張玲 岳梢 劉亞楠 彭文哲
摘要:隨著江河岸邊斜坡地段的樁基礎(chǔ)日益增多,斜坡基樁樁-土水平耦合振動(dòng)問(wèn)題也日益受到重視.本文基于現(xiàn)有平地基樁水平動(dòng)力響應(yīng)理論,考慮斜坡效應(yīng),提出適用于斜坡基樁水平動(dòng)力響應(yīng)解析解,首先借助微分變換、亥姆霍茲分解和分離變量法等手段解耦土體三維波動(dòng)方程,并引入樁-土邊界連續(xù)條件,求解了平地基樁的樁周土體水平動(dòng)抗力;在此基礎(chǔ)上,引入折減因子考慮斜坡對(duì)臨空面一側(cè)土體抗力的弱化效應(yīng),并忽略一定深度范圍內(nèi)的淺層土體提供的水平動(dòng)抗力,推導(dǎo)出斜坡段基樁的樁周土體水平動(dòng)抗力解析解.此外,利用Euler梁模型推導(dǎo)斜坡段基樁自由段、入土段的水平振動(dòng)控制方程,獲得了基于傳遞矩陣法的基樁水平動(dòng)力響應(yīng)解析解,包括基樁動(dòng)力阻抗以及樁身內(nèi)力和變形解析表達(dá)式;然后通過(guò)與已有平地動(dòng)力阻抗解析解,斜坡段基樁靜力內(nèi)力變形數(shù)值解進(jìn)行對(duì)比,驗(yàn)證了本文解析解的合理性.
關(guān)鍵詞:斜坡樁;三維波動(dòng)效應(yīng);水平振動(dòng);解析解
中圖分類號(hào):TU443.15文獻(xiàn)標(biāo)志碼:A
Analytical Solution of Horizontal Dynamic Response of Pile in Sloped Ground
ZHANG Ling1,2,3,YUE Shao1,2,3,LIU Yanan1,2,3,PENG Wenzhe1,2,3
(1. College of Civil Engineering,Hunan University,Changsha 410082,China;2. Key Laboratory of Building Safety and Energy Efficiency of the Ministry of Education(Hunan University),Changsha 410082,China;3. National International Joint Research Center for Building Safety and Environment(Hunan University),Changsha 410082,China)
Abstract:As the pile foundations in slope areas near rivers are increasingly adopted,the problem of pile-soil horizontal coupling vibration of piles in slope foundations has also received mounting attention. Based on the existing theory of horizontal dynamic response of foundation piles in level ground,this paper proposes an analytical solution for the horizontal vibration response of foundation piles in sloped ground considering the slope effect. Firstly,by means of differential transformation,Helmholtz decomposition and separation of variables method,the threedimensional wave equation of soil is decoupled,and the continuous condition of the pile-soil boundary is introducedto solve the horizontal dynamic resistance of the surrounding soil of the foundation pile in the level ground. On this basis,the horizontal dynamic resistance of the soil around the foundation pile in the sloped ground can then be deduced by introducing a reduction factor to consider the weakening effect of the sloped ground on the soil resistance on the side of the free surface and ignore the horizontal dynamic resistance provided by the shallow soils within a certain depth;in addition,governing equations for the horizontal vibration of the free section and the submerged section of the foundation pile in the sloped ground is deduced based on Euler beam model;the analytical solutions of the horizontal vibration response of the foundation pile can then be obtained by the transfer matrix method,including the dynamic resistance of the foundation pile and the internal force and deformation of the pile shaft. The proposed solutions are verified by comparing with those existing analytical solutions of dynamic cases in the level ground and nu - merical simulations for static cases in the sloped ground in terms of internal force and deformation of the foundation pile.
Key words:pile in sloped ground;3D wave effect;horizontal vibration;analytical solution
隨著跨江、跨溝谷等斜坡地形上的高速公路建設(shè)的不斷推進(jìn),斜坡樁基工程越來(lái)越多.斜坡基樁不僅要承受上部結(jié)構(gòu)自重等豎向荷載,還要承擔(dān)車輛制動(dòng)等水平動(dòng)荷載作用.與平地基樁相比,因斜坡巖土體應(yīng)力場(chǎng)分布不對(duì)稱,斜坡基樁樁-土耦合振動(dòng)問(wèn)題以及側(cè)向承載能力設(shè)計(jì)計(jì)算更加復(fù)雜.因此,分析水平動(dòng)荷載作用下斜坡基樁的動(dòng)力響應(yīng)具有重要的意義.
目前,國(guó)內(nèi)外已有學(xué)者針對(duì)水平靜載下斜坡基樁的受力變形分析開(kāi)展了一些研究.試驗(yàn)方面,趙明華等[1]通過(guò)現(xiàn)場(chǎng)試驗(yàn)探究了陡坡段雙樁基礎(chǔ)承載特性及荷載傳遞機(jī)理,為同類工程設(shè)計(jì)施工提供了有效參考;尹平保等[2]通過(guò)室內(nèi)模型試驗(yàn)研究了坡度等因素對(duì)斜坡段基樁的斜坡空間效應(yīng)的影響;楊明輝等[3]基于室內(nèi)模型試驗(yàn)指出了樁前土抗力折減效應(yīng)與坡角及臨坡距緊密相關(guān).數(shù)值模擬方面,Georgiadis等[4]采用三維有限元軟件研究了邊坡樁基的水平承載性能,并得到了考慮坡角的p-y曲線表達(dá)式;Ng等[5]基于有限元軟件,研究了水平荷載下斜坡套筒樁的受力變形,得到了套管對(duì)斜坡樁性能影響規(guī)律.理論計(jì)算方面,趙明華等[6]和楊超煒等[7]根據(jù)m法假定,分別提出陡坡段雙樁內(nèi)力計(jì)算有限差分解及有限桿單元解;尹平保等[8]假定樁后邊坡趨于穩(wěn)定,產(chǎn)生的水平推力甚小,只考慮樁前土抗力作用,提出了基于p-y曲線法的斜坡段基樁內(nèi)力變形計(jì)算方法;楊明輝等[9]基于斜坡基樁橫向加載破壞試驗(yàn),提出考慮陡坡效應(yīng)的應(yīng)變楔計(jì)算方法,并研究了陡坡效應(yīng)的影響范圍;Peng等[10-11]假定斜坡地基樁前淺層土難以提供土抗力,提出修正應(yīng)變楔理論;我國(guó)《公路橋涵地基與基礎(chǔ)設(shè)計(jì)規(guī)范》(JTG 3363—2019)[12]建議采用m法計(jì)算平地樁身內(nèi)力變形,對(duì)于斜坡地形可將地基反力系數(shù)比例系數(shù)m值折減一半簡(jiǎn)化計(jì)算.上述研究采用不同方式均對(duì)樁前土抗力進(jìn)行折減以考慮斜坡效應(yīng),且取得較好的效果,但均屬于靜力學(xué)范疇,斜坡段基樁的動(dòng)力響應(yīng)計(jì)算方法鮮有報(bào)道,尚缺乏系統(tǒng)深入的研究.
現(xiàn)有水平動(dòng)力響應(yīng)方面的研究主要是針對(duì)平地基樁開(kāi)展的.早期有學(xué)者采用動(dòng)力Winkler地基梁模型[13-15]將樁周土模擬為彈簧和阻尼器,該模型雖簡(jiǎn)單直觀,但不能很好地反映樁土相互作用,忽略了樁周土的連續(xù)性;Nogami等[16]和Novak等[17]考慮土體應(yīng)力的梯度變化,將土體視為三維連續(xù)介質(zhì),通過(guò)構(gòu)造勢(shì)函數(shù)解耦土體三維波動(dòng)方程,求得樁周土水平振動(dòng)阻力,根據(jù)樁土相互作用得到樁基水平振動(dòng)響應(yīng)解析解;Zheng等[18]將此擴(kuò)展到大直徑管樁,推導(dǎo)了黏彈性土層中大直徑管樁水平動(dòng)力響應(yīng)的解析解;欒魯寶等[19]考慮了豎向應(yīng)力梯度變化和軸向荷載二階效應(yīng)的影響,研究了黏彈性土層中樁-土橫向耦合振動(dòng)問(wèn)題;Hu等[20]建立了徑向非均質(zhì)黏彈性土體的水平動(dòng)力阻抗解析解;趙密等[21]考慮水-樁-土之間的耦合作用,建立了水中高樁水平振動(dòng)響應(yīng)解析解.以上研究對(duì)斜坡基樁振動(dòng)響應(yīng)有著一定的參考價(jià)值.
鑒于此,本文將在現(xiàn)有平地基樁水平動(dòng)力響應(yīng)理論的基礎(chǔ)上,考慮斜坡效應(yīng),提出適用于斜坡段基樁的水平動(dòng)力響應(yīng)解析解,以期為斜坡基樁水平振動(dòng)研究提供一定的理論參考.
1計(jì)算模型建立及基本假定
1.1計(jì)算模型
如圖1所示,斜坡段基樁樁頂同時(shí)受到水平簡(jiǎn)諧荷載Q0eiωt和搖擺簡(jiǎn)諧荷載M0eiωt作用;樁長(zhǎng)為L(zhǎng),其中自由段長(zhǎng)為L(zhǎng)1,嵌入段深度為L(zhǎng)2;樁徑為Dp=2r0.假定樁前一定深度H0范圍內(nèi)的淺層土體難以提供水平抗力[10-11].實(shí)際計(jì)算土層厚度為H1,并設(shè)實(shí)際計(jì)算土層對(duì)應(yīng)的樁軸中心處為坐標(biāo)原點(diǎn)O,沿深度方向?yàn)閦軸,水平方向?yàn)閤軸.
1.2基本假定
為便于分析,根據(jù)圖1所示的簡(jiǎn)化計(jì)算模型,進(jìn)一步做出如下假設(shè):
1)橋梁基樁成樁后斜坡基本上趨于穩(wěn)定,樁后巖土體產(chǎn)生的水平推力甚小,故可假定樁位處斜坡是穩(wěn)定的,即不考慮斜坡的失穩(wěn)破壞,也不考慮樁側(cè)摩阻力及樁后土體水平推力的作用[8].
2)基樁視為線彈性Euler桿件,忽略剪切變形及轉(zhuǎn)動(dòng)慣性,樁周土為各向同性黏彈性體[19,21].
3)樁土體系為小變形振動(dòng),樁-土體系接觸良好,接觸面不發(fā)生相對(duì)滑移,且只考慮水平方向位移,忽略豎向位移[19,21].
2樁周土層水平振動(dòng)
在水平簡(jiǎn)諧荷載作用下,樁-土體系處于簡(jiǎn)諧振動(dòng)狀態(tài),相應(yīng)的狀態(tài)項(xiàng)均包含時(shí)間因子eiωt.為書(shū)寫方便,在以下推導(dǎo)過(guò)程中均省略eiωt項(xiàng).在對(duì)斜坡樁周土水平動(dòng)反力推導(dǎo)時(shí),先推導(dǎo)出平地基樁周土水平動(dòng)反力,再進(jìn)一步考慮斜坡的土抗力折減效應(yīng),最終得出斜坡基樁周土抗力表達(dá)式.
2.1樁周土振動(dòng)方程建立
當(dāng)樁周土系統(tǒng)做水平振動(dòng)時(shí),根據(jù)黏彈性動(dòng)力學(xué)理論,建立柱坐標(biāo)系下樁周土運(yùn)動(dòng)方程如下:
式中:ur、uθ分別為樁周土的徑向和環(huán)向位移;λs和μs為復(fù)拉梅常數(shù),λs=2μsvs/(1-2vs),μs=Gs(1+2iξs),Gs為樁周土剪切模量,Gs=Es/(2(1+vs)),vs、Es、ξs分別為樁周土泊松比、彈性模量以及滯回阻尼比;ρs為樁周土密度.
2.2樁周土邊界及連續(xù)性條件
樁周土邊界條件:
樁周土接觸邊界條件:
式中:up為樁身沿θ=0方向水平位移.
2.3樁周土振動(dòng)方程求解
引入勢(shì)函數(shù)對(duì)土體振動(dòng)控制方程進(jìn)行解耦:
式中:φ(r,θ,z)、φ(r,θ,z)為土體的位移勢(shì)函數(shù).
由式(10)(11)容易得到:
Δ=▽2φ,e=-▽2φ
將式(10)~(12)代入方程(1)(2),化簡(jiǎn)得:
令φ=R(r)Θ(θ)Z(z),將φ代入式(13)中,兩邊同時(shí)除以R(r)Θ(θ)Z(z)可得:
基于分離變量原理,式(15)可分解為三個(gè)常微分方程:
式(16)~(18)的通解為:
勢(shì)函數(shù)φ的解為:
同理,可得到勢(shì)函數(shù)ψ的解:
根據(jù)式(7)并考慮修正Bessel函數(shù)的性質(zhì),可得B=B0=0,n1=1.由式(8)(9)可知ux是θ的偶函數(shù),uθ是θ的奇函數(shù),可得C=D0=0.由式(5)(6)可得E=E0=0,gn=(2n-1)π/(2H1);n=1,2,3,….
因此可得:
將式(24)(25)代入式(10)(11)得:
式中:An、Bn為待定系數(shù).
將式(26)(27)代入方程(8)(9)化簡(jiǎn)得:
由式(28)(29)得到:
土層對(duì)樁的水平阻力p可表示為:
以上即得平地水平動(dòng)反力p的表達(dá)式,但對(duì)于斜坡而言將會(huì)存在折減效應(yīng)[8-9],《公路橋涵地基與基礎(chǔ)設(shè)計(jì)規(guī)范》(JTG 3363—2019)[12]建議當(dāng)樁基礎(chǔ)側(cè)面設(shè)有斜坡或臺(tái)階,且其坡度(橫:豎)或臺(tái)階總寬與深度之比大于1:20時(shí),地基抗力比例系數(shù)m值應(yīng)減小50%取用.即通過(guò)考慮土體強(qiáng)度折減來(lái)計(jì)算水平荷載下斜坡樁的受力變形,本文采用類似處理,對(duì)反力系數(shù)bn進(jìn)行折減,引入折減因子ζ,ζ數(shù)值大小與邊坡角度等緊密相關(guān)[2-4],例如:尹平保等[2]基于室內(nèi)模型試驗(yàn),提出不同坡度θs下基樁水平極限承載力的折減系數(shù)擬合式(1-θs/90°).
綜上即得斜坡土層水平動(dòng)反力ps:
3單樁水平振動(dòng)
根據(jù)假設(shè)1),可將圖1土層深度H0對(duì)應(yīng)樁體劃入自由段,并在下文求解中將自由段與土層深度H0對(duì)應(yīng)樁體統(tǒng)稱為自由段,相應(yīng)的入土段則僅表示埋入土中實(shí)際計(jì)算土層對(duì)應(yīng)樁體.
3.1單樁振動(dòng)方程建立
由動(dòng)力平衡條件建立柱坐標(biāo)系中樁運(yùn)動(dòng)方程.
自由段:
入土段:
式中:Ep為樁彈性模量;Ip為樁截面慣性矩;up0、up1分別為自由段、入土段的樁身水平位移;mp為樁單位長(zhǎng)度質(zhì)量,mp=ρpπr02,ρp為樁體密度.
3.2單樁振動(dòng)方程求解
3.2.1自由段
令λ4=mpω2/(EpIp),可得式(33)的解為:
up0(z)=C1cosh(λz)+C2sinh(λz)+C3sin(λz)+C4cos(λz)(35)
式中:C1、C2、C3、C4為待定常數(shù).
由材料力學(xué)位移、轉(zhuǎn)角、彎矩和剪力之間的關(guān)系可知:
則樁身自由段上、下兩端的水平位移、轉(zhuǎn)角、彎矩、剪力的關(guān)系可表示為:
3.2.2入土段
式(34)由通解與特解兩部分組成,容易得到式(34)的解為:
由樁周土接觸邊界條件式(8)(9)可得:
式中:φp0、Mp0、Qp0分別為樁身自由段轉(zhuǎn)角、彎矩和剪力;χ0為自由段系數(shù)矩陣.
利用三角函數(shù)cos(gnz)正交性,式(40)兩端同乘cos(gnz),在區(qū)間[0,L]上積分可得:
由式(41)可得:
將式(42)代入式(39)中可得斜坡基樁入土段水平位移up1解:
由材料力學(xué)位移、轉(zhuǎn)角、彎矩和剪力之間的關(guān)系可得:
式中:φp1、Mp1、Qp1分別為樁身入土段轉(zhuǎn)角、彎矩和剪力;χ1為入土段系數(shù)矩陣.
則入土樁段上、下兩端的水平位移、轉(zhuǎn)角、彎矩、剪力的關(guān)系可表示為:
結(jié)合式(38)和式(46),考慮樁身連續(xù)條件,可得樁底和樁頂?shù)乃轿灰?、轉(zhuǎn)角、彎矩、剪力的關(guān)系為:
式中:fp=[χ1(H1)][χ1(0)]-1[χ0(0)][χ1(-L1-H0)]-1.
3.3邊界條件
Novak等[17]給出了平地單樁樁端固定與鉸接時(shí)的樁動(dòng)力阻抗的解答,對(duì)于斜坡基樁而言,樁端一般嵌入基巖中,故本文給出式(48)樁端固定時(shí)的詳細(xì)解答,鉸接可類似得出.
樁頂已知邊界條件:
限于篇幅,下文僅給出樁頂自由、樁端固定時(shí)的詳細(xì)解答,其他邊界條件可類似得出.
3.4動(dòng)力阻抗解答
結(jié)合邊界條件式(48),由式(47)可得樁頂彎矩、剪力和樁頂水平位移、轉(zhuǎn)角的關(guān)系:
式中:Kp為動(dòng)力阻抗矩陣,其表達(dá)式為:
樁端鉸接時(shí)的動(dòng)力阻抗矩陣為:
根據(jù)動(dòng)力阻抗的定義[15],可得單樁水平動(dòng)力阻抗Kh、搖擺動(dòng)力阻抗Kr以及水平-搖擺耦合動(dòng)力阻抗Khr如下:
3.5內(nèi)力變形解答
結(jié)合邊界條件式(48)(49),由式(47)可得樁頂水平位移、轉(zhuǎn)角和樁頂彎矩、剪力的關(guān)系:
式中:K0為系數(shù)矩陣,其表達(dá)式為:
綜上結(jié)合式(36)(44)即可得樁身內(nèi)力變形解.
4算例驗(yàn)證分析
因現(xiàn)有文獻(xiàn)鮮有斜坡基樁水平動(dòng)力試驗(yàn)或數(shù)值模擬報(bào)道,難以直接用對(duì)應(yīng)試驗(yàn)結(jié)果驗(yàn)證本文解答正確性,故下文將分兩步進(jìn)行驗(yàn)證,其一是不考慮斜坡效應(yīng),將解答退化為平地基樁動(dòng)力問(wèn)題,并與已有平地動(dòng)力解析解對(duì)比,驗(yàn)證樁周土振動(dòng)方程以及基樁動(dòng)力阻抗方程解答正確性;其二是不考慮水平動(dòng)荷載的影響,將解答退化為斜坡基樁靜力問(wèn)題,與已有斜坡基樁靜力數(shù)值試驗(yàn)對(duì)比,驗(yàn)證斜坡基樁水平振動(dòng)響應(yīng)解答的正確性.
4.1算例1
為驗(yàn)證本文樁周土振動(dòng)方程的正確性,本文與Nogami等[16]理論解進(jìn)行對(duì)比驗(yàn)證,基本參數(shù)為:r0/H1=100,vs=0.4,ξs=0.01,ζ=1,H0=0,L1=0,計(jì)算結(jié)果如圖2所示.圖2中土體第n振動(dòng)模態(tài)阻抗因子β=bn/ηs(第n模態(tài)下樁在發(fā)生單位水平位移時(shí),對(duì)應(yīng)土體在r=r0產(chǎn)生的水平阻力);an為土體第n階固有頻率,an=n(2n-1)/2,n=1,2,3,….圖2中橫縱坐標(biāo)分別為:無(wú)量綱土體頻率a*=a0*/a1(a1=π/2);無(wú)量綱土體阻抗因子βn*=βn/(πμs),βn*通常為復(fù)數(shù),根據(jù)定義[16],βn*實(shí)部為土體剛度,βn*虛部為阻尼.
由圖2可知,本文解與Nogami理論解[16]吻合較好,表明本文樁周土振動(dòng)方程是正確的.
4.2算例2
為驗(yàn)證本文斜坡段基樁動(dòng)力阻抗方程的正確性,令H0=0,L1=0,ζ=1,即退化為平地基樁動(dòng)力阻抗解,與Chau等[22]解析解進(jìn)行驗(yàn)證.基本參數(shù)為:vs=0.4,ρs/ρp=0.6,L/r0=H1/r0=30,ξs=0.05,η′=0.01.邊界條件為樁端鉸接,計(jì)算結(jié)果如圖3所示.圖3中,橫坐標(biāo)為λ*/λ0,其中λ0為無(wú)土的獨(dú)立彈性樁λ*的最小值,對(duì)于樁端鉸接,Kh對(duì)應(yīng)的λ0=1.571,其他邊界條件取值見(jiàn)文獻(xiàn)[22].縱坐標(biāo)Kh′=kh(動(dòng)力)/Kh(靜力),Kh(靜力)可令ω→0,通過(guò)計(jì)算Kh(動(dòng)力)的值確定.
由圖3可知,本文解與文獻(xiàn)[22]解吻合較好,驗(yàn)證了本文動(dòng)力阻抗方程以及相應(yīng)程序的正確性.
4.3算例3
為驗(yàn)證本文斜坡基樁水平振動(dòng)響應(yīng)解析解的正確性與適用性,令ω→0,即退化為水平靜載下斜坡基樁解答,與Peng等[11]基于張-花高速公路現(xiàn)場(chǎng)試驗(yàn)的ABAQUS有限元軟件解進(jìn)行對(duì)比.基本參數(shù)如下:L=L2=18,r0=1 m,ρp=2 400 kg/m3,Ep=29 600 MPa,vs=0.3,Es=100 MPa,ρs=2 000 kg/m3,ζ=0.5.樁頂受水平荷載Q0=200 kN作用,且樁頂自由,樁端固定.通過(guò)有限元解最大位移值反算土層深度H0=1 Dp,計(jì)算結(jié)果如圖4所示.圖4中縱軸坐標(biāo)參照文獻(xiàn)[11]坐標(biāo)系,以樁頂為零點(diǎn).
圖4表明本文解與文獻(xiàn)[11]解吻合很好,且相比于規(guī)范法誤差更小,驗(yàn)證了本文解的適用性.
5結(jié)論
本文基于土體三維波動(dòng)方程,引入折減因子并忽略樁前一定深度范圍內(nèi)的淺層土體的水平抗力作用,求得斜坡樁周土水平動(dòng)反力;在此基礎(chǔ)上,利用Euler模型推導(dǎo)斜坡基樁自由段以及入土段水平振動(dòng)控制方程,運(yùn)用傳遞矩陣法結(jié)合邊界條件得到斜坡段基樁水平振動(dòng)響應(yīng)解析解,并通過(guò)退化分別與已有平地基樁水平振動(dòng)響應(yīng)解析解以及斜坡基樁靜力變形有限元解進(jìn)行對(duì)比驗(yàn)證了本文斜坡基樁模型解的正確性與合理性,可為斜坡基樁水平振動(dòng)研究提供初步理論參考.
參考文獻(xiàn)
[1]趙明華,楊超煒,陳耀浩,等.高陡橫坡段樁柱式橋梁雙樁基礎(chǔ)現(xiàn)場(chǎng)試驗(yàn)研究[J].巖土工程學(xué)報(bào),2018,40(2):329-335.
ZHAO M H,YANG C W,CHEN Y H,et al. Field tests on double-pile foundation of bridges in high-steep cross slopes [J]. Chinese Journal of Geotechnical Engineering,2018,40(2):329335. (In Chinese)
[2]尹平保,賀煒,張建仁,等.斜坡基樁的斜坡空間效應(yīng)及其水平承載特性研究[J].土木工程學(xué)報(bào),2018,51(4):94-101.
YIN P B,HE W,ZHANG J R,et al. Study on spatial effect of slope and horizontal bearing behavior of piles in sloping ground [J]. China Civil Engineering Journal,2018,51(4):94-101. (In Chinese)
[3]楊明輝,聶華杰,趙明華.邊坡段水平受荷樁樁前土抗力折減效應(yīng)的模型試驗(yàn)研究[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2019,46(3):114-121.
YANG M H,NIE H J,ZHAO M H. Model testing study on effect of predicament resistance reduction on lateral loaded pile near slope [J]. Journal of Hunan University (Natural Sciences),2019,46 (3):114-121 (In Chinese)
[4]GEORGIADIS K,GEORGIADIS M. Undrained lateral pile response in sloping ground[J]. Journal of Geotechnical and Geoenvi- ronmental Engineering,2010,136(11):1489-1500
[5]NG C W W,ZHANG L M. Three-dimensional analysis of performance of laterally loaded sleeved piles in sloping ground[J]. Journal of Geotechnical and Geoenvironmental Engineering,2001,127 (6):499-509.
[6]趙明華,彭文哲,楊超煒,等.高陡橫坡段橋梁雙樁內(nèi)力計(jì)算有限差分解[J].中國(guó)公路學(xué)報(bào),2019,32(2):87-96.
ZHAO M H,PENG W Z,YANG C W,et al. Finite difference solution of bridge double-pile structure on a steep transverse slope[J]. China Journal of Highway and Transport,2019,32(2):87-96. (In Chinese)
[7]楊超煒,趙明華,陳耀浩,等.高陡橫坡段樁柱式橋梁雙樁基礎(chǔ)受力分析[J].湖南大學(xué)學(xué)報(bào)(自然科學(xué)版),2018,45(3):129-135
YANG C W,ZHAO M H,CHEN Y H,et al. Force analysis of bridge double-piles foundation in high and steep cross slopes[J]. Journal of Hunan University(Natural Sciences),2018,45(3):129-135 (In Chinese)
[8]尹平保,聶道流,楊朝暉,等.斜坡基樁p-y曲線及水平承載計(jì)算方法研究[J].巖石力學(xué)與工程學(xué)報(bào),2018,37(4):996-1003.
YIN PB,NIE D L,YANG Z H,et al. The p-y curve and computation method of the horizontal bearing capacity of piles in sloping ground[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(4):996-1003 (In Chinese)
[9]楊明輝,馮超博,趙明華,等.考慮坡度效應(yīng)的水平受荷樁應(yīng)變楔計(jì)算方法[J].巖土力學(xué),2018,39(4):1271-1280.
YANG M H,F(xiàn)ENG C B,ZHAO M H,et al. A method for calculating laterally loaded pile using strain wedge model considering slope effect[J]. Rock and Soil Mechanics,2018,39(4):1271- 1280 (In Chinese)
[10]PENG W Z,ZHAO M H,ZHAO H,et al. Behaviors of a laterally loaded pile located in a mountainside[J]. International Journal ofGeomechanics,2020,20(8):04020123
[11]PENG W Z,ZHAO M H,XIAO Y,et al. Analysis of laterally loaded piles in sloping ground using a modified strain wedge model [J]. Computers and Geotechnics,2019,107:163-175
[12]公路橋涵地基與基礎(chǔ)設(shè)計(jì)規(guī)范:JTG 3363—2019[S].北京:人民交通出版社股份有限公司,2020.
Specifications for design of foundation of highway bridges and culverts:JTG 3363—2019 [S]. Beijing:China Communications Press Co.,Ltd.,2020.(In Chinese)
[13]周緒紅,蔣建國(guó),鄒銀生.粘彈性介質(zhì)中考慮軸力作用時(shí)樁的動(dòng)力分析[J]. 土木工程學(xué)報(bào),2005,38(2):87-91.
ZHOU X H,JIANG J G,ZOU Y S. Dynamic analysis of piles under axial loading and lateral dynamic force in visco-elastic medium[J]. China Civil Engineering Journal,2005,38(2):87-91 (In Chinese)
[14]胡安峰,謝康和,王奎華.粘彈性地基中有限長(zhǎng)樁橫向受迫振動(dòng)問(wèn)題解析解[J].巖土力學(xué),2003,24(1):25-29.
HU A F,XIE K H,WANG K H. An analytical solution for lateral vibration of a pile with finite length pile in viscoelastic subgrade [J]. Rock and Soil Mechanics,2003,24(1):25-29 (In Chinese)
[15]黃茂松,邊學(xué)成,陳育民,等.土動(dòng)力學(xué)與巖土地震工程[J].土木工程學(xué)報(bào),2020,53(8):64-86.
HUANG M S,BIAN X C,CHEN Y M,et al. Soil dynamics and geotechnical earthquake engineering [J]. China Civil Engineering Journal,2020,53(8):64-86.(In Chinese)
[16]NOGAMI T,NOVAK M. Resistance of soil to a horizontally vibrating pile [J]. Earthquake Engineering & Structural Dynamics,1977,5(3):249-261
[17]NOVAK M,NOGAMI T. Soil-pile interaction in horizontal vibration[J]. Earthquake Engineering & Structural Dynamics,1977,5 (3):263-281
[18]ZHENG C J,LIU H L,DING X M. Lateral dynamic response of a pipe pile in saturated soil layer[J]. International Journal for Numerical and Analytical Methods inGeomechanics,2016,40(2):159-184
[19]欒魯寶,丁選明,周仕禮,等.考慮豎向荷載的樁基水平振動(dòng)響應(yīng)解析解[J].建筑結(jié)構(gòu),2015,45(19):80-86.
LUAN L B,DING X M,ZHOU S L,et al. Analytical solution of lateral vibration response of an axial loaded pile[J]. Building Structure,2015,45(19):80-86 (In Chinese)
[20]HU A F,F(xiàn)U P,XIA C Q,et al. Horizontal impedances of saturated soil layer with radially inhomogeneous boundary zone[J]. Soil Dynamics and Earthquake Engineering,2018,111:184-192
[21]趙密,黃義銘,王丕光,等.樁頂水平動(dòng)荷載作用下水-樁-土相互作用的解析解[J].巖土工程學(xué)報(bào),2022,44(5):907-915.
ZHAO M,HUANG Y M,WANG P G,et al. Analytical solution for water-pile-soil interaction under horizontal dynamic loads on pile head[J]. Chinese Journal of Geotechnical Engineering,2022,44 (5):907-915.(In Chinese)
[22]CHAU K T,YANG X. Nonlinear interaction of soil-pile in horizontal vibration[J]. Journal of Engineering Mechanics,2005,131(8):847-858