation methods for rock socketed piles under lateral load[J]. Journal of Transport Science and Engineering,2019,35(3):65- 71.(In Chinese)
[5]趙明華,肖堯,徐卓君,等.巖溶區(qū)嵌巖樁樁端承載性能研究[J].巖土工程學(xué)報(bào),2017,39(6):1123-1129.
ZHAO M H,XIAO Y,XU Z J,et al.Bearing capacity at tip of rock- socketed pile in Karst areas[J]. Chinese Journal of Geotechnical Engineering,2017,39(6):1123-1129.(In Chinese)
[6]謝書萌.基于有限差分法的下伏巖溶對(duì)樁基承載特性的影響[J].長江科學(xué)院院報(bào),2019,36(4):77-81.
XIE S M. Investigation on influence of underlying Karst on bearing capacity of pile foundation by finite difference method[J]. Journal of Yangtze River Scientific Research Institute,2019,36 (4):77-81. (In Chinese)
[7]張慧樂,馬凜,張智浩,等.巖溶區(qū)嵌巖樁承載特性影響因素試驗(yàn)研究[J].巖土力學(xué),2013,34(1):92-100.
ZHANG H L,MA L,ZHANG Z H,et al. Test research on factors influencing bearing capacity of rock-socketed piles in Karst area [J]. Rock and Soil Mechanics,2013,34(1):92-100.(In Chinese)
[8]夏煉.巖溶地區(qū)樁基承載特性影響因素研究[J].公路,2018,63(11):168-171.
XIA L.Study on influencing factors of bearing capacity of pile foundation in Karst area[J]. Highway,2018,63(11):168-171.(In Chinese)
[9]金書濱,黃生根,常仲昆,巖溶地區(qū)樁基承載性能試驗(yàn)研究[J].中國巖溶,2005,24(2):147-151.
JIN S B,HUANG S G,CHANG Z K.Test for bearing behavior of pile in Karst area[J]. CarsologicaSinica,2005,24(2):147-151. (In Chinese)
[10]李金良,邢宇鋮,崔偉,等.豎向荷載作用下巖溶區(qū)單樁承載特性研究[J].濟(jì)南大學(xué)學(xué)報(bào)(自然科學(xué)版),2020,34(4):417-422.
LI J L,XING Y C,CUI W,et al. Bearing characteristics of single pile under vertical load in Karst area[J].Journal of University of Jinan(Science and Technology),2020,34(4):417-422.(In Chinese)
[11]梅國雄,陸志宇,陳家勛,等.巖溶地區(qū)新型灌注樁承載機(jī)理試驗(yàn)及模擬研究[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版):2022,49(7):32-44.
MEI G X,LU Z Y,CHEN J X,et al. Research on the bearing mechanism of a new type grouted pile in Karst area[J]. Journal of Hunan University(Natural Sciences),2022,49(7):32-44.(In Chinese)
[12]張浩,石名磊,胡伍生,等.互通區(qū)跨線橋鄰近路基墩柱偏移事故分析[J].東南大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,43 (3):617-623.
ZHANG H,SHI M L,HU W S,et al. Analysis of sloping pier nearby embankment of overpass bridge in interchange[J]. Journalof Southeast University(Natural Science Edition),2013,43(3):617-623.(In Chinese)
[13]馮忠居,張永清,李晉.堆載引起橋梁墩臺(tái)與基礎(chǔ)的偏移及防治技術(shù)研究[J].中國公路學(xué)報(bào),2004,17(3):74-77.
FENG Z J,ZHANG Y Q,LI J. Study of displacement of bridge pier and abutment foundation caused by earth piling load and its prevention technique [J]. China Journal of Highway and Transport,2004,17(3):74-77.(In Chinese)
[14]楊敏,朱碧堂,陳福全,堆載引起某廠房坍塌事故的初步分析[J].巖土工程學(xué)報(bào),2002,24(4):446-450.
YANG M,ZHU B T,CHEN F Q. Pilot study on collapse of an industrial building due to adjacent surcharge loads [J]. Chinese Journal of Geotechnical Engineering,2002,24(4):446-450.(In Chinese)
[15]馮昌明,木林隆,孫志偉,等.基于兩階段法的堆載對(duì)公路橋梁樁基礎(chǔ)影響分析[J].巖土力學(xué),2014,35(S2):528-534.
FENG C M,MU L L,SUN Z W,et al. Two-stage analysis of responses of bridge pile foundations to adjacent surcharge [J]. Rock and Soil Mechanics,2014,35(S2):528-534. (In Chinese)
[16]李仁平,陳云敏,陳仁朋.軟基中橋頭路基對(duì)鄰近樁基的影響分析[J].中國公路學(xué)報(bào),2001,14(3):73-77.
LI R P,CHEN Y M,CHEN R P. Analysis of approach embankment effect for the piled pier of bridge constructed on soft clay[J]. China Journal of Highway and Transport,2001,14(3):73-77 (In Chinese)
[17]鄭健龍,張軍輝,李雪峰,軟基橋頭路基填筑對(duì)橋臺(tái)樁的影響[J].中國公路學(xué)報(bào),2013,26(2):48-55.
ZHENG J L,ZHANG J H,LI X F. Effects of embankment load on piled bridge abutments on soft clay[J]. China Journal of Highway and Transport,2013,26(2):48-55 (In Chinese)
[18]魏汝龍.大面積填土對(duì)鄰近樁基的影響[J].巖土工程學(xué)報(bào),1982,4(2):132-137.
WEI R L. Influence of large-area filling soil on adjacent pile foundation[J]. Chinese Journal of Geotechnical Engineering,1982,4 (2):132-137.(In Chinese)
[19]李志偉.軟土地基鄰近堆載對(duì)橋梁樁基偏位的影響研究[J].巖土力學(xué),2013,34(12):3594-3600.
LI Z W. Study of influence of surcharge load on lateral displacement of bridge piled foundation in soft ground[J]. Rock and Soil Mechanics,2013,34(12):3594-3600.(In Chinese)
[20]吳瓊,陳錦劍,夏小和,等.樁側(cè)堆載作用下被動(dòng)樁受力性狀研究[J].地下空間與工程學(xué)報(bào),2010,6(3):467-471.
WU Q,CHEN J J,XIA X H,et al. Behavior of the passive piles adjacent to the surcharge load[J]. Chinese Journal of Underground Space and Engineering,2010,6(3):467-471.(In Chinese)
[21]趙明華,彭文哲,趙衡.陡坡段橋梁樁基研究現(xiàn)狀及展望[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2022,49(7):1-14.
ZHAO M H,PENG W Z,ZHAO H. Research status and forecast of bridge pile foundation in sloping ground[J]. Journal of Hunan Uni- versity(Natural Sciences),2022,49(7):1-14.(In Chinese)
[22]杜杰,丁紅巖,劉建輝,等.筒型基礎(chǔ)有限元分析的土體邊界選取研究[J].海洋技術(shù),2005,24(2):109-113.
DU J,DING H Y,LIU J H,et al. Research on boundary selection of soil of bucket foundation with finite element analysis[J]. Ocean Technology,2005,24(2):109-113 (In Chinese)
[23]林韻梅.實(shí)驗(yàn)巖石力學(xué):模擬研究[M].北京:煤炭工業(yè)出版社,1984.
LIN Y M. Experimental rock mechanics:A simulation study [M]. Beijing:China Coal Industry Publishing House,1984.(In Chinese)
[24]劉鐵雄,彭振斌,韓金田.灰?guī)r巖性模擬試驗(yàn)研究[J].地下空間與工程學(xué)報(bào),2005,1(6):878-881.
LIU T X,PENG Z B,HAN J T. Research of simulation testing of limestone's lithology [J]. Chinese Journal of Underground Space and Engineering,2005,1(6):878-881 (In Chinese)
[25]左保成,陳從新,劉才華,等.相似材料試驗(yàn)研究[J].巖土力學(xué),2004,25(11):1805-1808
ZUO B C,CHEN C X,LIU C H,et al. Research on similar material of slope simulation experiment[J]Rock and Soil Mechanics,2004,25(11):1805-1808 (In Chinese)
[26]建筑地基處理技術(shù)規(guī)范:JGJ 79—2012[S].北京:中國建筑工業(yè)出版社,2013:76-77.
Technical code for ground treatment of buildings:JGJ 79—2012 [S]. Beijing:China Architecture & Building Press,2013:76-77. (In Chinese)
[27]祝廷尉,胡新麗,徐聰,等.嵌巖樁抗滑特性的物理模型試驗(yàn)研究[J].巖土力學(xué),2014,35(S1):165-172.
ZHU T W,HU X L,XU C,et al. Physical model test research on anti-sliding characteristics of rock-socketed pile[J]. Rock and Soil Mechanics,2014,35(S1):165-172.(In Chinese)
[28]焦世杰.嵌巖抗滑樁地基水平抗力系數(shù)K值取值的數(shù)值模擬研究[J].安全與環(huán)境工程,2019,26(3):56-61.
JIAO S J. Numerical simulation of the value of horizontal resistance coefficient of anti-slide pile foundation embedded in rock [J]. Safety and Environmental Engineering,2019,26(3):56-61. (In Chinese)
[29]雷國平,唐輝明,程昊,等.考慮豎向摩阻力的抗滑樁嵌固段內(nèi)力計(jì)算[J].巖土力學(xué),2014,35(8):2197-2204.
LEI G P,TANG H M,CHENG H,et al. Internal force calculation of anti-slide pile socketed segment considering vertical frictional resistance[J]. Rock and Soil Mechanics,2014,35(8):2197- 2204.(In Chinese)